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Abstract. We show that any k-regular bipartite graph with 2n vertices has at least

( (k−1)k−1

kk−2 )n

perfect matchings (1-factors). Equivalently, this is a lower bound on the permanent of any nonneg-
ative integer n × n matrix with each row and column sum equal to k.

For any k, the base (k−1)k−1

kk−2 is largest possible.

1. Introduction

In this paper we show that any k-regular bipartite graph with 2n vertices has at least

( (k−1)k−1

kk−2
)n(1)

perfect matchings. (A perfect matching or 1-factor is a set of disjoint edges covering all
vertices.) This generalizes a result of Voorhoeve [11] for the case k = 3, stating that any
3-regular bipartite graph with 2n vertices has at least ( 4

3)n perfect matchings.
The base in (1) is best possible for any k: let αk be the largest real number such that

any k-regular bipartite graph with 2n vertices has at least (αk)
n perfect matchings; then

αk = (k−1)k−1

kk−2
.(2)

Here, the inequality ≤ was shown in [10], where moreover equality was conjectured for all
k. That this conjecture is true is thus the result of the present paper. For completeness, we
sketch the argument showing (2) in Section 3 below.

The result can be equivalently stated in terms of permanents (for the definition of
permanent, see Section 4 below): the permanent of any nonnegative integer n × n matrix
with each row and column sum equal to k, is at least (1).

The result of Voorhoeve [11] for the case k = 3 answered a question posed by Erdős
and Rényi [3]: is there an ε > 0 such that the permanent of any nonnegative integer n × n

matrix with all row and column sums equal to 3 is at least (1 + ε)n? So Voorhoeve’s result
shows that one can take ε = 1

3 .
Voorhoeve’s result was obtained before Van der Waerden’s permanent conjecture was

resolved, in 1981. This conjecture states that the permanent of any doubly stochastic n×n

matrix is at least n!
nn . (A matrix is doubly stochastic if it is nonnegative and each row and

column sum is equal to 1.) Van der Waerden’s conjecture was proved by Falikman [4] and
a sharper version by Egorychev [2].

Van der Waerden’s bound implies that for any k, n, the permanent of any nonnegative
integer n × n matrix A with all row and column sums equal to k, is at least

knn!
nn ,(3)
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since the matrix 1
kA is doubly stochastic. Bound (3) is at least ( k

e )n. Since 3
e > 1, it

implies the Erdős-Rényi conjecture. Also Bang [1] and Friedland [5] showed the Erdős-
Rényi conjecture by proving that any doubly stochastic n × n matrix has permanent at
least e−n. Since

(k−1)k−1

kk−2
≥ k

e(4)

for each k, also the bound (1) implies that the permanent of any doubly stochastic n × n

matrix is at least e−n.
The proof of Voorhoeve [11] for the case k = 3 is very elegant and simple (see, for

instance, Lovász and Plummer [6] pp.313–314). Compared to the simplicity of Voorhoeve’s
method and of the general statement, our method is quite complicated. Yet, the method
forms a generalization of Voorhoeve’s method. In fact, it generalizes bound (1) to weighted
bipartite graphs, so as to enable induction. Although it leads to slightly complicated for-
mulas, they all are quite natural and precise for our purposes. Nevertheless, the question
remains if a simpler proof could be given.

Another question is whether there is a common generalization of the Van der Waerden
bound and the bound given in this paper. For any k, n, let p(k, n) be the minimum number
of perfect matchings in any k-regular bipartite graph with 2n vertices. Then the Van der
Waerden bound states that for each n one has

inf
k∈N

p(k,n)
kn = n!

nn ,(5)

while our bound states that for each k one has

inf
n∈N

p(k, n)1/n = (k−1)k−1

kk−2
.(6)

So both bounds are best possible, in different asymptotic directions. It might be possible
to derive a sharper lower bound for p(k, n) with the methods of the present paper.

