
II. Stable sets and colourings

1. Stable sets and colourings

Let G = (V, E) be a graph. A stable set is a subset S of V containing no edge of G. A
clique is a subset C of V such that any two vertices in C are adjacent. So

(1) S is a stable set of G ⇐⇒ S is a clique of G,

where G denotes the complementary graph of G.1

A vertex-colouring or colouring of G is a partition Π of V into stable sets S1, . . . , Sk.
The sets S1, . . . , Sk are called the colours of the colouring. A clique cover of G is a partition
Π of V into cliques.

Define:

(2) α(G) := max{|S| | S is a stable set},
ω(G) := max{|C| | C is a clique},
χ(G) := min{|Π| | Π is a colouring},
χ(G) := min{|Π| | Π is a clique cover}.

These numbers are called the stable set number, the clique number, the vertex-colouring
number or colouring number, and the clique cover number of G, respectively. We say that
a graph G is k-(vertex-)colourable if χ(G) ≤ k.

Note that

(3) α(G) = ω(G) and χ(G) = χ(G).

We have seen that in any graph G = (V, E), a maximum-size matching can be found in
polynomial time. This means that α(L(G)) can be found in polynomial time, where L(G)
is the line graph of G.2

On the other hand, it is NP-complete to find a maximum-size stable set in a graph.
That is, determining α(G) is NP-complete. Since α(G) = |V |−τ(G) and α(G) = ω(G), also
determining the vertex cover number τ(G) and the clique number ω(G) are NP-complete
problems.

Moreover, determining χ(G) is NP-complete. It is even NP-complete to decide if a graph
is 3-colourable. Note that one can decide in polynomial time if a graph G is 2-colourable,
as bipartiteness can be checked in polynomial time.

These NP-completeness results imply that if NP 6=co-NP, then one may not expect a
min-max relation characterizing the stable set number α(G), the clique number ω(G), or
the colouring number χ(G) of a graph G.

1The complement or the complementary graph G of a graph G = (V, E) is the graph with vertex set V ,
where any two distinct vertices in V are adjacent in G if and only if they are nonadjacent in G.

2The line graph L(G) of a graph G = (V, E) has vertex set E and edge set {{e, f} | e, f ∈ E, e 6= f, e∩f 6=
∅}.
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Well-known is the four-colour conjecture (4CC ), stating that each planar graph is 4-
colourable. This conjecture was proved by Appel and Haken [1] and Appel, Haken, and
Koch [2] (cf. Robertson, Sanders, Seymour, and Thomas [17]), and is therefore now called
the four-colour theorem (4CT ).

2. Bounds

There is a trivial upper bound on the colouring number:

(4) χ(G) ≤ ∆(G) + 1,

where ∆(G) denotes the maximum degree of the vertices of G. Brooks [5] sharpened this
inequality as follows:

Brooks’ theorem: For any connected graph G one has χ(G) ≤ ∆(G), except if G = Kn

or G = Cn for some odd n ≥ 3.3

Another inequality relates the clique number and the colouring number:

(5) ω(G) ≤ χ(G).

This is easy, since in any clique all vertices should have different colours. It implies α(G) ≤
χ(G), since α(G) = ω(G) ≤ χ(G) = χ(G).

But there are several graphs which have strict inequality in (5). We mention the odd
circuits C2k+1, with 2k + 1 ≥ 5: then ω(C2k+1) = 2 and χ(C2k+1) = 3. Moreover, for the
complement C2k+1 of any such graph we have: ω(C2k+1) = k and χ(C2k+1) = k + 1.

It was a conjecture of Berge [4] that these graphs are crucial, which was proved by
Chudnovsky, Robertson, Seymour, and Thomas [6]:4

Strong perfect graph theorem: Let G be a graph. If for no odd n ≥ 5, Cn or Cn is an
induced subgraph of G, then ω(G) = χ(G).

Another conjecture is due to Hadwiger [11]. Since there exist graphs with ω(G) < χ(G),
it is not true that if χ(G) ≥ n then G contains the complete graph Kn on n vertices as a
subgraph. However, Hadwiger conjectured the following, where a graph H is called a minor
of a graph G if H arises from some subgraph of G by contracting some (possible none)
edges.

Hadwiger’s conjecture: If χ(G) ≥ n then G contains Kn as a minor.

In other words, for each n, the graph Kn is the only graph G with the property that G is
not (n − 1)-colourable and each proper minor of G is (n − 1)-colourable.

