Free partially commutative groups, cohomology,
and paths and circuits in directed graphs on
surfaces

Alexander Schrij ver!

Abstract. We show that for each fixed k, the problem of finding k pairwise vertex-disjoint directed
paths between given source-sink pairs in a planar directed graph is solvable in polynomial time.
In fact, it suffices to fix the number of faces needed to cover all sources and sinks. Moreover, the
method can be extended to any fixed compact orientable surface (instead of the plane) and to rooted
trees (instead of paths).

Our approach is algebraic and is based on cohomology over graph (nonabelian) groups. More
precisely, let D = (V, A) be a directed graph and let (G, -) be a group. Call two function ¢,¢ : A — G
cohomologous if there exists a function p : V — G such that p(u) - ¢(a) - p(w) ™! = 1(a) for each arc
a = (u,w). Now given a function ¢ : A — G we want to find a function 1) cohomologous to ¢ such
that each ¥(a) belongs to a prescribed subset H(a) of G. We give a polynomial-time algorithm for
this problem in case G is a graph group and each H(a) is closed (i.e., if word zyz belongs to H(a)
then also word y belongs to H(a)).

The method also implies that such a v exists, if and only if for each s € V' and each pair P, Q) of
(undirected) s—s paths there exists an z € G such that z-¢(P)-2~! € H(P) and z-¢(Q)-xz~! € H(P).
(Here ¢(P) is the product of the ¢(a) over the arcs in P. Similarly, H(P) is the (group subset)
product of the H(a).)

1. Introduction

In this paper we show that the following problem, the k disjoint paths problem for directed
planar graphs, is solvable in polynomial time, for any fixed k:

(1)  given: a planar directed graph D = (V| F) and k pairs (r1,$1), ..., (%, Sx) of vertices
of D;
find: k pairwise vertex-disjoint directed paths Py, ..., P, in D, where P; runs from r;
tos; (i=1,...,k).

The problem is NP-complete if we do not fix k (even in the undirected case; Lynch
[6]). Moreover, it is NP-complete for k = 2 if we delete the planarity condition (Fortune,
Hopcroft, and Wyllie [5]). This is in contrast to the undirected case (for those believing
NP+#P), where Robertson and Seymour [10] showed that, for any fixed k, the k disjoint
paths problem is polynomial-time solvable for any graph (not necessarily planar).

Our algorithm is a ‘brute force’ polynomial-time algorithm. We did not aim at obtaining
the best possible running time bound, as we presume that there are much faster (but possibly
more complicated) methods for (1) than the one we describe in this paper. In fact, recently
Reed, Robertson, Schrijver, and Seymour [9] showed that for undirected planar graphs the
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k disjoint paths problem can be solved in linear time, for any fixed k. This algorithm makes
use of methods from Robertson and Seymour’s theory of graph minors. A similar algorithm
for directed planar graphs might exist, but probably would require extending parts of graph
minors theory to the directed case.

Our method is based on cohomology over free (nonabelian) groups. For the k disjoint
paths problem we use free groups with k£ generators. Cohomology is in a sense dual to
homology, and can be defined in any directed graph, also if it is not embedded on a surface.
We apply cohomology to an extension of the planar graph dual of D—just using homology
to D itself seems not powerful enough.

This approach allows application of the algorithm where the embedding of the graph in
the plane is given in an implicit way, viz. by a list of the cycles that bound the faces of the
graph.

It also allows a more general application than (1). It is not necessary to fix the num-
ber k of pairs (r;,s;) but it suffices to fix the number p of faces of D such that each of
r1,81,-..,Tk, S 18 incident with at least one of these faces. The planarity condition can
be relaxed to being embeddable in some fixed compact orientable surface. (A compact
orientable surface is any space obtained from the sphere by adding a finite number of ‘han-
dles’.) We can restrict for each arc a the connections that can be made over a. Moreover,
the method extends to finding rooted trees instead of directed paths.

That is, for any fixed compact orientable surface S and any fixed p we give a polynomial-
time algorithm for the following problem:

(2)  given: a directed graph D = (V, A) embedded on S, subsets Aq,..., Ay of A, pairs
(r1,51),--., (%, Sg), where r; € V.and S; CV (i = 1,...,k), such that there

exist at most p faces such that each vertex in {ry,...,r,}US;U---US} is incident
with at least one of these faces;

find: k pairwise vertex-disjoint rooted trees 11, ..., T, where T; is rooted in r;, covers
S; and contains arcs only in 4; (i =1,...,k).

There are several other variants of this problem where the methods below are applicable.
We did however not see if our methods extend to compact nonorientable surfaces.

2. Directed graphs and surfaces

We give some notation and terminology on directed graphs and surfaces. Directed graphs
may have loops and parallel arcs. Nevertheless we sometimes write a = (u,w), meaning
that a is an arc from u to w. For each arc a from u to w, we define a~! as the reverse arc
from w to w. (This need not be an arc of D again.)

An (undirected) path is a word

(3) P =ajas - ap,
where a; = a or a; = a~ ! for some arc a (i = 1,...,m), such that the head of a; is equal to
the tail of a; (i =1,...,m —1). We allow a;11 = a;l in (3). Moreover we allow the empty



path (), where m = 0.
We call P an s —t path if s is the tail of a; and t is the head of a,,. If s =t we call P
a cycle. If P is as in (3) then P~ :=a; - -ayt.

3. Graph groups

3.1. Graph groups

Our method uses the framework of combinatorial group theory, viz. groups defined by
generators and relations. For background literature on combinatorial group theory we refer
to Magnus, Karrass, and Solitar [8] and Lyndon and Schupp [7]; however, our treatment
below is self-contained.

We first give some standard terminology. Let g1,...,gr be ‘generators’. Call the ele-

ments g1,gl_1, o ,gk,gk_1 symbols. Define (gi_l)*1 := gi- A word (of size t) is a sequence
aj ---a; where each a; is a symbol. The empty word (of size 0) is denoted by (). Define
(al e at)fl = at_l e al_l.

Word y is a segment of word w if w = zyz for words x, z; y is a beginning segment
if x = (), and an end segment if z = (). Word y = ay---a; is a subword of word w if
W = Xoa1x1 - - - Ty_1a¢x¢ for some words xg, ...,z It is a proper subword if y # w.

Let g1, ..., gx be generators, and let E be a set of unordered pairs {3, j} from {1,... &k}
with i # j. Then the group G = G is generated by the generators g1, ..., g, with relations

(4) 9ig; = g;g; for each pair {7, j} € E.

Such a group is called a free partially commutative group or a graph group. (These groups
are studied inter alia in [1], [4], [13], [18]. However, in this paper we do not use the results
of these papers.)

To describe G, call symbols a and b independent if a € {g;,g; '} and b € {gj,gj_l} for
some {i,j} € E with i # j. So if a and b are independent then ab = ba and b # a™'. (It
follows from Proposition [3 below that also the converse implication holds.)

By definition, G consists of all words, identifying any two words w and w’ if w’ arises
from w by iteratively:

(5) (i) replacing xaa~ly by zy or vice versa, where a is a symbol;
(ii) replacing xaby by xbay where a and b are independent symbols.

By commuting we will mean applying (ii) iteratively.

Note that if E = () the group G is the free group generated by ¢1,..., gi. If E consists
of all pairs, then G is isomorphic to Z*. Let 1 denote the unit element of G. So 1 = .

A perfect matching on {1,...,t} is a partition of {1,...,t¢} into pairs. Pairs {i,j} and
{#/,7'} are said to cross if i < i’ < j < j ori < i < j < j (assuming without loss of
generality i < j, i’ < j).

Proposition 1. For any word w = a1 ---az one has: w = 1 if and only if there exists a



perfect matching M on {1, ...t} such that

(6) (i) if {i,j} € M then a; = a; ;
(i1) if two pairs {i,j},{i',5'} in M cross then a; and ay are independent.

Proof. Necessity. If w = () we can take M = (). Moreover, one easily shows that the
existence of M is maintained under the operations (5).

Sufficiency. Let M satisfy (6)). If w # 0, choose {i,j} € M with i < j and j —i as small
as possible. Then a; and a;41---aj—1 are independent, since each of the pairs containing
oneof i+ 1,...,7 — 1 should cross {i,7}.