We give our main theorem and its proof in Section 2, after which we derive bound
(1) in Section 3. The theorem also implies a bound on the permanent of certain matrices
derived from doubly stochastic matrices, which we discuss in Section 4. Finally, in Section
5 we observe that our bound also gives tight bounds for the number of 1-factorizations
(edge-colourings) of regular bipartite graphs, conjectured in [9].

In this paper, a bipartite graph G = (V,E) can have multiple edges. For any vertex
v, the set of edges incident with v is denoted by δ(v). For any function w : E → Z+, we
generally put we for w(e) (e ∈ E), and

w(F ) =
∑

e∈F

we(7)

for any F ⊆ E. For any e ∈ E, χe denotes the function χe : E → {0, 1} with χe(f) = 1 if
and only if f = e.

2. The main theorem and proof

We now formulate and prove a theorem that implies bound (1). In this section we fix
k. Let G = (V,E) be a bipartite graph, and let w : E −→ Z+. For any perfect matching
M in G define

φ(w,M) :=
∏

e∈M

we(k − we).(8)
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Next let

τ(w) :=
∑

M

φ(w,M),(9)

where the summation extends over all perfect matchings M in G. So τ(w) is equal to the
number of perfect matchings in the graph obtained from G by replacing each edge e by
we(k − we) parallel edges (assuming we ≤ k).

Call w k-regular if w(δ(v)) = k for each v ∈ V .

Theorem 1. For any bipartite graph G = (V,E) and any k-regular w : E → Z+,

τ(w) ≥ k|V |−|E|
∏

e∈E

(k − we).(10)

Proof. We prove a generalization. Call a function w : E → Z+ a 1-weighting if either w is
k-regular or there exist two vertices t and u such that w(δ(t)) = k−1, w(δ(u)) = k+1, and
w(δ(v)) = k for all v 6= t, u. (Necessarily, t and u belong to the same colour class of G.)

Call w : E → Z+ a −1-weighting if there exist two vertices t and u such that w(δ(t)) =
w(δ(u)) = k − 1, and w(δ(v)) = k for all v 6= t, u. (Necessarily, t and u belong to different
colour classes of G.)

Note that any α-weighting can be obtained as follows from a k-regular w : E → Z+.
Choose a simple path P in G, with edges e1, . . . , et, in this order (possibly t = 0), such that
we > 0 if e = ei for odd i ≤ t. Now reset we := we − 1 if e = ei for some odd i ≤ t and
we := we + 1 if e = ei for some even i ≤ t. Then the resulting w is an α-weighting with
α := (−1)t.

Let α ∈ {+1,−1}. For any α-weighting w define

β(w) := k+α
k+1 k|V |−|E|

∏

e∈E

(k − we).(11)

We show that for any bipartite graph G = (V,E), any α ∈ {+1,−1}, and any α-weighting
w : E → Z+, one has

τ(w) ≥ β(w).(12)

This implies the theorem.
Suppose (12) does not hold. Choose a graph G = (V,E) for which there exist α,w

violating (12), with |E| minimal. Then G is connected, since otherwise a component of G

will give a smaller counterexample.
Having G, we choose α,w violating (12) so that the quotient

τ(w)

β(w)
(13)

is minimized (this is possible, as β(w) > 0). We call any w attaining this minimum mini-

mizing.
If possible, we choose w, among all minimizing w, such that w is k-regular; otherwise,

we choose w such that the two vertices v with w(δ(v)) 6= k have minimum distance in G.
(So the path P described above is minimized.)
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Since we can delete edges e with we = 0, we know that we ≥ 1. Since β(w) = 0 if we = k

for some edge e, we know that we ≤ k − 1. So it follows that k ≥ 2.
For any edge e let

τ(w, e) :=
∑

M3e

φ(w,M).(14)

So for each vertex v one has
∑

e∈δ(v)

τ(w, e) = τ(w).(15)

Let u be a vertex satisfying w(δ(u)) = k + α, if it exists, and let u be any vertex
otherwise. (So α = 1 and w(δ(u)) = k in the latter case.) Then w − αχe is a −α-weighting
for any edge e ∈ δ(u).