3 Here Ck denotes the circuit with k vertices.
4 Let G = (V, E) be a graph and let U ⊆ V . Then the subgraph of G induced by U , denoted by G[U ]

is the graph (U, E′), where E′ equals the set of all edges in E contained in U . The graph G[U ] is called an
induced subgraph of G.
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Hadwiger’s conjecture is trivial for n = 1, 2, 3, and was shown by Hadwiger for n = 4.
As planar graphs do not contain K5 as a minor, Hadwiger’s conjecture for n = 5 implies
the four-colour theorem. In fact, Wagner [22] showed that Hadwiger’s conjecture for n = 5
is equivalent to the four-colour conjecture. Robertson, Seymour, and Thomas [18] showed
that Hadwiger’s conjecture is true also for n = 6, by showing that also in that case it is
equivalent to the four-colour theorem. For n ≥ 7, Hadwiger’s conjecture is unsettled.

Exercises

2.1. Show that if G is a bipartite graph, then ω(G) = χ(G).

2.2. (i) Derive from Kőnig’s edge cover theorem that α(G) = χ(G) if G is bipartite.

(ii) Derive Kőnig’s edge cover theorem from the strong perfect graph theorem.

2.3. (i) Let H be a bipartite graph and let G be the complement of the line-graph of H. Derive
from Kőnig’s matching theorem that ω(G) = χ(G).

(ii) Derive Kőnig’s matching theorem from the strong perfect graph theorem.

3. Edge-colourings of bipartite graphs

For any graph G = (V, E), an edge-colouring is a partition Π = {M1, . . . , Mp} of the edge
set E, where each Mi is a matching. Each of these matchings is called a colour. Define the
edge-colouring number χ′(G) by

(6) χ′(G) := min{|Π| | Π is an edge-colouring of G}.

So χ′(G) = χ(L(G)), where L(G) is the line graph of G. Clearly,

(7) χ′(G) ≥ ∆(G),

since at each vertex v, the edges incident with v should have different colours. (In other
words, χ′(G) = χ(L(G)) ≥ ω(L(G)) ≥ ∆(G).) Again the triangle K3 has strict inequality.
Kőnig [13] showed that for bipartite graphs the two numbers are equal.

Theorem 1 (Kőnig’s edge-colouring theorem). For any bipartite graph G = (V, E) one has

(8) χ′(G) = ∆(G).

That is, the edge-colouring number of a bipartite graph is equal to its maximum degree.

Proof. First notice that the theorem is easy if ∆(G) ≤ 2. In that case, G consists of a
number of vertex-disjoint paths and even circuits.

In the general case, colour as many edges of G as possible with ∆(G) colours, without
giving the same colour to two intersecting edges. If all edges are coloured we are done, so
suppose some edge e = {u, w} is not coloured. At least one colour, say red, does not occur
among the colours given to the edges incident with u. Similarly, there is a colour, say blue,
not occurring at w. (Clearly, red 6=blue, since otherwise we could give edge e the colour red.)
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Let H be the subgraph of G having as edges all red and blue edges of G, together with
the edge e. Now ∆(H) = 2, and hence χ′(H) = ∆(H) = 2. So all edges occurring in H can
be (re)coloured with red and blue. In this way we colour more edges of G than before. This
contradicts the maximality assumption.

This proof also gives a polynomial-time algorithm to find an edge-colouring with ∆(G)
colours.

We remark here that Vizing [20] proved that for general (nonbipartite) simple5 graphs
G one has

(9) ∆(G) ≤ χ′(G) ≤ ∆(G) + 1

(see Section 10). Here ‘simple’ cannot be deleted, as is shown by the graph G with three
vertices, where any two vertices are connected by two parallel edges: then ∆(G) = 4 while
χ′(G) = 6.

Exercises

3.1. (i) Let G be the line-graph of some bipartite graph H. Derive from Kőnig’s edge-colouring
theorem (Theorem 1) that ω(G) = χ(G).

(ii) Derive Kőnig’s edge-colouring theorem (Theorem 1) from the strong perfect graph the-
orem.

3.2. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be partitions of a finite set X such that |A1| =
· · · = |An| = |B1| = · · · = |Bn| = k. Show that A and B have k disjoint common transversals.6

4. Partially ordered sets

A partially ordered set is a pair (X,≤) where X is a set and where ≤ is a relation on X
satisfying (for all x, y, z ∈ X):

(10) (i) x ≤ x,
(ii) if x ≤ y and y ≤ x then x = y,
(iii) if x ≤ y and y ≤ z then x ≤ z.