Hence w = a1 -+ aj—1@i41 - - aj—1a41 - - ar. Since M \ {{i, j}} directly gives a perfect
matching for the right-hand word, we obtain inductively that w = 1. |

We call a word w reduced if it is not equal (as a word) to xaya~!z for some symbol a
independent of y. We say that a symbol a occurs in an element x of G if « occurs in any
reduced word representing x. We say that two words x and y are independent if any symbol
in z and any symbol in y are independent. (In particular, b # a™! for any symbols a in z
and b in y.) Note that reducedness is invariant under commuting.

Proposition [1] directly implies:

Proposition 2. If w is a reduced word and w = 1, then w = ().

Proof. If w # 0 and w = 1 one shows, as in the proof of Proposition [1, that w is not
reduced. |

So testing if w = 1 is easy: just replace (iteratively) any segment aya~! by y where a is
a symbol and y is a word independent of a. The final word is empty if and only if w = 1.
This gives a test for equivalence of words w and x: just test if wz~! = 1. So the ‘word
problem’ for free partially commutative groups is easy. (In fact it can be solved in linear
time — see Wrathall [18].)

Proposition [2 also implies the stronger statement:

Proposition 3. Let w and x be reduced words with w = x. Then word x can be obtained
from w by a series of commutings.

Proof. We may assume w # () # z. Since wz~" = 1, wz~! is not reduced. So we can write

w = w'aw” and z = 2’az” for some symbol a independent of w” and z”. By commuting we

may assume w” = 2’ = (). Then w’ and 2’ are reduced equivalent words, and by induction

w’ and 2’ can be obtained from each other by a series of commutings. |
Proposition [3] implies:
(7) if zyz = xy’2z are reduced words then 3’ can be obtained from y by commuting

(since y and 3y’ are reduced and y = ¥/.)



In particular, all equivalent reduced words have the same size. So we can define the size
|z| of an element = in G as the size of any reduced word w = x. Trivially, |z7!| = |z| and
lzy| < |z| + |y|. Hence the function dist(z,y) := |~ 'y| is a distance function. Note that
dist(zz, zy) = dist(z, y) for all x,y, 2.

We write
(8) zly <= loy| = [x] + [y|.
So
9) x|y <= if 2’/ and y are reduced words representing x and y, then z'y’ is a reduced

word representing xy.
By extension we write:
(10) xi|xa] |y = |T120 - - TR | = |21 ] F |22 -+ F |20

3.2. The partial order <

Let x and y be two reduced words. We write x < y if there are reduced words 2’ = x and
y' = y such that 2’ is a beginning segment of /. So x < y if and only if x|z~ 1y.
Proposition 3] gives:

(11) if z and y are reduced words such that < y then y can be commuted to y’ such
that x is a beginning segment of /.

This implies:
Proposition 4. < is a partial order on G.

Proof. Clearly x < z for each x € GG, so < is reflexive. To see that < is anti-symmetric, let
x <y and y < z. We may assume that z and y are reduced words. Then (11) implies that
z and y can be commuted to each other. So x = y.

To see that < is transitive, let z < y and y < z, where x,y and z are reduced words.
By (11) z can be commuted to 2z’ such that y is beginning segment of 2/, and y can be
commuted to 3’ such that z is beginning segment of y/. Hence 2z’ can be commuted to z”
such that z is beginning segment of z”. Therefore r < z. |

Note that for all z,y € G:

(12) x <y if and only if y 'z <y~ !

Moreover, for all x,y, z € G:

(13) ifr<y<zthenazly<azlzz7ly <z lz and z < 2y~ 'a.



This implies:

Proposition 5. For all x,y,z € G, if vy < z and x|y then x < zy~ .

Proof. Since x < zy < z, by we have z < z(zy)~lz = 2y~ L. |

In fact, the partial order < yields a lattice if we add to G an element oo at infinity.
First consider the following algorithm. For any = € G let first(x) denote the set of symbols
a with o < z.

For any two reduced words = and y the algorithm is as follows:

(14) Grow a reduced word z such that zz’ = x and zy' = y, where 22’ and 2y’
are reduced words. Initially, z := (. If z has been found, choose a symbol
a € first(z') N first(y'), reset z := za, remove the first occurrences of « from z/
and 7/, and iterate. Stop if no such a exists.

Clearly the final z is reduced (as it is a beginning segment of a word arising by commuting
x) and satisfies z < x and z < y. Note that first(z’) N first(y’) = ( if and only if the word
y'~12’ is reduced. Moreover:

Proposition 6. If w < x and w <y then w < z.

Proof. We may assume that w is a reduced word. Apply the algorithm to w and z.
We end up with reduced words vz’ = z and vw’ = w such that first(w') N first(z") = 0. If
w' = then w < z, so assume w’ # (). Let 2’ and 3’ be as found in (14]) applied to x and y.
So vz'x’ = x and vz'y’ = y are reduced words. Since vw’ = w < x = vz’ the first symbol
a (say) of w' belongs to first(z'z"). Similarly, a belongs to first(z'y’). Since a ¢ first(z')
it follows that a and 2’ are independent and that a belongs to first(z’) N first(y’). This
contradicts the construction of z. |

It follows that < forms a lattice on GU{oc}, with x Ay = z where z is constructed as in
(14). Note that (14]) also gives an algorithm to test if < y for any two words. Moreover:

(15) for all z,y € G: 27z Ay) <27 ly.

This follows from the fact that if 2,2’ and 3’ are as constructed in (14) then (2/)~! =
r~ Yz Ay) and (/)" = 271y, while (z') "'y is a reduced word.

One has z V y is finite (i.e., belongs to G) if and only if there is a w € G with z < w
and y < w. The following proposition describes how to find z V y. Let x and y be reduced.
Let z, 2" and ¢ be as constructed in (14).

Proposition 7. If 2’ and y' are independent then x V y is finite and is equal to zz'y'.
Otherwise, x V y = 0.

Proof. If 2/ and 3 are independent, then zz'y’ = 232’ is a reduced word and z = 22’ <
zz'y and y = 2y < zy/2’.



Now let 22’ < w and 2y’ < w for some reduced word w. Then w can be commuted
to zz'w' and to zy'w”, where z'w’ and y'w” can be commuted to each other. Since

w”"ly/~la'w’ = 1 there exists a perfect matching M satisfying (6). As z’w’ and y'w”

are reduced, each symbol in the w”~1y/~! part is matched with a symbol in the z’w’ part.
Since first(z') N first(yy') = (), the symbols in the y/~! part are not matched with the sym-
bols in the z’ part. So 2’ and 3/ are independent and hence zz'y’ is a reduced word and

zr'y < w. |

This directly implies that for any z,y € G with z V y finite:

(16) rVy=zx(xzAy) lyand z Ay =x(xVy)y.
Note that:
(17) ifr<zandy<zthenzVy=z>zlzAzly)andxAy=z2(z"1zVvz1y).

The reason is that by (13) the function w +— z~!w reverses the partial order on the set
{weG|w<z}. Hence z7 Nz Vy) =27 'w Az lyand 27 (z Ay) = 2712 V 2~y whenever
z,y < z.

We also note the following:

Proposition 8. Let x1,...,x; € G be such that x;Vx; is finite for alli,j. Then x1V---Va;
1s finite.

Proof. Let z1,...,z; be a counterexample with ¢ as small as possible. So 1V -V xs = 00
and t > 3. By the minimality of ¢ each pair from x1 VsV -V, zoVasV -V, x3VaegV
-+ -Vxy has finite join. If £ > 4 this implies by the minimality of ¢t that 1V xoVz3VasV-- -V,
is finite, a contradiction. So t = 3.

Assume we have chosen z1, z2, x3 so that |z1]| 4 |z2| + |z3| is as small as possible. Then
x1,22 and x3 are reduced nonempty words. Write z1 = y1a, 9 = Y23, x3 = ysy where
a, (3,7 are symbols.