Claim 1. For each edge e ∈ δ(u),

α(k − 2we + α)τ(w, e) ≤ α(k − 2we + α) we

k+ατ(w).(16)

If equality holds, then w − αχe is minimizing.

Proof. Since w − αχe is a −α-weigting and since w is minimizing we have

τ(w − αχe) ≥
β(w − αχe)

β(w)
τ(w) = k−α

k+α · k−we+α
k−we

τ(w).(17)

Moreover, we can express τ(w − αχe) in terms of τ(w) and τ(w, e):

τ(w − αχe) = τ(w) + ( (we−α)(k−we+α)
we(k−we)

− 1)τ(w, e) = τ(w) − α k−2we+α
we(k−we)

τ(w, e).(18)

Combining (17) and (18) gives:

α(k − 2we + α)τ(w, e) = we(k − we)(τ(w) − τ(w − αχe)) ≤
we(k − we)τ(w)(1 − k−α

k+α
k−we+α

k−we
) =

we(k − we)τ(w) (k2+αk−kwe−αwe)−(k2−α2−kwe+αwe)
(k+α)(k−we)

=

we(k − we)τ(w) α(k−2we+α)
(k+α)(k−we)

= α(k − 2we + α) we

k+ατ(w).

(19)

As equality in (19) implies equality in (17), this shows Claim 1. 2

From this we derive:

Claim 2. There exists an edge e ∈ δ(u) satisfying

we ≥ 1
2(k + α) and α · τ(w, e) > α we

k+ατ(w).(20)

Proof. Suppose not. Then by Claim 1,

α · τ(w, e) ≤ α we

k+ατ(w)(21)
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for each e ∈ δ(u) (since if we < 1
2(k + α), (16) amounts to (21)). Hence

α · τ(w) = α
∑

e∈δ(u)

τ(w, e) ≤ α
∑

e∈δ(u)

we

k+ατ(w) = α
w(δ(u))

k+α τ(w) ≤ α · τ(w),(22)

since α ·w(δ(u)) ≤ α(k+α). So equality holds throughout in (22), implying w(δ(u)) = k+α

and implying equality in (16) for each e ∈ δ(u). So by Claim 1, w − αχe is minimizing for
each e ∈ δ(u).

Now let e be the first edge of the shortest path connecting u with the vertex v 6= u

satisfying w(δ(v)) = k − 1. (w is not k-regular since w(δ(u)) = k + α.) Then replacing w

by w−αχe we obtain a minimizing −α-weighting which is either k-regular or has a shorter
distance between the vertices v with w(δ(v)) 6= k, contradicting our assumption. 2

Let us fix edge e as in Claim 2, and let e connect vertex u with vertex v (thus fixing v

from here on in this proof). Let F be the set of edges f 6= e incident with v. Then

Claim 3. wf < k − we for each f ∈ F .

Proof. For if not, then wf + we ≥ k, implying that w(δ(v)) = k (since w(δ(v)) ≤ k), and
that e and f are the only edges incident with v. So wf = k − we.

If e and f are not parallel, we can contract them and obtain a graph G′ with a smaller
number of edges, and an α-weighting w′. Then by the minimality of G we know τ(w′) ≥
β(w′), and hence

τ(w) = wewfτ(w′) ≥ wewfβ(w′) = β(w),(23)

again contradicting the fact that w gives a counterexample.
If e and f are parallel and form the whole graph, then α = 1 and τ(w) = we(k − we) +

wf (k − wf ) = 2wewf . So

τ(w) = 2wewf ≥ wewf = β(w),(24)

contradicting the fact that we have a counterexample.
If e and f parallel and do not form the whole graph, then w(δ(u)) = k+1 for the vertex

u adjacent to v. Hence α = 1. Then deleting u and v, and the edges incident with u and v,
we obtain a graph G′ with −1-weighting w′. Since G is a counterexample with |E| smallest,
we know that τ(w′) ≥ β(w′). However, τ(w) = 2wewfτ(w′) and hence