A subset C of X is called a chain if for all x, y ∈ C one has x ≤ y or y ≤ x. A subset A of
X is called an antichain if for all x, y ∈ A with x 6= y one has x 6≤ y and y 6≤ x. Note that
if C is a chain and A is an antichain then

(11) |C ∩ A| ≤ 1.

5A graph is simple if it has no loops or parallel edges.
6disjoint always means: pairwise disjoint.
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First we observe the following easy min-max relation:

Theorem 2. Let (X,≤) be a partially ordered set, with X finite. Then the minimum
number of antichains needed to cover X is equal to the maximum cardinality of any chain.

Proof. The fact that the maximum cannot be larger than the minimum follows easily from
(11). To see that the two numbers are equal, define for any element x ∈ X the height of
x as the maximum cardinality of any chain in X with maximum x. For any i ∈ N, let Ai

denote the set of all elements of height i.
Let k be the maximum height of the elements of X. Then A1, . . . , Ak are antichains

covering X, and moreover there exists a chain of size k.

Dilworth [7] proved that the same theorem also holds when we interchange the words
‘chain’ and ‘antichain’:

Theorem 3 (Dilworth’s decomposition theorem). Let (X,≤) be a partially ordered set, with
X finite. Then the minimum number of chains needed to cover X is equal to the maximum
cardinality of any antichain.

Proof. We apply induction on |X|. The fact that the maximum cannot be larger than the
minimum follows easily from (11). To see that the two numbers are equal, let α be the
maximum cardinality of any antichain and let A be an antichain of cardinality α. Define

(12) A↓ := {x ∈ X | ∃y ∈ A : x ≤ y},
A↑ := {x ∈ X | ∃y ∈ A : x ≥ y}.

Then A↓ ∪ A↑ = X (since A is a maximum antichain) and A↓ ∩ A↑ = A.
First assume A↓ 6= X and A↑ 6= X. Then by induction A↓ can be covered with α chains.

Since A ⊆ A↓, each of these chains contains exactly one element in A. For each x ∈ A, let
Cx denote the chain containing x. Similarly, there exist α chains C ′

x (for x ∈ A) covering
A↑, where C ′

x contains x. Then for each x ∈ A, Cx ∪ C ′
x forms a chain in X, and moreover

these chains cover X.
So we may assume that for each antichain A of cardinality α one has A↓ = X or A↑ = X.

It means that each antichain A of cardinality α is either the set of minimal elements of X or
the set of maximal elements of X. Now choose a minimal element x and a maximal element
y of X such that x ≤ y. Then the maximum cardinality of an antichain in X \ {x, y} is
equal to α − 1 (since each antichain in X of cardinality α contains x or y). By induction,
X \ {x, y} can be covered with α − 1 chains. Adding the chain {x, y} yields a covering of
X with α chains.

Exercises

4.1. Derive Kőnig’s edge cover theorem from Dilworth’s decomposition theorem.

4.2. Let I = (I1, . . . , In) be a family of intervals on R, in such a way that each x ∈ R is contained
in at most k of these intervals. Show that I can be partitioned into k classes I1, . . . , Ik so
that each Ij consists of disjoint intervals.
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4.3. Let D = (V,A) be an acyclic directed graph and let s and t be vertices of D such that each arc
of D occurs in at least one s− t path. Derive from Dilworth’s decomposition theorem that the
minimum number of s− t paths needed to cover all arcs is equal to the maximum cardinality
of δout(U), where U ranges over all subsets of V satisfying s ∈ U, t 6∈ U and δin(U) = ∅.

4.4. A graph G = (V,E) is called a comparability graph if there exists a partial order ≤ on V such
that for all u,w in V with u 6= w one has:

(13) {u,w} ∈ E ⇔ u ≤ w or w ≤ u.

(i) Show that if G is a comparability graph, then ω(G) = χ(G).

(ii) Show that if G is the complement of a comparability graph, then ω(G) = χ(G).

(Hint: Use Dilworth’s decomposition theorem (Theorem 3).)

4.5. Derive Dilworth’s decomposition theorem (Theorem 3) from the strong perfect graph theorem.

5. Perfect graphs

We now consider a general class of graphs, the ‘perfect’ graphs, that turn out to unify
several results in combinatorial optimization, in particular, min-max relations.

As we saw before, the clique number ω(G) and the colouring number χ(G) of a graph
G = (V, E) are related by the inequality:

(14) ω(G) ≤ χ(G).

There are graphs that have strict inequality; for instance, the circuit C5 on five vertices.
Having equality in (14) does not say that much about the internal structure of a graph:

any graph G = (V, E) can be extended to a graph G′ = (V ′, E′) satisfying ω(G′) = χ(G′),
simply by adding to G a clique of size χ(G), disjoint from V .