By the minimality condition, z := y; V y2 V y3 and z V x1 are finite. If 2 V 1 = 2z then
x1V xa Va3 = y1 VxyV xs is finite by the minimality condition. So z V x1 # z. Since
y1 < z we know z = 12’ for some word 2’ with y;|2’. Hence, since 1 = y1 with y;|a,
zV x; = za. Similarly z V xo = zb and z V 3 = zc. Moreover a # b, since otherwise
r1VaaVryz=zaVzbVzc=zaV zc=x1V ys V x3 is finite.

Since za V zb = x1 V x2 V y3 is finite, a and b are independent. Similarly a and c¢ are
independent and b and c¢ are independent. So za, zb, zc¢ < zabc = zbac = zcab, and hence
x1VxoVrs=zaV zbV zc is finite. |

The partial order < is clearly not invariant under mappings x — zx for z € GG. The
following formula expresses how A behaves under such an operation.

Proposition 9. For all z,y,2 € G one has 2tz Az"ly =271 ((z Ay) V(z A 2) V(YA 2)).

Proof. We may assume x Ay Az = 1 (we can replace x by (zAyAz) tz, y by (xAyAz)"ly,



and z by (x AyAz)"'2). Let u:=xAy,v:=xAzand w:=yAz SinceuAv=1and
u V v is finite, v and v are independent. Similarly, © and w are independent and v and w
are independent. So (z Ay)V (z A2)V (y A z) = wwow. Let 2’ := (wv) 2,y = (uw) 'y
and 2’ := (vw)'z. So wva’,uwy’ and vwz’ represent x,y and z as reduced words. Hence
() twlur’ = () tuw e’ and ()"t luy = (2) " luv~ly represent 27!z and 27y
as reduced words. Now w—ta’ Av~ly =1 as (w™'2') "t~ 1y = (/)" lv~twy' is a reduced
word. Hence 271z A 271y = (2/)"lu = 27 Lluvw. |

It follows from Proposition 9lthat (z Ay)V (z Az)V (y A z) is the unique element w that
is on the three shortest paths (with respect to the distance function dist) from x to y, = to
z,and y to z. So (x Ay)V (zAz)V (yAz) is the ‘median’ in the sense of Sholander [15,17,

16] (cf. [2]).

3.3. Join-irreducible elements and partial distributivity of G

It is helpful to see that each element of a free partially commutative group has an underlying
partial order — extending the idea that the symbols in a word in the free group are totally
ordered.

Let a1 --- a4 be a reduced word representing element = of G. Define a partial order <
on {1,...,t} by:

(18) i =4’ < there exist ig =1 < iy < --- < is = (with s > 0) such that a;;_, and
a;; are not independent, for each j =1,...,s,

for i,¢/ € {1,...,t}.

There is a one-to-one correspondence between linear extensions i1, ...,4; of 1,... ¢ (with
respect to <) and reduced words representing x. Here we define a linear extension with
respect to < as a permutation iy,...,4; of 1,...,¢ such that if i; < ij then j < j/, for all
7,7 e{1,... t}

For any linear extension i1, ..., ¢; the word w := «ay, - - - 4, is a reduced word representing
x. This follows from the fact that any linear extension can be obtained from 1,...,t by
iteratively choosing two consecutive elements ij;,4;1 with i; A 4;,1 and replacing them by
ij4+1,%j. So w arises by commuting from aq - - - ay.

Conversely, let «a;, --- oy, be a reduced word representing x, where 41,...,% is a per-
mutation of 1,...,7. We may assume that we have chosen indices such that if a;; = i,
and j < j’ then i; < 5. Then iy,...,% is a linear extension with respect to <. This
follows iteratively from the fact that if a;; and «;,,, are independent, then i; A i;41; thus
if 41,...454;41 - -4 is a linear extension, then so is 41 - - -%41%; - - - 4.

Let L, denote the set of lower ideals of ({1,...,t},=<). (A subset I of {1,...,t} is a
lower ideal if i € I and j < ¢ implies j € I.) Then the partially ordered sets (Lg, C) and
{y € G| y < x},<) are isomorphic. The isomorphism is given as follows. Let y < x.
Then there is a linear extension 4j,...,4; and an s < ¢ such that o, ---«a;, is a reduced
word representing y. Then {iy,...,4s} is a lower ideal of {1,...,t}. (Indeed, if i; < ij then
Jj < j'; so if moreover j° < s then j < s.) Conversely, for each lower ideal I of {1,...,t}
there exists a linear extension i1,...,4; and an s < ¢ such that I = {iy,...,is}. Then



o, - -, is a reduced word representing an element y < x. It is not difficult to see that
this gives a one-to-one correspondence, bringing < to C.
In particular it follows that (cf. [2])

Proposition 10. For each x € G, the set {y € G |y < x}, partially ordered by <, forms a
distributive lattice.

(That is, if a,b,c < x then aA(bVc) = (aAb)V (aAc) and aV (bAc) = (aVb)A(aVe).)

Proof. This follows directly from the facts that the partially ordered sets ({y € G | y <
x},<) and (L,, C) are isomorphic and that the collection L, is closed under taking unions
and intersections. |

(The whole lattice on G U {oo} is generally not distributive: if a and b are distinct
generators then a A (bV b™1) =aAoo=a while (aAb)V (aAb)=1Vv1=1)
As a corollary we have:

Proposition 11. IfyV z is finite then x A (yV z) = (x Ay)V(x Az). IfeVy andzV z
are finite then xV (y A z) = (xVy) A (zV 2).

Proof. The first line follows from the fact that taking 2’ := z A (y V 2) < y V z we have
2y, 2 <yVz, implying 2/ = (2’ Ay) V(' A z) = (x Ay) V (x A 2). The second line follows
from (xVy)A(zVz)=((xzVy Az)V((zVy Az)=zV((zA2)V(yAz)=zV(yAz)
(using the first line). 1

The correspondence also gives a correspondence for join-irreducible elements of G. An
element x of G is called join-irreducible or a left-interval if x # 1 and if y V z = x implies
y =z or z = zx. Clearly, each element x of GG is equal to the join of all join-irreducible
elements y < x. Moreover, z is join-irreducible if and only if the partial order < defined
above has a unique maximum element. In other words:

Proposition 12. z is join-irreducible if and only if x # 1 and there exists a symbol o such
that each reduced word representing x has last symbol equal to a.

Proof. To see necessity, let « be join-irreducible. Let v and w be reduced words representing
x, with last symbols o and (3, respectively. If o # 3 then za~' # x4~ '. Hence za~'V
27! = x, contradicting the fact that z is join-irreducible.

To see sufficiency, let x # 1 and let there be a symbol a such that each reduced word
representing x has last symbol equal to . Moreover, let x =y V 2. Then z = 2'y’2’, where
o =yAzy :=2"lyand 2 := 271z, 2|y|2' and y and 2’ independent. So not both 3’
and 2’ can have « as last symbol, implying that 3y’ = 1 or 2’ = 1. Therefore z = z or y = .

|
Let J, denote the collection of join-irreducible elements y < x. Then:
Proposition 13. The partially ordered sets (J;, <) and ({1,...,t}, =) are isomorphic.
Proof. By the above, the join-irreducible elements correspond to lower-ideals of {1,... ¢}



that have a unique maximum element. So they are determined by their maximum element,
and we have the required correspondence. |

It follows that:

Proposition 14. For each x € G, the number of join-irreducible elements y < x s equal
to |z|.

Proof. Directly from Proposition [13. |

3.4. Cyclically reduced words and periodicity

Call an element a of G cyclically reduced if a A a™' = 1. So a is cyclically reduced if and
only if a|a. Note that for each element a of G there exist unique b,c such that a = bchb™?
with b|c[b~! and ¢ cyclically reduced. In fact, b =a Aa~'.

Proposition 15. Let x,a € G, where x is a left-interval with mazimum symbol o and
where o occurs in a. Assume v < ax and bAx = 1. Write a = bcb~! with blc|b~! and ¢
cyclically reduced. Then x and b are independent and x < ' for some t.

Proof. Let e := a=! Az. Then z < az and e|e!z, and hence by Proposition 5l e < ae.
Since ae < a, we havee=eAa=a"'AzAa=bAz=1. Soa < ax. Hence b < a < az
and z < ax, and therefore b V z < oo, and so b and x are independent, and « occurs in c.