τ(w) = 2wewfτ(w′) ≥ 2wewfβ(w′) ≥ k+1
k−1

k−1
k wewfβ(w′) = β(w),(25)

contradicting the fact that w gives a counterexample. 2

Since we ≥ 1
2(k + α), Claim 3 implies

wf < 1
2(k − α); equivalently, k − 2wf − α > 0.(26)

So we can define for any f ∈ F ,

λf := − k−2we+α
we(k−we)

·
wf (k−wf )
k−2wf−α .(27)

By (26) and (20) we have that λf ≥ 0 for each f ∈ F . Moreover, one has:
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Claim 4.
∑

f∈F

λf < 1.

Proof. Since this is trivial if k − 2we + α = 0 (in which case λf = 0 for all f ∈ F ), we can
assume k − 2we + α < 0. So we must prove

∑

f∈F

wf (k−wf )
k−2wf−α < −we(k−we)

k−2we+α .(28)

To prove this, first observe that the function h(x) = x(k−x)
k−2x−α satisfies h(0) = 0 and is

strictly increasing and strictly convex for x < 1
2(k − α), since

h′(x) = (k−2x)(k−2x−α)+2x(k−x)
(k−2x−α)2

= (k2−4kx+4x2−αk+2αx)+(2kx−2x2)
(k−2x−α)2

=

k2−2kx+2x2−αk+2αx
(k−2x−α)2

=
1
2 (k−2x−α)2+

1
2(k2−α2)

(k−2x−α)2
= 1

2 +
1
2 (k2−α2)

(k−2x−α)2
,

(29)

and therefore h′(x) is positive and strictly increasing for x < 1
2(k − α).

Since
∑

f∈F wf = w(δ(v)) − we ≤ k − we, the strict monotonicity and strict convexity
of h imply that

∑

f∈F

wf (k−wf )
k−2wf−α <

(k−we)we

k−2(k−we)−α = we(k−we)
−k+2we−α(30)

(the inequality is strict because of Claim 3), which is (28). 2

We now finish the proof by deriving a contradiction. For each f ∈ F , w − αχe + αχf is
an α-weighting. Hence, since w is minimizing, we have:

τ(w − αχe + αχf ) ≥
β(w − αχe + αχf )

β(w)
τ(w) =

(k−we+α)(k−wf−α)
(k−we)(k−wf ) τ(w).(31)

Moreover, we can express τ(w − αχe + αχf ) in terms of τ(w), τ(w, e), and τ(w, f):

τ(w − αχe + αχf ) =

τ(w) + ( (we−α)(k−we+α)
we(k−we)

− 1)τ(w, e) + (
(wf+α)(k−wf−α)

wf (k−wf ) − 1)τ(w, f) =

τ(w) + −α(k−2we+α)
we(k−we)

τ(w, e) +
α(k−2wf−α)

wf (k−wf ) τ(w, f).

(32)

Combining (31) and (32) then gives a bound for τ(w, f) in terms of τ(w) and τ(w, e):

α · τ(w, f) =
wf (k−wf )
k−2wf−α (τ(w − αχe + αχf ) − τ(w)) − αλfτ(w, e) ≥

wf (k−wf )
k−2wf−α (

(k−we+α)(k−wf−α)
(k−we)(k−wf ) − 1)τ(w) − αλfτ(w, e) =

wf (k−wf )
k−2wf−α

α(we−wf−α)
(k−we)(k−wf )τ(w) − αλfτ(w, e) = α

wf (we−wf−α)
(k−2wf−α)(k−we)

τ(w) − αλfτ(w, e).