However, if we require that equality in (14) holds for each induced subgraph of G, we
obtain a much more powerful condition. The idea for this was formulated by Berge [4]. He
defined a graph G = (V, E) te be perfect if ω(G′) = χ(G′) holds for each induced subgraph
G′ of G.

Several classes of graphs could be shown to be perfect, and Berge [3,4] observed the
important phenomenon that for several classes of graphs that were shown to be perfect,
also the class of complementary graphs is perfect.

Berge therefore conjectured that the complement of any perfect graph is perfect again.
This conjecture was proved by Lovász [15], and his perfect graph theorem forms the kernel of
perfect graph theory. It has several other theorems in graph theory as consequence. Lovász
[14] gave the following stronger form of the conjecture, which we show with the elegant
linear-algebraic proof found by Gasparian [8].

Theorem 4. A graph G is perfect if and only if ω(G′)α(G′) ≥ |V (G′)| for each induced
subgraph G′ of G.

Proof. Necessity is easy, since if G is perfect, then ω(G′) = χ(G′) for each induced subgraph
G′ of G, and since χ(G′)α(G′) ≥ |V (G′)| for any graph G′ (as V (G′) can be covered by
χ(G′) stable sets).
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To see sufficiency, suppose to the contrary that there exists an imperfect graph G satis-
fying the condition, and choose such a graph with |V (G)| minimal. So χ(G) > ω(G), while
χ(G′) = ω(G′) for each induced subgraph G′ 6= G of G.

Let ω := ω(G) and α := α(G). We can assume that V (G) = {1, . . . , n}.
We first show:

(15) there exist stable sets C0, . . . , Cαω such that each vertex is covered by exactly α
of the Ci.

Let C0 be any stable set in G of size α. By the minimality of G, we know that for each
v ∈ C0, the subgraph of G induced by V (G) \ {v} is perfect, and that hence its colouring
number is at most ω (as its clique number is at most ω, as it is a subgraph of G); therefore
V (G) \ {v} can be partitioned into ω stable sets. Doing this for each v ∈ C0, we obtain
stable sets as in (15).

Now for each i = 0, . . . , αω, there exists a clique Ki of size ω with Ki ∩ Ci = ∅.
Otherwise, the subgraph G′ of G induced by V (G) \Ci would have ω(G′) < ω, and hence it
has colouring number at most ω−1. Adding Ci as a colour would give an ω-vertex colouring
of G, contradicting the assumption that χ(G) > ω(G).

Then, if i 6= j with 0 ≤ i, j ≤ αω, we have |Kj ∩Ci| = 1. This follows from the fact that
Kj has size ω and intersects each Ci in at most one vertex, and hence, by (15), it intersects
αω of the Ci. As Kj ∩ Cj = ∅, we have that |Kj ∩ Ci| = 1 if i 6= j.

Now consider the (αω + 1) × n incidence matrices M = (mi,j) and N = (ni,j) of
C0, . . . , Cαω and K0, . . . , Kαω respectively. So M and N are 0, 1 matrices, with mi,j =
1 ⇔ j ∈ Ci, and ni,j = 1 ⇔ j ∈ Ki, for i = 0, . . . , αω and j = 1, . . . , n. By the above,
MNT = J−I, where J is the (αω+1)×(αω+1) all-1 matrix, and I the (αω+1)×(αω+1)
identity matrix. As J−I has rank αω+1, we have n ≥ αω+1. This contradicts the condition
given in the theorem.

This implies:

Corollary 4a ((Lovász’s) perfect graph theorem). The complement of a perfect graph is
perfect again.

Proof. Directly from Theorem 4, as the condition given in it is maintained under taking
the complementary graph.

In fact, Berge [4] also made an even stronger conjecture, which was proved by Chud-
novsky, Robertson, Seymour, and Thomas [6] (we mentioned this in Section 1 in a different
but equivalent form):

Strong perfect graph theorem. A graph G is perfect if and only if G does not contain
any odd circuit C2k+1 with k ≥ 2 or its complement as an induced subgraph.

Exercises

5.1. Show that Corollary 4a is implied by the strong perfect graph theorem.

5.2. Give a graph G with ω(G) = χ(G) and α(G) < χ(G).
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6. Consequences of the perfect graph theorem

We now show how several theorems we have seen before follow as consequences from the
perfect graph theorem. First observe that trivially, any bipartite graph G is perfect. This
implies Kőnig’s edge cover theorem:

Corollary 4b (Kőnig’s edge cover theorem). The complement of a bipartite graph is perfect.
Equivalently, the edge cover number of any bipartite graph (without isolated vertices) is equal
to its stable set number.