We next show that z < ¢! for some ¢ by induction on |z|. We may assume that z £ c.
Moreover x A ¢ # 1, since x < cx and ¢ < cz, and hence if x A ¢ = 1 then x and ¢ are
independent, but both contain a.

Let 2/ := (zAc)lz ¢ := (x Ae)le(wAc)and @ = (z Ac) ta(z Ac) = bdb~L. Then
' < dx', a occurs in @’ and bA 2’ =1 (as b and z are independent). So by induction we
know that 2’ < (¢/)® for some s. Hence x < ¢5t1. |

Proposition 16. Let a be cyclically reduced and let v € G. Then x < a' for some t, if
and only if there exist ay < ar—1 < --- < a2 < a1 < a such that x = ajas---az_1a¢ and
ailas| - -|ai—1|ar and such that a; and ai__lla are independent for each i =2,...,t.

Proof. Sufficiency being easy, we show necessity. This is shown by induction on ¢, the case
t = 1 being trivial. Let a; := a Az and 2/ := aflx,b = afla. Since a < at and x < a® we
know that a V  is finite, and hence b and 2’ are independent. So 2’ < a'~! since z/ < ba'~!
and b and 2’ are independent. So by induction there exist a; < a;_1 < -+ < ag < a such
that @' = ag---at—1a; and agl-- - |a;—1|a; and such that a; and a;lla are independent for
each i = 3,...,t. Since 2’ and b are independent we know in fact that as < a; and that as
and al_la are independent. Thus we have the required ay, ..., a;. |

Let a € G. An element d € G is called a component of a if d is a minimal element with
the properties that 1 # d < a and that d and d~'a are independent. So if d,...,d, are the
components of a then a = d; - - - d,, where the d; are pairwise independent.

Proposition 17. Let a,x € G be such that x is a left-interval with mazimum symbol «,
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such that x < ax and such that x 'ax contains . Let p be a natural number satisfying
p < % — |a|. Let y be the component of x~tax containing . Then x = ryP where r is a

left-interval with maximum symbol o, and r|yP.

Proof. 1. Write a = beb™! with blc[b~! and ¢ cyclically reduced. First assume that b = 1.
Then by Proposition 15z < ¢! for some t. By Proposition 16, there exist ¢; < ¢j_1 < --- <
ca < ¢1 < csuch that x = ciea- - ¢i—1¢ and ¢qea| - - - |ei—1]c; and such that ¢; and ci_jlc are
independent for ¢ = 2,...,t. We may assume that ¢; # 1. As t > |z|/|c| > |c| + p, there
exists an h > p + 1 such that ¢, = c;_1. Hence ¢ and c,jlc are independent. Let d := ¢
and ¢q := c,?lc. Then ¢y = --- =c¢, =d. Let r := cpq1---¢t. Then x = d'r and r < x
(by Proposition [16). Hence z = r(z~'dx)" (since r~'z = r~1dhr = (r~ldr)" = (x~1dx)".)
Moreover, r|(z~'dz)".

Now r is a left-interval with maximum symbol «, since r is an end-segment of x. Since
x and ¢ are independent, we have z tax = z~'dxq with 2~ 'dz and ¢ independent, and
therefore 2~ 'dz = y. In particular, z = ryP*! with r|[yP*!.

I1. We now delete the assumption that b = 1. Let 2’/ := (bAz) ta, b’ := (bAz)"'b and
a’ = (bAz)"ta(b A x). By Proposition (15, ' and 2’ are independent. Moreover, ' < cz’,
since 2’ < a’'z’ = Ve(V) "z’ = bea’ (b)) 7L Since moreover, |2| > |d'|? +pla’| + |a’|, we know
by Section [3 that 2/ = +/(y/)P*!, and r/|(y')P*!, where 3/ is the component of (z')lca’
containing «, and where r is a left-interval with maximum symbol a.

Let y” be such that (2/)"'ca’ = 3'y”. Since b’ and 2’ are independent, also b and
y' are independent. So z7lax = (z')"'d'z’ = (/)W) = V()L (W)L =
V(y'y") (b))~ = y/b'y"(b')~1) where v and b'y”(b')~! are independent. So 3y’ = .

Now b A x|z’ and 7’|y|y? and hence b A z|r'|y|y?. Now r := (b A z)r'y is a left-interval
with maximum symbol a. For let 3 # a be a maximum symbol of r. As r'y is a left-interval
with maximum symbol «, and as |y, # is a maximum symbol of b A z such that  and
r'y are independent. Then 3 and 7'yP*! are independent, and hence 3 is also a maximum
symbol of . This contradicts the fact that x is a left-interval with maximum symbol a. |

3.5. Convex and closed sets

We call a subset H of G left-convex if H is nonempty and if z,z € H and dist(z,y) +
dist(y, z) = dist(x, z) then y € H. Since the distance function is invariant under functions
x +— yx, if H is left-convex also yH is left-convex for any y € G.

Proposition 18. A nonempty subset H of G is left-convex if and only if

(19) () ifz<y<zandz,z€ H theny € H;
(ii) if x,y € H then x Ny € H and, if x V y is finite, xt Vy € H.

Proof. Necessity follows from the facts that if z < y < z then dist(x,y) + dist(y, z) =
dist(z, z), that dist(z,y) = dist(z,z A y) + dist(x A y,y) and that, if z V y is finite then
dist(z,y) = dist(z, x V y) + dist(z V y, ).

To see sufficiency, let dist(z,y) + dist(y, z) = dist(z, z) with x,z € H. We must show
y € H. So |z Yyl + |y~ 'z| = |z~ 12z|. This implies z~ty|y~t2z. So y~lz Ay~'z = 1. Hence
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by Proposition9, (z Ay)V (zA2)V(yAz)=y. SoxAz<zAy<zandzAz<yAz<z.
Therefore, z A y,z A z and y A z belong to H and hence y belongs to H. |

In particular, each left-convex set has a unique minimum element. We call a subset H
of G right-convex if H~! is left-convex, and conver if H is both left- and right-convex. (As
usual, H=!:= {27! | # € H}.) We call a subset H of G left-closed if H is left-convex and
1 € H. It is right-closed if H™! is left-closed, and closed if H is both left- and right-closed.

Proposition 19. A nonempty subset H of G is left-closed if and only if

(20) (i) ify<zandzxz € H theny € H;
(i) if z,y € H and x V' y is finite then x Vy € H.

Proof. Directly from Proposition |18. |

Proposition 20. If H is left-closed then for any x € G: x belongs to H if and only if each
left-interval of x belongs to H. If H is closed then for any x € G: x belongs to H if and
only if each interval of x belongs to H.

Proof. Let H be left-closed. If x € H and y is a left-interval of x then y < = and hence
y € H. The converse follows from the fact that x = \/{y | y left-interval of x}.

Let H be closed. If x € H and y is an interval of x then y is a segment of  and hence
y € H. Conversely, suppose that each interval of x belongs to H. Then each right-interval
z of x belongs to H (since each left-interval w of z belongs to H as w is an interval of x).
So by the first statement of the proposition applied to z~! and H~! we have z € H. |

Clearly, the intersection of any number of left-convex sets is again left-convex. Moreover,
left-convex sets satisfy the following ‘Helly-type’ property:

Proposition 21. Let Hy,. .., H; be left-conver sets with Hy N H; # 0 for alli,j =1,...,t.
Then Hy N ---N Hy # 0.

Proof. Suppose not. Choose a counterexample with ¢ minimal. If ¢ > 4 then each two of

HNHN---NH,HNHyN---NH,H3N HyN---N Hy have a nonempty intersection

(as it is an intersection of ¢t — 1 sets from Hy,..., H;). So these three sets have a nonempty
intersection, a contradiction.

Sot =3. Choose x € Hi N Hy,y € Hi N Hs,z € Hy N Hy. Without loss of generality,

z =1 (as we can replace Hy, Ho, H3 by 2 Hy, 27 Ho, 27 H3). Now x Ay € Hy N Ho N Hs.

|

Proposition 21 implies the following. As usual, define HH' := {zz' |z € H,2' € H'}.

