Seminar combinatorics (Borsuk's conjecture)

Carla Groenland

March 11, 2017

1 Borsuk's conjecture and related questions

Let $\alpha(d)$ denote the minimum number of pieces so that every bounded subset of \mathbb{R}^{d} can be partitioned into pieces of strictly smaller diameter. Borsuk's conjecture (1932): $\alpha(d)=d+1$.

Borsuk-Ulam theorem (Bart L talk): for $S^{n} \subset \mathbb{R}^{n+1}$ we need exactly $n+2$ pieces. Borsuk's conjecture is also shown to be true for $d=2,3$, for smooth convex bodies ('46), centrallysymmetric bodies ('71) and bodies of revolution ('95).

David Larman posed two subquestions in the ' 70 s :

- Does the conjecture hold for collections of 0-1 vectors (of constant weight)?
- Does the conjecture hold for 2-distance sets (pairwise distances take two values)? If E is a 2-distance set, and need a piece of strictly smaller diameter, than only one of the two distances may occur.

In 1965 Danzer gave finite sets consisting of $0 / 1$ vectors in \mathbb{R}^{d} that cannot be covered by 1.003^{d} balls of smaller diameter. Kahn-Kalai (1993) answered the first question negatively for $d=1325$ and $d>2014$.

Open questions:

- Small values, e.g. only known that $\alpha(4) \leq 9$.
- Last d for which Borsuk's conjecture is true. Bondarenko (2013): false for $d \geq 65$. Shortly after, Thomas Jenrich and Brouwer (Eindhoven) optimized the idea of Bondarenko with computer assistance to $d=64$.
- Asymptotic behaviour of $\alpha(d)$, e.g. Kahn-Kalai proved $\alpha(d) \geq(1.2)^{\sqrt{d}}$ and an upperbound of $(\sqrt{3 / 2}+\epsilon)^{d}$ is quoted. It is conjectured that there is a $c>1$ so that $\alpha(d)>c^{d}$.

Bondarenko associates the vertices of a specific strongly regular graph to the number $\{1, \ldots, 416\}$ and then creates corresponding vertices $\left\{x_{1}, \ldots, x_{416}\right\} \subset S^{64}$ such that for $i \neq j,\left\langle x_{i}, x_{j}\right\rangle=1 / 5$ if i, j non-adjacent and $-1 / 15$ if they are adjacent. Each "piece" then corresponds to a clique, but the largest clique of the graph is of size 5 .

2 From Borsuk's conjecture to intersections of sets

Let $[d]=\{1, \ldots, d\}$ and $[d]^{(k)}=\{A \subseteq[d]| | A \mid=k\}$. We can see each $A \in[d]^{(k)}$ as a $0 / 1$-vector in $1_{A} \in \mathbb{R}^{d}$ with $\left(1_{A}\right)_{i}=1_{i \in A}$. With the usual Euclidean distance, we then find for $A, B \in[d]{ }^{(k)}$

$$
\begin{equation*}
\left\|1_{A}-1_{B}\right\|^{2}=|A \backslash B|+|B \backslash A|=2(k-|A \cap B|) . \tag{1}
\end{equation*}
$$

Lemma 1. Let $\mathcal{A} \subset[4 p]^{(2 p)}$ for p prime. If $|x \cap y| \neq p$ for all $x, y \in \mathcal{A}$, then $|\mathcal{A}| \leq 2\binom{4 p}{p-1}$.
Theorem 1. For all $d \geq 2000$, there is a bounded set $S \subset \mathbb{R}^{d}$ such that to break S into pieces of smaller diameter we need $\geq c^{\sqrt{d}}$ pieces for some $c>1$.

- If pieces are small, then we need many pieces.
- We take $S \subset[d]^{(k)} \subset \mathbb{R}^{d}$ where each $A \in S$ corresponds to a set $x_{A} \in[4 p]^{(2 p)}$.
- By (1), $d(A, B)$ is maximised for $\left|x_{A} \cap x_{B}\right|=p$.

Proof. Let p prime. We set $n=4 p$ and $d=\binom{4 p}{2}$. For $x \in[4 p]^{(2 p)}$, let G_{x} denote the complete bipartite graph on vertex classes x and x^{c}. Consider

$$
S=\left\{G_{x}: x \in[4 p]^{(2 p)}\right\} .
$$

By identifying $[d]$ with the edges of the complete graph $K_{4 p}$, we can view G_{x} as a subset of $[d]$. Hence it makes sense to look at $1_{G_{x}} \in \mathbb{R}^{d}$ and by (1), the distance between such vectors is maximal if their intersection is minimal. Note that
number of edges common between G_{x} and $G_{y}=|x \cap y|^{2}+\left|x \cap y^{c}\right|^{2}=|x \cap y|^{2}+(2 p-|x \cap y|)^{2}$ is minimal for $|x \cap y|=p$. Hence if $S^{\prime} \subset S$ has strictly smaller diameter than S, then $S^{\prime}=\left\{G_{x} \mid x \in A\right\}$ has $|S|=|A| \leq 2\binom{4 p}{p-1}$. The number of pieces we need is hence at least

$$
\frac{|S|}{2\binom{4 p}{p-1}}=\frac{\binom{4 p}{2 p}}{4\binom{4 p}{p-1}}=\frac{(4 p)!(p-1)!(3 p+1)!}{(4 p)!(2 p)!(2 p)!}=\frac{(3 p+1) \cdots(2 p+1)}{(2 p) \cdots p} \geq(3 / 2)^{p} \geq c^{\prime \sqrt{d}} .
$$

By Bertrand's postulate, for each $n \in \mathbb{N}$ there is a prime number p so that $n \leq p \leq 2 n$.