Proof. Directly from the perfect graph theorem. Note that if G is a bipartite graph, then
its cliques have size at most 2; hence χ(G) is equal to the edge cover number of G if G has
no isolated vertices.

Note moreover that the class of complements of bipartite graphs is closed under taking
induced subgraphs. Hence the second statement in the Corollary indeed is equivalent to
the first.

We saw that, by Gallai’s theorem, Kőnig’s edge cover theorem directly implies Kőnig’s
matching theorem, saying that the matching number of a bipartite graph G is equal to its
vertex cover number. That is, α(L(G)) = χ(L(G)). So ω(L(G)) = χ(L(G)). As this is true
for any induced subgraph of L(G) we know that L(G) is perfect, for any bipartite graph G.
Hence with the perfect graph theorem we obtain Kőnig’s edge-colouring theorem (Theorem
1):

Corollary 4c (Kőnig’s edge-colouring theorem). The line graph L(G) of a bipartite graph
G is perfect. Equivalently, the edge-colouring number of any bipartite graph is equal to its
maximum degree.

Proof. Again directly from Kőnig’s matching theorem and the perfect graph theorem.

We can also derive Dilworth’s decomposition theorem (Theorem 3) easily from the per-
fect graph theorem. Let (V,≤) be a partially ordered set. Let G = (V, E) be the graph
with:

(16) uv ∈ E if and only if u < v or v < u.

Any graph G obtained in this way is called a comparability graph.
As Theorem 2 we saw the following easy ‘dual’ form of Dilworth’s decomposition theo-

rem:

Theorem 5. In any partially ordered set (V,≤), the maximum size of any chain is equal
to the minimum number of antichains needed to cover V .

Proof. See Theorem 2.

Equivalently, we have ω(G) = χ(G) for any comparability graph. As the class of com-
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parability graphs is closed under taking induced subgraphs we have:

Corollary 5a. Any comparability graph is perfect.

Proof. This is equivalent to Theorem 5.

So by the perfect graph theorem:

Corollary 5b. The complement of any comparability graph is perfect.

Proof. Directly from Corollary 5a and the perfect graph theorem (Corollary 4a).

That is:

Corollary 5c (Dilworth’s decomposition theorem). In any partially ordered set (V,≤), the
maximum size of any antichain is equal to the minimum number of chains needed to cover
V .

Proof. This is equivalent to Corollary 5b.

A further application of the perfect graph theorem is to ‘chordal graphs’, which we
describe in the next section.

We note here that it was shown with the help of the ‘ellipsoid method’ that there
exists a polynomial-time algorithm for finding a maximum-size clique and a minimum
vertex-colouring in any perfect graph ([9]) — see Corollary 8a. However no combinato-
rial polynomial-time algorithm is known for these problems.

7. Chordal graphs

We finally consider a further class of perfect graphs, the ‘chordal graphs’ (or ‘rigid circuit
graphs’ or ‘triangulated graphs’). We first consider collections of subtrees of a tree:

Theorem 6. Let S be a collection of nonempty subtrees of a tree T . Then the maximum
number of disjoint trees in S is equal to the minimum number of vertices of T intersecting
each tree in S.

Proof. The maximum cannot be more than the minimum, since each subtree contains at
least one of the vertices chosen.

The reverse inequality is shown by induction on |V (T )|, the case |V (T )| = 1 being
trivial. If |V (T )| ≥ 2, choose a vertex v of T of degree 1.

Case 1: {v} belongs (as subtree) to S. Let T ′ := T−v and S ′ := {S ∈ S | v 6∈ V (S)}. By
induction, there exist k vertices v1, . . . , vk ∈ V (T ′) intersecting all trees in S ′ and k disjoint
subtrees S1, . . . , Sk in S ′. Then v, v1, . . . , vk intersect all trees in S and {v}, S1, . . . , Sk are
pairwise disjoint.

Case 2: each tree in S containing v also contains the neighbour u of v. Let T ′ := T − v
and S ′ := {S − v | S ∈ S}. By induction, there exists k vertices v1, . . . , vk ∈ V (T ′)
intersecting all trees in S ′ and k disjoint subtrees S1 − v, . . . , Sk − v in S ′. Then S1, . . . , Sk
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are pairwise disjoint, since if Si and Sj intersect, they must intersect in v (since Si − v and
Sj − v are disjoint). But then Si and Sj also contain u, contradicting the fact that Si − v
and Sj − v are disjoint.