Proposition 22. Let H be left-convex and let H' and H" be right-convex, with H'NH" # (.
Then HH' N HH" = H(H' N H").

Proof. Clearly HH'NHH" O H(H'NH"). To see the reverse inclusion, let x € HH'NHH".

12



Sox 'HNH™ # (0 and 2= "H N H"! # (. Since also H' N H" # (), by Proposition 21,
T 'HN(H' NH")"1 #0. Hence x € H(H' N H"). |

For any left-convex H and x € G, there is a unique element y in H ‘closest’ to x, that
is, one minimizing dist(z,y). To see this we may assume H is left-closed. Then by (20) y
is the largest element in H satisfying y < x.

We denote this element by cly(z). Then

Proposition 23. Let H be left-convex and let H' be right-closed. Let x € G and y :=
clg(x). Then x € HH' if and only if y 'z € H'.

Proof. Sufficiency being trivial, we prove necessity. We may assume that y = 1 (since
replacing H by ' H and 2 by y 'z does not modify the assertion). Hence H is left-closed.
Let © € HH' and choose w € H,w' € H' such that 2 = ww’ and such that |w| 4 |w'| is as
small as possible. We may assume that w and w’ are reduced words. Then the word ww’
is reduced again (since otherwise we could decrease |w| + |w'|). So w < x and hence w = 1.
Therefore, z =w' € H' C HH'. |

Proposition (23] implies that if H is left-closed and H' is right-closed, and if we can test
in polynomial time whether any given word z belongs to H and to H’, then we can also
test in polynomial time if any given word y belongs to HH'. We first find z = cly(x). This
can be done as follows: if we have a reduced word z'z” = x with 2’ € H, find a symbol
a € first(z") such that 2’a € H; reset 2’ := 2’a, delete the first a from z”, and iterate. If
no such a exists we set z := z/. Now by Proposition[23/z € HH' if and only if y 'z € H'.

Similarly, if H is left-convex and H' is right-convex and if we can test in polynomial
time if any word belongs to H and to H' and moreover we know at least one word w in H
and at least one word w’ in H', then we can test if any given word x belongs to HH': we
just test if w~tzw'~! belongs to (w™'H)(H'w'~!). Note that w='H is left-closed and that
H'w'~! is right-closed.

Proposition [23] also implies:

Proposition 24. Let H be left-convex and let H' be closed. Then HH' is left-conver.

Proof. We may assume that H is left-closed. We show that H H’ is left-closed. Let x € HH'
and y < x. Let u := cly(z). So by Proposition 23| u~'z € H’. Moreover (uAy) 'y <u 'z
(sinceu <uVy<xand uVy=u(uAy) 'y). This implies (u Ay)~'y € H' and hence, as
uNye H,ye HH'.

Next let z,y € HH' with xVy finite. Let u := cly(z) and v := cly(y). Sou 'z and vty
belong to H'. Now (uVv) H(zVv) = (uvo) HzV(uvv)) = (xA(uve))le=utleze H
(since x A (uVv) =wu as u = cly(x)). Hence z Vv € (uVv)H'. Similarly y Vu € (uVv)H'.
Hence zVy = (zVv)V(yVu) € (uVv)H C HH'. |

For any « € G define

(21) Hl:={yeG|y>z}and H} ={yecG|y<az}
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It is not difficult to see that H; and H;% are left-convex.

Proposition 25. Let H be closed and let x,y,z € G. Then ' yz belongs to H if and
only if: (i) Ju <z 3w < 2z :ulyw € H; (i) Ju < 2 Jw > 2z : v lyw € H; (iii)
Ju>zrIw<z:ulywe H; (iv) Ju>z Jw>z:ulyw e H.

Proof. Necessity being trivial we show sufficiency. Assertion (i) means y € HiHH Zlfl, and
assertion (ii) means y € H%HH;_I. Hence by Proposition 22} y € H%H(Hzl_1 N HZT_l) =
HYHz'. Similarly, y € HLHz"1. Again by Proposition|22, y € (Hi NH))Hz"' = zHz"1.
Therefore z~lyz € H. |

Proposition 26. Let H be closed and let x,a be such that v~ rax € H. Then there exists
ay such that y~tay € H and such that y < a® for some t.

Proof. By induction on |z|. If z A ax # 1, let « be a symbol satisfying o < x A azx. Let
2’ := a 'z and ¢’ := a~laa. Then (2')"!'a’z’ € H and hence by induction there exists a
y' such that (3)~'a’y’ € H and such that 3’ < (a’)® for some s. Then y := oy’ satisfies
ylay = (y) 'y € H and y < a(d')® < ot

Similarly, if 27! A (a7'27!) # 1. Hence we may assume that z~!|a|z. But then a is a
segment of z~'az, and hence a € H. This implies that we can take 3 := 1. |

This implies:

Proposition 27. Let H be closed and let z,a be such that v~ a*x € H for some s. Then
there exists a y such that y~‘a’y € H and such that y < al®.

Proof. First assume that a is cyclically reduced. By Proposition 26/ we may assume that
x < a® for some t. We choose x and ¢ such that ¢ is minimal. We show that ¢ < |a|. Assume
t > |a|. By Proposition [16] there exist 1 < a; < a;—1 < -+ < ag < a1 < a such that
x = ajag---a—1a; and aq|az|- - |a;—1]a; and such that a; and ai:lla are independent for
each i = 2,...,t. By the minimality of ¢, a; # 1. Ast > |a| there exist an i € {2,...,t} such
that a;_1 = a;. Then a; and ai_la are independent. So aiaai_l = a. Hence for ¢/ := ai_lx
we have (2/)"la*2’ = x71a®r € H and 2’ < a’!, since 2’ = ajas---a;_1a;41---a;. This
contradicts the minimality of .

If @ is not cyclically reduced, let a = beb~! with blc|b~! and ¢ cyclically reduced. Then

for 2/ := b~'z we know that (2/)"'c®z’ belongs to H, and hence there exists a gy’ such
that (y/)~ ¢y’ € H and such that |y/| < ¢l°l. Then for y := by’ we have y~'a®y € H and
Y é a‘c‘ S ala‘. I

4. The cohomology feasibility problem

4.1. The cohomology feasibility problem

Let D = (V, A) be a directed graph and let G be a group. Two functions ¢, : A — G are
called cohomologous if there exists a function p : V — G such that ¥(a) = p(u) é(a)p(w)
for each arc a = (u,w). One directly checks that this gives an equivalence relation.

14



Consider the following cohomology feasibility problem:

(22) given: a directed graph D = (V, A), a group G, a function ¢ : A — G, and for each
a € A, a subset H(a) of G;
find: a function ¥ : A — G such that 1 is cohomologous to ¢ and such that ¢(a) €
H(a) for each a € A.

We give a polynomial-time algorithm for this problem in case G is an free partially
commutative group and each H(a) is a closed set.

In the algorithm it is not required that the H(a) are given explicitly. It suffices to
be given an algorithm that tests for any a and any word x whether or not = belongs to
H(a). (So H(a) might be infinite.) The running time of the algorithm for the cohomology
feasibility problem is bounded by a polynomial in n := |V, ¢ := max{|¢(a)| | a € A}, and
7, where 7 is the maximum time needed to test membership of z in H(a) for any given arc
a and any given word z of length bounded by a polynomial in n and o. (The number k of
generators can be bounded by no, since we may assume that all generators occur among
the ¢(a).)

Note that, by the definition of cohomologous, equivalent to finding a ¢ as in (22), is
finding a function f :V — G satisfying:

(23) f(u)~té(a)f(w) € H(a) for each arc a = (u,w).

We call such a function f feasible.
Note that if f is feasible and P is an s — t path, then f(s)"1¢(P)f(t) € H(P). Here for
any path P = ay - - - a,, we use the following definitions:

(24) ¢(P) := p(ar) - d(am),
H(P):=H(ay) - H(am),

where ¢(a™1) := ¢(a)"! and H(a™') = H(a)" .
This gives an obvious necessary (but not sufficient) condition for problem (22) having a
solution:

(25) for each cycle P there exists an @ € G such that 27 1¢(P)z belongs to H(P).

