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1 Borsuk’s conjecture and related questions

Let α(d) denote the minimum number of pieces so that every bounded subset of Rd can be
partitioned into pieces of strictly smaller diameter. Borsuk’s conjecture (1932): α(d) = d+ 1.

Borsuk-Ulam theorem (Bart L talk): for Sn ⊂ Rn+1 we need exactly n+2 pieces. Borsuk’s
conjecture is also shown to be true for d = 2, 3, for smooth convex bodies (‘46), centrally-
symmetric bodies (‘71) and bodies of revolution (‘95).

David Larman posed two subquestions in the ‘70s:

• Does the conjecture hold for collections of 0-1 vectors (of constant weight)?

• Does the conjecture hold for 2-distance sets (pairwise distances take two values)? If E
is a 2-distance set, and need a piece of strictly smaller diameter, than only one of the
two distances may occur.

In 1965 Danzer gave finite sets consisting of 0/1 vectors in Rd that cannot be covered by
1.003d balls of smaller diameter. Kahn-Kalai (1993) answered the first question negatively for
d = 1325 and d > 2014.

Open questions:

• Small values, e.g. only known that α(4) ≤ 9.

• Last d for which Borsuk’s conjecture is true. Bondarenko (2013): false for d ≥ 65.
Shortly after, Thomas Jenrich and Brouwer (Eindhoven) optimized the idea of Bon-
darenko with computer assistance to d = 64.

• Asymptotic behaviour of α(d), e.g. Kahn-Kalai proved α(d) ≥ (1.2)
√
d and an upper-

bound of (
√

3/2+ ε)d is quoted. It is conjectured that there is a c > 1 so that α(d) > cd.

Bondarenko associates the vertices of a specific strongly regular graph to the number {1, . . . , 416}
and then creates corresponding vertices {x1, . . . , x416} ⊂ S64 such that for i 6= j, 〈xi, xj〉 = 1/5
if i, j non-adjacent and −1/15 if they are adjacent. Each “piece” then corresponds to a clique,
but the largest clique of the graph is of size 5.
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2 From Borsuk’s conjecture to intersections of sets

Let [d] = {1, . . . , d} and [d](k) = {A ⊆ [d] | |A| = k}. We can see each A ∈ [d](k) as a
0/1-vector in 1A ∈ Rd with (1A)i = 1i∈A. With the usual Euclidean distance, we then find for
A,B ∈ [d](k)

‖1A − 1B‖2 = |A \B|+ |B \A| = 2(k − |A ∩B|). (1)

Lemma 1. Let A ⊂ [4p](2p) for p prime. If |x ∩ y| 6= p for all x, y ∈ A, then |A| ≤ 2
(

4p
p−1
)
.

Theorem 1. For all d ≥ 2000, there is a bounded set S ⊂ Rd such that to break S into pieces

of smaller diameter we need ≥ c
√
d pieces for some c > 1.

• If pieces are small, then we need many pieces.

• We take S ⊂ [d](k) ⊂ Rd where each A ∈ S corresponds to a set xA ∈ [4p](2p).

• By (1), d(A,B) is maximised for |xA ∩ xB| = p.

Proof. Let p prime. We set n = 4p and d =
(
4p
2

)
. For x ∈ [4p](2p), let Gx denote the complete

bipartite graph on vertex classes x and xc. Consider

S = {Gx : x ∈ [4p](2p)}.

By identifying [d] with the edges of the complete graph K4p, we can view Gx as a subset of
[d]. Hence it makes sense to look at 1Gx ∈ Rd and by (1), the distance between such vectors
is maximal if their intersection is minimal. Note that

number of edges common between Gx and Gy = |x∩ y|2 + |x∩ yc|2 = |x∩ y|2 + (2p− |x∩ y|)2

is minimal for |x ∩ y| = p. Hence if S′ ⊂ S has strictly smaller diameter than S, then
S′ = {Gx | x ∈ A} has |S| = |A| ≤ 2

(
4p
p−1
)
. The number of pieces we need is hence at least

|S|
2
(

4p
p−1
) =

(
4p
2p

)
4
(

4p
p−1
) =

(4p)!(p− 1)!(3p+ 1)!