We note one important special case:

Corollary 6a. Let C be a collection of pairwise intersecting subtrees of a tree T . Then
there is a vertex of T contained in all subtrees in C.

Proof. The maximum number of pairwise disjoint subtrees in C is 1. Hence by Theorem 6,
there is a vertex intersecting all trees in C.

The intersection graph of S is the graph with vertex set S, where two vertices S, S′ are
adjacent if and only if they intersect (in at least one vertex). A graph G is called chordal if
G is isomorphic to the intersection graph of some collection of subtrees of a tree.

Theorem 6 implies:

Corollary 6b. Complements of chordal graphs are perfect.

Proof. Let G be a chordal graph. So G is the intersection graph of some collection S of
subtrees of some tree T . Let k be the maximum number of disjoint subtrees in S. So
α(G) = k. So by Theorem 6 there are k vertices v1, . . . , vk of V (T ) intersecting all trees in
S. Now the set of subtrees in S containing vi form a clique in G. So G can be covered by
k cliques. Hence χ(G) ≤ k = α(G). Therefore, α(G) = χ(G).

Now each induced subgraph of G is again chordal (as it is the intersection graph of a
subcollection of S). So also for induced subgraph G′ we know α(G′) = χ(G′). So G is
perfect.

This implies, by the perfect graph theorem, that also chordal graphs themselves are
perfect. This gives in terms of trees:

Corollary 6c. Let S be a collection of subtrees of a tree T . Let k be the maximum number
of times that any vertex of T is covered by trees in S. Then S can be partitioned into classes
S1, . . . ,Sk such that each Si consists of disjoint trees.

Proof. Let G be the intersection graph of S. As G is chordal, it is perfect. So ω(G) = χ(G).
Now ω(G) is equal to the number k in the Corollary, by Corollary 6a. So χ(G) = k, which
implies that S can be partitioned as described.

We note here that chordal graphs are characterized as those graphs in which each circuit
of length at least 4 has a chord.7 This is actually the original definition of chordal graphs
and explains the name.

Exercises

7.1. Show that a graph G = (V,E) is chordal if and only if each induced subgraph has a vertex
whose neighbours form a clique.

7A chord of a circuit C is an edge e not of C connecting two vertices of C.

10



7.2. Derive Exercise 4.2 from Corollary 6c.

8. Lovász’ ϑ-function

Lovász [16] introduced a very useful upper bound ϑ(G) on α(G), for any graph G = (V, E).
First define

(17) LG := the set of symmetric V × V matrices A with Au,v = 1 if u = v or u and v
are nonadjacent,

and for any symmetric matrix A:

(18) Λ(A) := the largest eigenvalue of A.

Then

(19) ϑ(G) := min{Λ(A) | A ∈ LG}.

ϑ(G) has two important properties: it can be calculated (at least, approximated) in
polynomial time, and it gives an, often close, upper bound on the stable set number α(G)
(Lovász [16]), better than χ(G):

Theorem 7. For any graph G = (V, E):

(20) α(G) ≤ ϑ(G) ≤ χ(G).

Proof. To see α(G) ≤ ϑ(G), let S be a maximum-size stable set of G and let A ∈ LG. Let
ιS denote the incidence vector of S in R

V .8 Then

(21) |S|2 = ιS
T
AιS ≤ Λ(A)‖ιS‖2 = Λ(A)|S|.

So α(G) = |S| ≤ Λ(A).
To see ϑ(G) ≤ χ(G), consider a partition of V into cliques C1, . . . , Ck with k = χ(G).

Define the matrix

(22) A := kI − 1

k

k
∑

i=1

(kιCi − 1)(kιCi − 1)T.

Then Λ(A) ≤ k, since kI − A is positive semidefinite9. If v ∈ V , then

8The incidence vector ιS of S ⊆ V is the vector in {0, 1}V with (ιS)v = 1 if and only if v ∈ S.
9A symmetric n × n matrix M is positive semidefinite if xTMx ≥ 0 for each x ∈ R

n. This can be proved
to be equivalent to: all eigenvalues of M are nonnegative. Moreover, it is equivalent to: M = UTU for some
matrix U . For any symmetric matrix A and t ∈ R: Λ(A) ≤ t ⇐⇒ tI − A is positive semidefinite.
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(23) (kιCi − 1)v =

{

k − 1 if v ∈ Ci,

−1 if v 6∈ Ci.

Then a direct calculation shows that A ∈ LG. So ϑ(G) ≤ k.