(33)

Hence, using (15), (20) and Claim 4, we obtain the following contradiction:

α · τ(w) = α · τ(w, e) +
∑

f∈F

α · τ(w, f) ≥

α · τ(w, e) +
∑

f∈F

α · (
wf (we−wf−α)

(k−2wf−α)(k−we)
τ(w) − λfτ(w, e)) =

α
∑

f∈F

wf (we−wf−α)
(k−we)(k−2wf−α)τ(w) + α(1 −

∑

f∈F

λf )τ(w, e) >

α
∑

f∈F

wf (we−wf−α)
(k−we)(k−2wf−α)τ(w) + α(1 −

∑

f∈F

λf ) we

k+ατ(w) ≥ α · τ(w).

(34)
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The last inequality can be seen as follows. First we have for each f ∈ F ,

wf (we−wf−α)
(k−we)(k−2wf−α) − λf

we

k+α = wf
k−we+α

(k−we)(k+α) ,(35)

as follows directly from definition (27) of λf . (Indeed,

wf (we−wf−α)
(k−we)(k−2wf−α) − λf

we

k+α =
wf (we−wf−α)

(k−we)(k−2wf−α) +
wf (k−2we+α)(k−wf )

(k−we)(k−2wf−α)(k+α) =

wf
(we−wf−α)(k+α)+(k−2we+α)(k−wf )

(k−we)(k−2wf−α)(k+α) =

wf
(kwe−kwf−αk+αwe−αwf−α2)+(k2−2kwe+αk−kwf+2wewf−αwf )

(k−we)(k−2wf−α)(k+α) =

wf
k2−kwe−2kwf+2wewf−2αwf+αwe−α2

(k−we)(k−2wf−α)(k+α) = wf
(k−2wf−α)(k−we+α)

(k−we)(k−2wf−α)(k+α) =

wf
k−we+α

(k−we)(k+α) .)

(36)

Now (35) gives, using the inequality αw(δ(v)) ≥ αk,

α
∑

f∈F

(
wf (we−wf−α)

(k−we)(k−2wf−α) − λf
we

k+α) = α k−we+α
(k−we)(k+α)

∑

f∈F

wf =

α
(k−we+α)(w(δ(v))−we)

(k−we)(k+α) ≥ α
(k−we+α)(k−we)

(k−we)(k+α) = α(1 − we

k+α),

(37)

implying the last inequality in (34). As (34) is a contradiction, there is no counterexample
to (12).

3. Derivation of bound (1)

Corollary 1a. Any k-regular bipartite graph G = (V,E) with 2n vertices has at least

( (k−1)k−1

kk−2
)n(38)

perfect matchings.

Proof. Define w : E −→ Z+ by we = 1 for each e ∈ E. So w is k-regular in the sense of
Section 2. Now τ(w) is equal to (k− 1)n times the number of perfect matchings in G (since
we(k − we) = k − 1 for each edge e). Moreover,

k|V |−|E|
∏

e∈E

(k − we) = ( (k−1)k

kk−2 )n.(39)

So Theorem 1 implies the corollary.

We sketch a proof that the base in (38) is best possible; that is, we show (2). Fix k and
n. Let Π be the set of permutations of {1, . . . , kn}. For any π ∈ Π, let Gπ be the bipartite
graph with vertices u1, . . . , un, v1, . . . , vn and edges e1, . . . , ekn, where

ei connects u
d

i
k e

and v
d
π(i)
k e

(40)
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for i = 1, . . . , kn. (Here dxe denotes the upper integer part of x.) So Gπ is a k-regular
bipartite graph with 2n vertices. Hence, by definition of αk,

σ(Gπ) ≥ (αk)
n,(41)

where σ(Gπ) denotes the number of perfect matchings in Gπ.
On the other hand,

∑

π∈Π

σ(Gπ) = knknn!((k − 1)n)!.(42)

This can be seen as follows. The left hand side is equal to the number of pairs (π, I), where
π is a permutation of {1 . . . , kn} and where I is a subset of {1, . . . , kn} such that {ei|i ∈ I}
forms a perfect matching in Gπ; that is, such that

(i) |I ∩ {jk − k + 1, . . . , jk}| = 1 for each j = 1, . . . , n,

(ii) |π(I) ∩ {jk − k + 1, . . . , jk}| = 1 for each j = 1, . . . , n.