4.2. Pre-feasible functions

Let D = (V, A) be a directed graph, let G be a group, let ¢ : A — G and for each a € A,
let H(a) be a closed subset of G.
We call a function f : V' — G pre-feasible if for each arc a = (u,w) of D there exist
x > f(u) and z < f(w) such that 27 '¢(a)z € H(a). Clearly, each feasible function is
pre-feasible. There is a trivial pre-feasible function f, defined by f(v) :=1 for each v € V.
The collection of pre-feasible functions is closed under certain operations on the set G}&
of all functions f : V — Gjs. This set can be partially ordered by: f < g if and only if
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f(v) < g(v) for each v € V. Then G}, forms a lattice if we add an element co at infinity.
Let A and V denote meet and join.

Proposition 28. Let fi and fo be pre-feasible functions. Then fi A fo and, if f1V fo < 00,
f1V fa are pre-feasible again.

Proof. To see that fi; A fa is pre-feasible, choose an arc a = (u,w). Since f; is pre-
feasible, ¢(a) € H}  H(a)(Hy ()™ € H} (oo H@)(Hy )" Similarly, ¢(a) €

H}l(u)Afz(u)H(a)(H]é(w))*l. So by Proposition 22|
, | ! p ! .
(26)  6(a) € Hp, (g H (@ H () VHp )™ = Hp 0 H@OEH )7 )

This means that there exist x > fi(u) A fa(u) and z < f1(w) A fa(w) such that 2~ 1¢(a)z €
H(a).
The fact that f; V fo is pre-feasible if it is not oo, is shown similarly. |

It follows that for each function f : V — G there is a unique smallest pre-feasible
function f > f, provided that there exists at least one pre-feasible function ¢ > f. If no
such ¢ exists we set f := oo. Note that fV g = f V g for any two functions f, g with f V g
finite.

4.3. A subroutine finding f

Let input D = (V, A), ¢, H for the cohomology feasibility problem be given. We describe a
polynomial-time subroutine that outputs f for any given function f, under the assumption
that holds.

For any arc a = (u,w) and any z € G let B,(x) be the smallest element z in G such
that there exists an 2’ > x with (z')"'¢(a)z € H(a). This is unique, as z is the minimum
element in the left-convex set ¢(a) L H)H (a). Note that for any f: V — G one has:

(27) f is pre-feasible if and only if G,(f(u)) < f(w) for each arc a = (u, w).

For any given = we can determine (3,(x) in polynomial time if we can test in polynomial
time if any given word belongs to H(a) (as 3,(z) is the minimal element of ¢(a) ' H} H(a)).

Subroutine to find f: If f is pre-feasible, outpu

t
a = (u, w) such that Ba(f(u)) £ f(w). If f(w) V Ba(f (u
reset f(w) := f(w) V Ba(f(u)), and start anew.

f=f. Otherwise, choose an arc
)) = oo, output f := oo. Otherwise

Proposition 29. The output in the subroutine is correct.

Proof. Clearly, if f(w) V Bu.(f(u))
denote the reset function. Then f
)V G

flw) = f(w) v Ba(f(w)) < flw

= oo then f = oco. If f(w) V Ba(f(u)) < oo, let f’
< f'. Moreover, if f is finite, then f < f' < f, since
Ba(f(u)) = f(w), since f is pre-feasible. |
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4.4. Running time of the subroutine

We show that after at most 2°n°k%08 + 22n2k?p iterations the subroutine gives an output,
where:

(28) n:=|V|,
o = max{|6(a)| | a € 4),
p = max{|f(v)] | v € V}.

To this end we first make some observations and introduce some further terminology.

Proposition 30. §,(x Vy) = Ba(x) V Ba(y) for all x,y € G with x V y finite.

Proof. Clearly, for all z,y, if z < y then G,(x) < [4(y). Equivalently, G,(z V y) >
Ba(x) V Ba(y) for all z,y with = V y finite. To see the reverse inequality, let u := (,(z) and
v = Bu(y). Since 2’ '¢(a)u € H(a) for some 2’ > z, HL N ¢p(a)H., H(a)™" # 0 (as 2/
belongs to it). Similarly, H} N ¢(a)Hy,H(a)™* # 0. Since also H} N H) = H;Vy # 0, by

Proposition [2T H;Vy N ¢(a)HypH(a)™ # 0. Hence Bu(z Vy) <uVo. |

Define for each path P in D and each z € G, fp(z) inductively by: By(z) := x and
Bpra(z) = Ba(Bp(x)). Inductively it follows from Proposition 30/ that Bp(x V y) = Bp(z) V
Bp(y) for all z,y € G with x V y finite. Moreover:

Proposition 31. For each path P in D, each x € G and each y € H(P) we have fp(z) <
S(P)lay.

Proof. If P = (), the assertion is trivial. If P = a, then for z := ¢(a) 'zy one has
v t¢(a)z =y € H(a), and hence 3,(z) < z = ¢(a) Lay.

Consider next a path Pa and let y = 4’y € H(Pa), with v € H(P) and y"” € H(a).
Then by induction,

(29) Bra(z) = Ba(Bp(z)) < Bu(d(P) 'zy) < ¢(a) " (o(P) oy )y’ = ¢(Pa) 'y.
|

We introduce the following further structure. At each iteration t of the subroutine we
maintain a collection II; of paths. Let f; denote the function f as it is after ¢ iterations.
We first set Iy := {@}. If at iteration ¢ we choose arc a = (u,w) and put fi(w) :=
fi—1(w) V Ba(fi—1(u)), then for each left interval z < B,(fi—1(u)) satisfying x £ f;—1(w) we
choose a left-interval y < f;_q1(u) such that x < 3,(y), and we set P, := P, ya. (Such a y
can be chosen by Proposition [30.) We add each such path to II;_;, thus obtaining II;.

Note that the collection II; has the following property:

(30) for each vertex v and each left-interval x < f;(v) there is a vertex r and an r — v
path P, ; € II; such that z < 8p, . (f(r)).
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Proposition 32. The subroutine takes at most t := 25n°k%¢8 + 22n2k2p iterations.

Proof. Suppose we have performed ¢ iterations. We first show:
(31) II; contains a directed path P with T := 2"'n7k70% arcs.

First note that |[IT;| > 2512k +22n2k?p, since at each iteration at least one path is added.
For each path P, in II;, with starting vertex r say, there exists a left-interval y < fo(r)
such that = < Bp, ,(y). Since there are n vertices and 2k symbols, there exist vertices r,v
and symbols «, 3 such that there are at least ¢/(2nk)? = 213n7k"0® + p join-irreducible
elements x with the following properties:

(32) (i) Py belongs to IT; and runs from r to v;
(ii) the maximum symbol of z is equal to «;
(iii) = < Bp, . (y) for some left-interval y < fo(r) with maximum symbol 3.

Let X denote the collection of such x. Since each € X has maximum symbol « and
satisfies © < fi(v), the elements in X form a chain (i.e., are totally ordered by <). Let w
be the maximum element in X. Then

(33) lw| > |X| > 2Bn k6% 4 p.

Let m be the number of arcs in P, ,. Let z be the largest left-interval with maximum
symbol 3 and satisfying z < fo(r). Then by Proposition 31, w < 8p, ,(2) < ¢(Pyw) '2;
so |w| < |¢(Pyw)| + |2| < mo + p. Hence with (33), m > 23n"k70". Since each beginning
segment of a path in IT; again belongs to II; we have (31).

Let P traverse vertices vg,v1,...,vr in this order. By construction of Il; we can find
left-intervals yo, y1, - - ., yr such that yo < fo(vo) and y; < By(yi—1) where a = (v;—1,v;) (for
i=1,...,T). So P, ,, is the subpath of P consisting of the first ¢ arcs of P.