Moreover, ϑ(G) can be approximated in polynomial time:

(24) there is an algorithm that for any given graph G = (V, E) and any ε > 0, returns
a rational closer than ε to ϑ(G), in time bounded by a polynomial in |V | and
log(1/ε).

The two theorems above imply:

Theorem 8. For any graph G satisfying α(G) = χ(G), the stable set number can be found
in polynomial time.

Proof. Theorem 7 implies α(G) = ϑ(G) = χ(G), and by (24) we can find a number closer
than 1

2 to ϑ(G) in time polynomial in |V |. Rounding to the closest integer yields α(G).

To obtain an explicit maximum-size stable set, we need perfection of the graph:

Corollary 8a. A maximum-size stable set in a perfect graph can be found in polynomial
time.

Proof. Let G = (V, E) be a perfect graph. Iteratively, for each v ∈ V , replace G by G − v
if α(G − v) = α(G). By the perfection of G, we can calculate these values in polynomial
time, by Theorem 8.

We end up with a graph that forms a maximum-size stable set in the original graph.

As perfection is closed under taking complements, also a maximum-size clique in a
perfect graph can be found in polynomial time. It can also be shown that a minimum
colouring of a perfect graph can be found in polynomial time.

9. The Shannon capacity Θ(G)

Shannon [19] introduced the following parameter Θ(G), now called the Shannon capacity
of a graph G.

The strong product G · H of graphs G and H is the graph with vertex set V G × V H,
with two distinct vertices (u, v) and (u′, v′) adjacent if and only if u and u′ are equal or
adjacent in G and v and v′ are equal or adjacent in H.

The strong product of k copies of G is denoted by Gk. Then the Shannon capacity Θ(G)
of G is defined by:

(25) Θ(G) = sup
k

k

√

α(Gk).

12



(The interpretation is that if V is an alphabet, and adjacency means ‘confusable’, then
α(Gk) is the maximum number of k-letter words any two of which have unequal and incon-
fusable letters in at least one position. Then Θ(G) is the maximum possible ‘information
rate’.)

Guo and Watanabe [10] showed that there exist graphs G for which Θ(G) is not achieved
by a finite product (that is, k

√

α(Gk) < Θ(G) for each k — so the supremum is not a
maximum).

Since α(Gk) ≥ α(G)k, we have

(26) α(G) ≤ Θ(G),

while strict inequality may hold: the 5-circuit C5 has α(C5) = 2 and α(C2
5 ) = 5. (If C5

has vertices 1, . . . , 5 and edges 12, 23, 34, 45, 51, then {(1, 1), (2, 3), (3, 5), (4, 2), (5, 4)} is a
stable set in C2

5 .) So Θ(C5) ≥
√

5, and Shannon [19] raised the question if equality holds
here. This was proved by Lovász [16] by showing:

Theorem 9. Θ(G) ≤ ϑ(G) for each graph G.

Proof. Since α(G) ≤ ϑ(G), it suffices to show that for each k: α(Gk) ≤ ϑ(G)k. For this it
suffices to show that

(27) ϑ(G · H) ≤ ϑ(G)ϑ(H)

for any graphs G and H, as α(Gk) ≤ ϑ(Gk) ≤ ϑ(G)k.
By definition of ϑ, there exist matrices A ∈ LG and B ∈ LH such that ϑ(G) = Λ(A) and

ϑ(H) = Λ(B). So ϑ(G)IV (G) −A and ϑ(H)IV (H) −B are positive semidefinite. (Here IV (G)

and IV (H) denote the V (G) × V (G) and V (H) × V (H) identity matrices.) Since positive
semidefinitess is maintained by tensor product, the matrices

(28) C1 := (ϑ(G)IV (G) − A) ⊗ (ϑ(H)IV (H) − B),
C2 := (ϑ(G)IV (G) − A) ⊗ JV (H), and
C3 := JV (G) ⊗ (ϑ(H)IV (H) − B)

are positive semidefinite. (Here JV (G) and JV (H) denote the V (G)×V (G) and V (H)×V (H)
all-1 matrices. Note that these matrices are positive semidefinite.) So

(29) C := ϑ(G)ϑ(H)IV (G)×V (H) − C1 − C2 − C3

has largest eigenvalue Λ(C) ≤ ϑ(G)ϑ(H). Moreover, C belongs to LG·H , as is direct to
check. So ϑ(G · H) ≤ Λ(C) ≤ ϑ(G)ϑ(H).

