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Notes for our seminar
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This is an attempt to define the Colin de Verdière graph parameter purely in terms of the nullspace
embedding.

1. The Colin de Verdière graph parameter

Colin de Verdière [1]
Let G = ([n], E) be an undirected graph. The corank of a matrix M is the dimension

of its nullspace ker(M).
The Colin de Verdière parameter µ(G) [1] is defined to be the maximal corank of any

symmetric n× n matrix M with Mi,j < 0 if ij ∈ E and Mi,j = 0 if i 6= j and ij 6∈ E, with
precisely one negative eigenvalue and having the Strong Arnold Property:

(1) there is no nonzero real symmetric n × n matrix X with MX = 0 and Xij = 0
whenever i and j are equal or adjacent.

2. The Strong Arnold Property and quadrics

The Strong Arnold Property of M can be formulated in terms of the nullspace embedding
defined by M . Let G = ([n], E) be an undirected graph and let M be a symmetric n × n
matrix with Mi,j < 0 if ij ∈ E and Mi,j = 0 if i 6= j and ij 6∈ E, with corank d, and with
precisely one negative eigenvalue. Let b1, . . . , bd ∈ Rn be a basis of ker(M). Define, for each
i ∈ [n], the vector ui ∈ Rd by: (ui)j := (bj)i, for j = 1, . . . , d. So we have u : [n] → Rd.
Then u is called the nullspace embedding of G defined by M . Note that u is unique up to
linear transformations of Rd.

The Strong Arnold Property of M is in fact a property only of the graph G and the
function i 7→ 〈ui〉. (Throughout, 〈. . .〉 denotes the linear space spanned by . . ..) When we
have u : [n]→ Rd, define |G| to be the following subset of Rd:

(2) |G| :=
⋃
{〈ui〉 | i ∈ [n]} ∪

⋃
{〈ui, uj〉 | ij ∈ E}.

A subset Q of Rd is called a homogeneous quadric if it is the solution set of a nonzero
homogeneous quadratic equation. The following was observed in [3]:

Proposition 1. M has the Strong Arnold Property if and only |G| is not contained in any
homogeneous quadric.

Proof. Let U be the d× n matrix with as columns the vectors ui for i ∈ [n].
Suppose that some homogeneous quadric Q = {y | yTNy = 0} contains |G|, where N is

a nonzero symmetric d×d matrix. Then X := UTNU is a nonzero symmetric n×n matrix
that contradicts the Strong Arnold Property (1).
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Conversely, suppose that M has not the Strong Arnold Property. Let X be a matrix as in
(1). As MX = 0 and as X is symmetric, we have X = UTNU for some nonzero symmetric
d× d matrix N . Then Q := {y | yTNy = 0} is a homogeneous quadric containing |G|.

3. M exists iff . . .

Having characterized the Strong Arnold Property in terms of the nullspace embedding, we
consider in how much the existence of the corresponding matrix M can be expressed in
terms of the nullspace embedding u1, . . . , un ∈ Rd.

We can assume that M has eigenvalue −1 with eigenvector 1. Indeed, by Brouwer’s
fixed point theorem, there exists x ≥ 0 with

∑n
i=1 xi = 1 and ∆2

xMx = λx for some λ < 0.
So (∆xM∆x)1 = λ1 for some λ < 0. As ∆xM∆x has precisely one eigenvalue and the same
rank as M , we can replace M by ∆xM∆x. Scaling M then yields eigenvalue −1.

Fix G = ([n], E), a positive a ∈ Rn, U ∈ Rn×d, and W ∈ Rn×(n−d−1) such that the
matrix [a, U,W ] is orthogonal. (So U takes the role of [u1, . . . , un]T.)

Define pi := a−1
i ui, vi := a−1

i wi, and βi := a2i for each i. Then
∑n

i=1 βipi = 0 and∑n
i=1 βi = 1.

Proposition 2.

(3) There exists a symmetric matrix M ∈ Rn×n of corank d, with precisely one
negative eigenvalue, with eigenvector a, and satisfying MU = 0, Mi,j = 0 if
i 6= j and ij 6∈ E, Mi,j < 0 if ij ∈ E,

if and only if

(4) for all x1, . . . , xn ∈ Rd and positive semidefinite P ∈ R(n−d−1)×(n−d−1): if

(pi − pj)T(xi − xj) + 1
2(vi − vj)TP (vi − vj) ≤ 0

for each ij ∈ E, then
n∑

i=1

βi(p
T
i xi + 1

2v
T
i Pvi) ≤ 0,

equality implying that P = 0 and (pi − pj)T(xi − xj) = 0 for all ij ∈ E.

Proof. Define

(5) K := {K ∈ R(n−d−1)×(n−d−1) | K symmetric, (WKWT)i,j = aiaj if i 6= j and
ij 6∈ E and (WKWT)i,j < aiaj if ij ∈ E}
= {K ∈ R(n−d−1)×(n−d−1) | K symmetric, tr(KWTEi,jW ) = aiaj if i 6= j and
ij 6∈ E and tr(KWTEi,jW ) < aiaj if ij ∈ E}.