For each vertex v of D and each symbol « let I, , denote the set of indices i € {0,...,T}
such that v; = v and such that y; has maximum symbol «. Then there exists a vertex w
of D and a symbol 3 such that |I,, g| > T'/2nk. Let L be the largest index in I, 3. Since
for all i,7" € I, 3 and 7 < i’ we have y; < yy (since y; has maximum symbol 3 and satisfies
yi < fi(w) for each i € I, 3 and since y; £ y;), we know

(34) lyr| > |Lw gl > T/2nk = 21905555,
Let M := 2'n3k30? and N := 23n?k?02. Since N = M/2nk, there exists a vertex u

and a symbol a such that I, , contains at least N 4 1 indices ¢ satisfying L — M < ¢ < L.
Choose N + 1 such indices ig < i1 < --- < iy. Define

(35) TO = Yigs L1 = Yiys-- - TN = Yiy -

For j =1,..., N let Cj be the u—u path vj,, vig41, ..., vi;—1,vi;. We show that Cx violates
(25). Note that
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(36) 1(Cy)| < (i —io)o < Mo = 2°n*k303
foreach j=1,..., N.

Since z; < fi(u) and since « is the maximum symbol of x; for each j = 0,..., N, we
know that zg < 1 < --- < . Moreover,

(37) w0 < x5 < Be,(x0) < (Ch) o
for each j =1,..., N (by Proposition [31).

By Proposition[31, y;, < Bo(wo) < ¢(Q) 1xo, where Q denotes the path v, vig41, .- -,
vr_1,vr. Hence, taking p := (Mo)?,

(38) |zo| > [yr] = [$(Q)] > 4(Mo)® — Mo > 3(Mo)® > [¢(Cy)* + p|o(Cy)|-

Write ¢(C;)~1 = b; 5Cj0; ! with bj]cj\bj_l and c¢; cyclically reduced. Let y; be the component
of x lqb(Cj) xo containing o. Then by Proposition[17, y; is cyclically reduced and

(39) xo = ijg; and rj|y§,

such that r; and y; are left-intervals with maximum symbol .
Let y; have m,; symbols o and let ¢ have m symbols . Write xg = 2, 2m—1 - - - 21, where

each z; is a left-interval with maximum symbol « and where zy,|zpm—1|---|22|21. (Such a
decomposition is unique.) By (39) we know that, for each j =1,..., N, m > pm; and that
zi = zy if i =i’ (mod m;) and 4,7 < pm;. Hence, for m := ged{mq,...,mn}, zi = 2y if
i =4 (mod m) and i,i < pm.

Let a := zpzp—1---21 and n; := m;/m for m = 1,...,N. Then y; = a™ for each
7=1,...,N.

Wr1te x (e N twg = y]y] for some y] such that y; and y] are independent. Since
To x] <z, oo C;) "o and since 1:10] is a left-interval with maximum symbol «, we know
that xala:j <yj. As y?j/ = y;L,j for all 7, ', it follows that a:O_la:j and y;-, are independent,
for each j'.

Moreover,

(40) n<ng <---<npy.

For suppose that n;y1 < n; for some j =1,...,N — 1. Let C be the closed path satisfying
Cj+1 = C;C. Then zj11 < Bo(x;) < ¢(C) ta; and hence

(41) Ty SUJ-H <z BC(‘I.J) < Ty ¢(C) 137] =Ty ¢( Cjt1)” 1¢(Cj)xj
($ol¢( J+1) Lao) (g ' ¢(Cj)wo) (z ' 5)
= a™tla" (zy xj)((yjﬂ) Yi),

-1

where a"it+1q~" (asglxj)\((yz-ﬂ) y;). This implies 241 < (zoa™+1 ") (xy ), and hence

|z 11] < |woa 17| + Jag x| < Jwo| + |zg 'wj] = |zj]. (The inequality |zoa™+1 7| < |zl
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follows from the fact that xg = fa™ "+! for some f satisfying f|a™ "™+l since 0 <
mj —mjt1 < m; < Mo.) This contradicts the fact that 41 > z;, thus showing (40).
Now |a| < Mo/N = 2nko, since [a"V| < Mo and ny > N (by (40)). By (25),
there exists an € G such that 27 1¢(Cy)z € H(Cy). Hence there exists a y € G such
that y~la™y € H(Cy)~'. By Proposition we may assume that y < al®l. Hence
a™v~lel € H(Cn)™'. Now by Proposition 31, 2y < Bcy (7o) < ¢(Cn) tzpa™ el and
hence z 'en < 25! Boy (o) < 5 d(Crn) tzgald =" = alolyl | with al®l|y. So zytay <
al?l. Therefore |x61xN\ < |al? < (2nko)?. Since 79 < 71 < -+ < xy we know ]:):alxN| > N.
Hence 22n2k%02? = N < (2nko)?, a contradiction. |

Combining the propositions, we obtain that the running time of the subroutine is
bounded by a polynomial in the input size and in the time needed to check membership of
H(a). Then:

Theorem 1. The running time of the subroutine is bounded by a polynomial in n,k,o and
T, where T is the mazimum time necessary to test if any word of size at most p+224n12k2g 1
belongs to any H(a).

Proof. Since initially |f(v)| < p for each vertex v, we have after ¢ iterations | f;(v)| < p+ot
for each vertex v. Since we do at most 224n!2k12510 iterations, the result follows. |

4.5. A polynomial-time algorithm for the cohomology feasibility problem
for free partially commutative groups

We now describe the algorithm for the cohomology feasibility problem for free partially
commutative groups. Let D = (V, A) be a directed graph, let G be a free partially com-
mutative group, let ¢ : A — G and let H(a) be a closed subset of G, for each a € A. We
assume that with each arc a = (u,w) also a=! = (w,u) is an arc, with ¢(a™!) = ¢(a)~! and
H(a ') = H(a)™'.

Let U be the collection of all functions f : V' — G such that for each arc a = (u,w)
there exist > f(u) and z > f(w) satisfying 2~ *¢(a)z € H(a). For any given function f
one can check in polynomial time whether f belongs to Y. Trivially, if f € U and g < f
then g € U. Moreover:

Proposition 33. Let fi,...,f: be functions such that f; V f; € U for all i,j. Then
f=hHAVv---Vfiel.

Proof. Choose an arc a = (u, w). We must show that for each arc a = (u,w), ¢(a) belongs

to H}(U)H(a)(H}(w))*l. Since f; V fj € U for all ¢, j, we know
(42) P(a) € H}i(u)H(a)(H}j(w))il

for all 7, j. Hence by Proposition [22

(43)  ¢la) € ((H} o H(a)(H] () ")
ig
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= (VHj)H@ V()7 = Hjy Ha)(H,)™

Here i and j range over 1,...,t. |

Let X be the set of pairs (u,z) where u € V and where z is a left-interval such that
there exists an arc a = (u,w) with < ¢(a). So X has size polynomially bounded by n
and o. For any (u,z) € X, let f,, be the function defined by

(44) fu,m(u) = x,
fu,x(v) = 1forallwv 75 u.

Let E be the set of pairs {(u, x), (w, 2)} from X such that there exists an arc a = (u, w)
such that

(45) for all 2/, 2" € G, if (') *¢(a)z’ € H(a) then z < 2’ or z < 2.

Note that this holds if and only if ¢(a) & A, H(a)AZ!, where for any left-interval y, A, is
the left-closed set {¢/ | v' 2 y}. So can be tested in polynomial time by Propositions
23 and [24.

Let E’ be the collection of all pairs {(v,z), (v',2’)} from X such that the function
fox V for o0 = 00, or is finite and does not belong to U (possibly (v,z) = (v/,2')).

Choose a subset Y of X such that eNY # () for each e € E and such that e € Y for
each pair e € E’. This is a special case of the 2-satisfiability problem, and hence can be
solved in polynomial time.

Proposition 34. If no such Y exists, there is no feasible function.

Proof. Suppose f is a feasible function. Then Y := {(v,z) € X |v € V,z < f(v)} would
have the required properties. |

If we find Y, define f by:

(46) f@) =\ {fox | (v.2) €Y},

Proposition 35. f is a feasible function.

Proof. Since f,, V fy . < oo for each pair {(v,z),(¢v/,2")} C Y, f < co. Moreover, f
is the join of a finite number of pre-feasible functions, and hence f is pre-feasible. So by
Proposition (25 it suffices to show that for each arc a = (u, w):

(47) (i) there exist x > f(u) and z > f(w) such that 2~ '¢(a)z € H(a);
(ii) there exist z < f(u) and z < f(w) such that 27 '¢(a)z € H(a).