One consequence of Theorem 9 is that if α(G) = χ(G), then Θ(G) = α(G) (since
α(G) ≤ Θ(G) ≤ ϑ(G) ≤ χ(G)).

Theorem 9 moreover implies that Θ(C5) =
√

5. To see this, let α := 1
2

√
5 − 3

2 =
2 cos π

5 − 2. It can be shown that the matrix

13



(30) A :=













1 α 1 1 α
α 1 α 1 1
1 α 1 α 1
1 1 α 1 α
α 1 1 α 1













has largest eigenvalue Λ(A) =
√

5.10 So ϑ(C5) ≤
√

5. As Θ(C5) ≥
√

α(C2
5 ) =

√
5, one has

(31)
√

5 ≤ Θ(C5) ≤ ϑ(C5) ≤
√

5,

and we have equality throughout. So Θ(C5) =
√

5.
Lovász [16] also gave the value of ϑ(Cn) for any odd circuit Cn:

(32) ϑ(Cn) =
n cos(π/n)

1 + cos(π/n)
for odd n.

For odd n ≥ 7, it is unknown if this is the value of Θ(Cn).
Lovász asked if Θ(G) = ϑ(G) for each graph G. This was answered in the negative

by Haemers [12], by giving an alternative upper bound on the Shannon capacity which for
some graphs G is sharper than ϑ(G).

The proof of Theorem 9 consists of showing ϑ(G · H) ≤ ϑ(G)ϑ(H) for any two graphs
G and H. In fact, Lovász [16] showed that equality holds: ϑ(G · H) = ϑ(G)ϑ(H).

10. Vizing’s theorem

Kőnig’s edge-coloring theorem (Theorem 1) states that χ′(G) = ∆(G) for any bipartite
graph G. For nonbipartite graph G, strict inequality can hold, as K3 shows. But Vizing
[20,21] showed that if G is simple, χ′(G) can be at most 1 larger than ∆(G).

Theorem 10 (Vizing’s theorem for simple graphs). ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for any
simple graph G.

Proof. The inequality ∆(G) ≤ χ′(G) being trivial, we show χ′(G) ≤ ∆(G) + 1. To prove
this inductively, it suffices to show:

(33) Let G = (V, E) be a simple graph and let v be a vertex such that v and all its
neighbours have degree at most k − 1. Then if G − v is k-edge-colourable, also
G is k-edge-colourable.

We prove (33) by induction on k. We can assume that each vertex u in N(v) has degree
exactly k− 1, since otherwise we can add a new vertex w and an edge uw without violating
the conditions in (33).

10The following are eigenvectors: (1, e2kπi/5, e4kπi/5, e6kπi/5, e8kπi/5)T, for k = 0, . . . , 4.
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Consider any k-edge-colouring of G−v. For i = 1, . . . , k, let Xi be the set of neighbours
of v that are missed by colour i. We assume that we have chosen the colouring such that
the number of i with |Xi| = 0 is minimized.

We can assume that for each i = 1, . . . , k,

(34) |Xi| 6= 1.

To see this, assume |Xk| = 1, say Xk := {u}. Let G′ be the graph obtained from G by
deleting edge vu and deleting all edges of colour k. So G′ − v is (k − 1)-edge-coloured.
Moreover, in G′, vertex v and all its neighbours have degree at most k − 2. So by the
induction hypothesis, G′ is (k − 1)-edge-colourable. Restoring colour k, and giving edge vu
colour k, gives a k-edge-colouring of G. So we can assume (34).

Now each u ∈ N(v) is in precisely two of the Xi. Hence
∑k

i=1 |Xi| = 2|N(v)| =
2 deg(v) < 2k, and so |Xi| = 0 for some i, say |X1| = 0. This implies

(35) |Xi| ∈ {0, 2} for each i.

For if, say, |X2| ≥ 3, consider the subgraph H made by all edges of colours 1 and 2. Consider
a component P of H containing a vertex in X2. As X1 = ∅, P is a path starting with an
edge of colour 1. Exchanging colours 1 and 2 on P reduces the number of i with |Xi| = 0,
contradicting our minimality assumption. This proves (35).

So the nonempty Xi form a 2-regular graph on N(v). Hence there is a one-to-one
function f : N(v) → {1, . . . , k} such that u ∈ Xf(u) for each u ∈ N(v). Hence giving edge
vu colour f(u) for each u ∈ N(v), yields a proper k-edge-colouring of G.
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[12] W. Haemers, On some problems of Lovász concerning the Shannon capacity of a graph, IEEE
Transactions on Information Theory IT-25 (1979) 231–232.
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