(43)

Now by first choosing I satisfying (43)(i) (which can be done in kn ways), and next choosing
a permutation π of {1, . . . , kn} satisfying (43)(ii) (which can be done in knn!((k − 1)n)!
ways), we obtain (42).

Since |Π| = (kn)!, (41) and (42) imply

αk ≤ (k2nn!((k−1)n)!
(kn)! )1/n(44)

yielding (2), with Stirling’s formula.

4. Consequences on permanents

Our result can also be expressed in terms of permanents. Recall that for any n × n

matrix A = (ai,j), the permanent perA is defined as

perA :=
∑

π

n∏

i=1

ai,π(i),(45)

where the summation extends over all permutations π of {1, . . . , n}. (For background on
permanents, see Minc [7], [8].)

Then we have:

Corollary 1b. Let A = (ai,j) be a nonnegative integer n × n matrix with each row and

column sum equal to k. Then

perA ≥ ( (k−1)k−1

kk−2 )n.(46)

Proof. Make a bipartite graph G with vertex set u1, . . . , un, v1, . . . , vn, where ui and vj are
connected by ai,j edges (parallel if ai,j ≥ 2). Then per(A) is equal to the number of perfect
matchings in G, and hence Corollary 1a implies the present corollary.
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Our more general Theorem 1 implies another theorem on permanents. For any real
number a let ã := a(1 − a), and for any matrix A = (ai,j) let

Ã := (ãi,j).(47)

Corollary 1c. For any doubly stochastic n × n matrix A = (ai,j),

perÃ ≥
n∏

i=1

n∏

j=1

(1 − ai,j).(48)

Proof. By continuity, we can assume that A is rational. Hence there exists a natural
number k such that kA is an integer matrix, with all row and column sums equal to k.

Let G = (V,E) be the complete bipartite graph with colour classes {u1, . . . , un} and
{v1, . . . , vn}. Let w : E → Z+ be defined by we := kai,j for the edge e connecting ui and vj

(i, j = 1, . . . , n). So w is k-regular, and hence by Theorem 1,

k2nperÃ = τ(w) ≥ k|V |−|E|
∏

e∈E

(k − we) = k2n
n∏

i=1

n∏

j=1

(1 − ai,j),(49)

implying the corollary.

In fact, this corollary can be seen to be equivalent to Theorem 1. We have tried to find
a direct proof of it, based on continuity and differentiability, but we did not succeed.

5. 1-factorizations

Our bound also implies a tight bound on the number of 1-factorizations of regular
bipartite graphs. Let G = (V,E) be a bipartite graph. A 1-factorization of G is a partition
of E into perfect matchings M1, . . . ,Mk (‘factors’). A 1-factorization can also be considered
as an edge colouring.

The following was conjectured in [9] (and proved for all k of the form 2a3b):

Corollary 1d. The number of 1-factorizations of a k-regular bipartite graph with 2n vertices

is at least

(k!2

kk )n.(50)

Proof. By Corollary 1a, the first factor M1 can be chosen in at least

( (k−1)k−1

kk−2
)n(51)

ways. Deleting the edges in M1 we obtain a (k − 1)-regular bipartite graph, having (by
induction) at least

( (k−1)!2

(k−1)k−1
)n(52)
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1-factorizations. Multiplying (51) and (52) we obtain (50).

Again, by an argument similar to that of Section 3, one shows that the base in (50) is
best possible (cf. [9]).
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