3 Frankl-Wilson on modular intersections

Theorem 2. Let p prime, $\mathcal{A} \subset[n]^{r}$ and $\lambda_{1}, \ldots, \lambda_{s} \in \mathbb{Z}$ for $s \leq r$ with $\lambda_{i} \not \equiv r \bmod p$. If for all $x, y \in \mathcal{A}$ with $x \neq y$

$$
|x \cap y| \equiv \lambda_{i} \quad \bmod p
$$

for some $i \in\{1, \ldots, s\}$, then $|\mathcal{A}| \leq\binom{ n}{s}$.
Theorem implies the Lemma: let p prime and $\mathcal{A} \subset[4 p]^{2 p}$ be given so that $|x \cap y| \neq p$ for all $x, y \in \mathcal{A}$. Let $\lambda_{i}=i$ for $i \in\{1, \ldots, p-1\}$, then $\lambda_{i} \not \equiv r \bmod p$. Note that $|x \cap y| \equiv 0 \bmod p$ for $x \neq y$ can only happen if $|x \cap y| \in\{0, p\}$. The intersection cannot be p by assumption, and $x \cap y=\emptyset$ if and only if $x=y^{c}$. Halving \mathcal{A} if necessary, we may hence apply the theorem.

The proof of the theorem relies on the linear algebra method: we associate each $x \in[n]^{r}$ with a vector v_{x} in a vector space of dimension (at most) $\binom{n}{s}$. By proving that the v_{x} for $x \in \mathcal{A}$ are linear independent, we may then conclude

$$
|\mathcal{A}|=\left|\left\{v_{x}: x \in \mathcal{A}\right\}\right| \leq\binom{ n}{s} .
$$

Another observation that is applied, is that the polynomial

$$
\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{s}\right)
$$

evaluates to $0 \bmod p$ for $t=|x \cap y|$ for $x, y \in \mathcal{A}$ if and only if $x \neq y$.
Proof. Let $M(i, j)$ denote the $\binom{n}{i} \times\binom{ n}{j}$-matrix with components

$$
M(i, j)_{x y}=1_{x \subseteq y}
$$

for $x \in[n]^{(i)}, y \in[n]^{(j)}$. Let V be the vector space spanned by the rows of $M(s, r)$ over \mathbb{R}. We have $\binom{n}{s}$ rows, so the dimension of V is at most $\binom{n}{s}$. Let $i \in\{0, \ldots, s-1\}$ be given and note that

$$
(M(i, s) M(s, r))_{x y}=\sum_{z \in[n]^{s}} 1_{x \subseteq z} 1_{z \subseteq y}=M(i, r)_{x y}\binom{r-i}{s-i} .
$$

Premultiplying by a matrix corresponds to taking row operations, so that $M(i, r)=C M(i, s) M(s, r)$ (for some $C \in \mathbb{R}^{*}$) also has all rows in V. For the same reason, $M(i)=M(i, r)^{T} M(i, r)$ has all rows in V. For $x, y \in[n]^{(r)}$,

$$
\left(M(i, r)^{T} M(i, r)\right)_{x y}=\sum_{z \in[n]^{i}} 1_{z \subseteq x} 1_{z \subseteq y}=\binom{|x \cap y|}{i} .
$$

Recall $\left.\left\{\begin{array}{l}t \\ i\end{array}\right): i \in\{0, \ldots, s\}\right\}$ forms a basis for the polynomials of degree $\leq s$ over the integers, so we can write the integer polynomial

$$
\left(t-\lambda_{1}\right) \cdots\left(t \ldots \lambda_{s}\right)=\sum_{i=0}^{s} a_{i}\binom{t}{i}
$$

for certain $a_{i} \in \mathbb{Z}$. Let $M=\sum_{i=0}^{s} a_{i} M(i)$, then M has all rows in V and

$$
M_{x y}=\sum_{i=0}^{s} a_{i} M(i)_{x y}=\sum_{i=0}^{s} a_{i}\binom{|x \cap y|}{i}=\left(|x \cap y|-\lambda_{1}\right) \cdots\left(x \cap y-\lambda_{s}\right)
$$

is equivalent to zero $\bmod p$ for $x, y \in \mathcal{A}$ if and only if $x \neq 0$. Hence the submatrix corresponding to \mathcal{A} has linear independent rows over \mathbb{Z}_{p}, hence over $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and we may conclude $|\mathcal{A}| \leq$ $\binom{n}{s}$.

In the paper of Frankl-Wilson, they already note that their theorem implies $\chi\left(\mathbb{R}^{d}\right)$ has an exponential lower bound (points must get different colours if their distance is exactly 1 ; let this distance correspond to intersection size p so that colour classes forbid this intersection size and have to be small). Another corollary is a lower bound for Ramsey numbers $R(t, t)$: suppose we 2 -colour the edges of G with $V(G)=\left[p^{3}\right]^{\left(p^{2}-1\right)}$ with $x y \in E(G)$ if and only if $|x \cap y| \bmod p=-1$. If we have a clique of size t, then only $p-1,2 p-1, \ldots, p^{2}-p-1$ are allowed as intersection sizes; if we have an independent set, then the modular FW applies for $s=p-1$. We find $\chi\left(\mathbb{R}^{n}\right)=\Omega\left(\frac{27}{16}{ }^{n / 8}\right)$ and $R(t)>t^{c \log _{2}(t) / \log _{2} \log _{2}(t)}$.