(4p)!(2p)!(2p)!
=

(3p+ 1) · · · (2p+ 1)

(2p) · · · p
≥ (3/2)p ≥ c′

√
d.

By Bertrand’s postulate, for each n ∈ N there is a prime number p so that n ≤ p ≤ 2n.

3 Frankl-Wilson on modular intersections

Theorem 2. Let p prime, A ⊂ [n]r and λ1, . . . , λs ∈ Z for s ≤ r with λi 6≡ r mod p. If for
all x, y ∈ A with x 6= y

|x ∩ y| ≡ λi mod p

for some i ∈ {1, . . . , s}, then |A| ≤
(
n
s

)
.

Theorem implies the Lemma: let p prime and A ⊂ [4p]2p be given so that |x∩y| 6= p for all
x, y ∈ A. Let λi = i for i ∈ {1, . . . , p− 1}, then λi 6≡ r mod p. Note that |x ∩ y| ≡ 0 mod p
for x 6= y can only happen if |x ∩ y| ∈ {0, p}. The intersection cannot be p by assumption,
and x∩ y = ∅ if and only if x = yc. Halving A if necessary, we may hence apply the theorem.



The proof of the theorem relies on the linear algebra method : we associate each x ∈ [n]r

with a vector vx in a vector space of dimension (at most)
(
n
s

)
. By proving that the vx for

x ∈ A are linear independent, we may then conclude

|A| = |{vx : x ∈ A}| ≤
(
n

s

)
.

Another observation that is applied, is that the polynomial

(t− λ1) · · · (t− λs)

evaluates to 0 mod p for t = |x ∩ y| for x, y ∈ A if and only if x 6= y.

Proof. Let M(i, j) denote the
(
n
i

)
×
(
n
j

)
-matrix with components

M(i, j)xy = 1x⊆y

for x ∈ [n](i), y ∈ [n](j). Let V be the vector space spanned by the rows of M(s, r) over R. We
have

(
n
s

)
rows, so the dimension of V is at most

(
n
s

)
. Let i ∈ {0, . . . , s− 1} be given and note

that

(M(i, s)M(s, r))xy =
∑

z∈[n]s
1x⊆z1z⊆y = M(i, r)xy

(
r − i
s− i

)
.

Premultiplying by a matrix corresponds to taking row operations, so thatM(i, r) = CM(i, s)M(s, r)
(for some C ∈ R∗) also has all rows in V . For the same reason, M(i) = M(i, r)TM(i, r) has
all rows in V . For x, y ∈ [n](r),

(M(i, r)TM(i, r))xy =
∑
z∈[n]i

1z⊆x1z⊆y =

(
|x ∩ y|
i

)
.

Recall {
(
t
i

)
: i ∈ {0, . . . , s}} forms a basis for the polynomials of degree ≤ s over the integers,

so we can write the integer polynomial

(t− λ1) · · · (t . . . λs) =

s∑
i=0

ai

(
t

i

)
for certain ai ∈ Z. Let M =

∑s
i=0 aiM(i), then M has all rows in V and

Mxy =
s∑

i=0

aiM(i)xy =
s∑

i=0

ai

(
|x ∩ y|
i

)
= (|x ∩ y| − λ1) · · · (x ∩ y − λs)

is equivalent to zero mod p for x, y ∈ A if and only if x 6= 0. Hence the submatrix corresponding
to A has linear independent rows over Zp, hence over Z,Q,R and we may conclude |A| ≤(
n
s

)
.

In the paper of Frankl-Wilson, they already note that their theorem implies χ(Rd) has an
exponential lower bound (points must get different colours if their distance is exactly 1; let
this distance correspond to intersection size p so that colour classes forbid this intersection
size and have to be small). Another corollary is a lower bound for Ramsey numbers R(t, t):
suppose we 2-colour the edges of G with V (G) = [p3](p

2−1) with xy ∈ E(G) if and only if
|x ∩ y| mod p = −1. If we have a clique of size t, then only p − 1, 2p − 1, . . . , p2 − p − 1 are
allowed as intersection sizes; if we have an independent set, then the modular FW applies for

s = p− 1. We find χ(Rn) = Ω(2716
n/8

) and R(t) > tc log2(t)/ log2 log2(t).
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