Then (3) is equivalent to: K contains a positive definite matrix K.
Indeed, we can assume that M has negative eigenvalue −1. Then

(6)

 aT

UT

WT

M [a, U,W ] =

 −1 0 0
0 0 0
0 0 K
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for some positive definite K. Then

(7) M = [a, U,W ]

 −1 0 0
0 0 0
0 0 K

 aT

UT

WT

 = −aaT +WKWT.

So M as in (3) exists if and only if K contains a positive definite matrix. By convexity, this
last is equivalent to: there is no nonzero positive semidefinite matrix P ∈ R(n−d−1)×(n−d−1)

such that tr(PK) ≤ 0 for all K ∈ K, that is, tr(PK) > 0 for some K ∈ K; equivalently:
the following system of linear inequalities has a solution K:

(8) (i) −tr(PK) < 0,
(ii) tr(KWTEi,jW ) < aiaj for each ij ∈ E,
(iii) tr(KWTEi,jW ) = aiaj for each ij 6∈ E with i 6= j.

By Motzkin’s transposition theorem (see Corollary 7.1k in [2]), this is equivalent to: for
each nonzero positive semidefinite matrix P ∈ R(n−d−1)×(n−d−1): if µ ≥ 0 and B ∈ Rn×n is
symmetric and satisfies Bi,i = 0 for all i, and Bi,j ≥ 0 if ij ∈ E, and −µP +WTBW = 0,
then

(9) (i) aTBa ≥ 0,
(ii) if aTBa = 0, then µ = 0 and Bi,j = 0 if ij ∈ E.

Since the conditions are homogeneous, we can assume µ = 0 or µ = 1. So the existence of
M is equivalent to: for each symmetric B ∈ Rn×n with Bi,i = 0 for all i, and Bi,j ≥ 0 if
ij ∈ E:

(10) (i) if WTBW = 0, then aTBa ≥ 0,
(ii) if WTBW = 0 and aTBa = 0, then Bi,j = 0 for all ij ∈ E,
(iii) if WTBW is nonzero and positive semidefinite, then aTBa > 0.

[Conditions (10)(i) and (ii) (i.e., the case µ = 0) are in fact equivalent to: K 6= ∅. That is,
to the existence of a symmetric matrix M ∈ Rn×n with Mi,j = 0 if i 6= j and ij 6∈ E and
Mi,j < 0 if ij ∈ E, and such that Ma = −a and MU = 0. (So no condition on the other
eigenvalues.)]

For any symmetric B ∈ Rn×n there exist unique y ∈ Rn, Z ∈ Rn×d, and a symmetric
P ∈ R(n−d−1)×(n−d−1) with

(11) B = [a, U ]

[
yT

ZT

]
+ [y, Z]

[
aT

UT

]
+WPWT.

Note P = WTBW .
If Bi,i = 0 we can eliminate yi: since

(12) aiyi + uTi zi + aiyi + zTi ui + wT
i Pwi = Bi,i = 0,

we have
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(13) yi = −a−1
i (uTi zi + 1

2w
T
i Pwi).

Therefore, for all i, j:

(14) Bi,j = aiyj + uTi zj + ajyi + zTi uj + wT
i Pwj =

ai(−a−1
j (uTj zj+ 1

2w
T
j Pwj))+uTi zj+aj(−a−1

i (uTi zi+
1
2w

T
i Pwi))+zTi uj+wT

i Pwj =

aiaj(−pTj xj + pTi xj − pTi xi + xi
Tpj − 1

2(vi − vj)TP (vi − vj)) =

−aiaj((pi − pj)T(xi − xj) + 1
2(vi − vj)TP (vi − vj)).

where xi := a−1
i zi for each i. Then, with (11) and (13), since aTU = 0 and aTW = 0:

(15) aTBa = aTayTa+ aTyaTa = 2yTa = −
n∑

i=1

(2uTi zi + wT
i Pwi) =

−
n∑

i=1

βi(2p
T
i xi + vTi Pvi).

Therefore, the condition: for each symmetric B ∈ Rn×n with Bi,i = 0 for all i, and Bi,j ≥ 0
if ij ∈ E (10) holds, is equivalent to (4).

Set P = QTQ for some matrix Q ∈ Rs×(n−d−1) for some s. Consider pi(t) := (pi +
txi,
√
tQvi) ∈ Rd+s for t ∈ R, for each i.

If P = 0, then

(16) xi =
d

dt
pi(t)

⌋
t=0

.

Hence

(17) (pi − pj)T(xi − xj) = 1
2

d

dt
|pi(t)− pj(t)|2

⌋
t=0

and

(18)

n∑
i=1

βip
T
i xi = 1

2

d

dt

n∑
i=1

βi|pi(t)|2
⌋
t=0

.
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