To see (47)(i), note that it is equivalent to: f € U. As fyu V fyr € U for all
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(v,z), (v, 2") € Y, Proposition 33| gives f € U.
To see (47)(ii), note that it is equivalent to:

(48) b(a) € H;(U)H(@(H;(w))—l.

Suppose (48) does not hold. Let b be the largest element in H}(U)H(a) satisfying b < ¢(a).
So by Proposition b 1o(a) ¢ (H}c(w))_l; that is, ¢(a=1)b £ f(w). Hence there exists a
left-interval z of ¢(a~1)b such that z £ f(w). So ¢(a=!)b & A, and hence by Proposition
23, ¢(a) & H}(U)HA;? Note that since b < ¢(a) and z < ¢(a~1)b we have z < ¢(a~!) and
hence (w, z) € X.

Let ¢ be the largest element in A,H ! such that ¢ < ¢(a~!). By Proposition [23,
¢(a)c & H}(u); that is ¢(a)c £ f(u). Hence there exists a left-interval x of ¢(a)c such that
r £ f(u). Again, since ¢ < ¢(a™!) and = < ¢(a)c we have © < ¢(a) and hence (u,z) € X.
So ¢(a)c™! ¢ A, and hence by Proposition 23, ¢(a) & A,HA!. So {(u,z), (w,2)} € E
and hence Y contains at least one of (u, x), (w,z). Soz < f(u) or z < f(w), a contradiction.

Thus we have proved:

Theorem 2. The cohomology feasibility problem for free partially commutative groups is
solvable in polynomial time. |

4.6. The 2-satisfiability problem

In the algorithm we use a polynomial-time algorithm for the 2-satisfiability problem. Con-
versely, the 2-satisfiability problem can be seen as a special case of the cohomology feasibility
problem for free groups. To see this, first note that any instance of the 2-satisfiability prob-
lem can be described as one of solving a system of inequalities in {0, 1} variables z1,...,x,
of the form:

(49) x; +x; > 1 for each {i,j} € E,
zi +x; <1 for each {3, j} € F,

where F and E’ are given collections of pairs and singletons from {1,...,n}. (So we allow
i =j in (49), yielding 2x; > 1 or 2x; < 1.)

Let G be the free group generated by the elements g and h. Make a directed graph with
vertices v1, ..., v, and with arcs:

(50) (i) @ = (v, v;), with ¢(a) := ghg™!, for each {i,j} € E;
(ii) @ = (v;,vj), with ¢(a) := h, for each {i,j} € E'.

Moreover, set H(a) := {w € G | |w| < 2} for each arc a.

Now the cohomology feasibility problem in this case is equivalent to solving in
{0,1} variables. Indeed, if x1,...,z, is a solution of (49) then define p(v;) := g if z; =1
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and p(v;) := 1 if z; = 0. Then p is a feasible function. Conversely, if p is a feasible function,
define x; := 1 if p(v;) # 1 and the first symbol of p(v;) is equal to g, and z; := 0 otherwise.
Then 1, ...,x, is a solution of (49).

4.7. A good characterization

One may derive from the algorithm a ‘good’ characterization of the feasibility of the coho-
mology feasibility problem for free partially commutative groups, i.e., one showing that the
problem belongs to NPNco-NP. We use the following well-known characterization for the
feasibility of (49)). Assume that for all h, 4,7,k € {1,...,n}:

(51) i {hi} € B {i,j} € B,{j.k} € E' then {h,k} € E.

(Extending iteratively E’ by any such pair {h, k} does not change the set of solutions of

(49).)
Then (49) has a {0, 1} solution if and only if

(52) there is no {i,j} € F such that both {i} and {j} belong to F’.

(If does not hold, we could describe this condition in terms of pairs of ‘alternating’
cycles in EUE’. If we would require moreover that (51) holds with E and E’ interchanged,
the condition will be that F N E’ does not contain any singleton.)

We may adapt the subroutine in such a way that for each input D = (V, A),¢ : A —
G,H(a) (a € A), and f:V — G, we have as output:

(53) (i) function f < oo, or
(ii) a cycle C violating (25), or
(iii) vertices u,v,w of D, a directed u — v path P and a directed w — v path @ such

that Sp(f(u)) v Bq(f(w)) = oco.

Theorem 3. Let be given a directed graph D = (V, A), a free partially commutative group
G, a function ¢ : A — G, and for each arc a, a closed subset H(a) of G. Then there exists
a function 1 : A — G such that v is cohomologous to ¢ and ¢ (a) € H(a) for each arc a, if
and only if

(54) for each vertex u and each two u — u paths P, Q) there exists an x € G such that
7t ¢(P)-x € HP) and 27! ¢(Q) - € H(Q).

Proof. Necessity. Let f be a feasible function. Then for  := f(u) we have 171 ¢(P)-x €
H(P)and 27! ¢(Q) -z € H(Q).

Sufficiency. Let be satisfied, and assume that there is no feasible function f; that is,
by Section 5l Note that (54) implies (25).
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Let X, FE and E’ be defined as in Section[5. We first show that E and E’ satisfy (51). Let
{(5,0), (t,2)} € B {(t,2), (w,y)} € B, {(w,1), (v, 2)} € B'. Assume {(s,w), (v,2)} & E'
that is, f := fs’w \% fv,z is finite and belongs to U. By definition of E, a = (¢,u) is an arc,
and, since f(t)"1¢(a)f(u) € H(a), z < f(t) or y < f(u). By symmetry we may assume
o < f(t). This implies that f;, < f. Therefore, fsu V fix < f, implying fsu V fiz < f.
S0 fsuw V fiz is finite and belongs to . This contradicts the fact that {(s,w), (t,x)} € E'.

Since there is no feasible function, there is no subset Y of X such that eNY # () for
each e € E and such that e Z Y for each e € E’. As (51) is satisfied it implies that there
exists an arc a = (u,w) and left-intervals z, z such that {(u,z), (w,2)} € E and such that
{(u,2)},{(w,2)} € E'. Then z < ¢(a) and z < ¢p(a™!). Since {u,x} € E’, we know that

fu,z = oo or is finite and does not belong to ¢/. It implies that

(55) (i) there exist a vertex v and two u — v paths P, P’ such that 8p(x) V Bp:(z) = oo,
or
(ii) there exist an arc b = (v,v’), a u— v path P and a u — v’ path P’ such that there
do not exist y > Bp(z) and v > Bp/(2') satistying y~1¢(a)y € H(a).

Let C be the u — u cycle P(P')~! if (i) holds, and let C be the u — u cycle Pb(P')~1 if (ii)
holds. Then

(56) there do not exist ¢ > x and ¢ > x such that ¢ 1¢(C)c’ € H(C).

To see this, assume such ¢, ¢’ do exist. Suppose first that (55)(i) holds. Since ¢~ 1¢(C)c’ €
H(C) = H(P)H(P')™!, there exists an y € G such that h := ¢~ 1¢(P)y € H(P) and h' :=
() Lp(P)y € H(P'). Hence Bp(z) < Bp(c) < ¢(P~Y)ch = y, and similarly Bp(x) < y.
So Bp(x) V Bp(z) <y, contradicting (55)(i).

Suppose next that (55)(ii) holds. Since ¢~ 1¢(C) € H(C) = H(P)H(b)H(P')™1, there
exist y, vy such that h := c71¢p(P)y € H(P),h' := (¢)"1op(P)y € H(P') and y~'o(b)y €
H(b). Hence Bp(z) < Bp(c) < ¢(P~Y)ch = y, and similarly Bp/(z) < 3. This contradicts
(55) i)

Similarly, there exists a w — w cycle D satisfying
(57) there do not exist d > z and d’ > z such that d~'¢(D)d’ € H(D).

By (54)), there exists a ¢ such that ¢ '¢(C)c € H(C) and ¢ t¢(aDa ')c € H(aDa™t).
Hence there exist d, d’ such that ¢ '¢(a)d € H(a),d '¢(D)d' € H(D) and (d') " t¢(at)c €
H(a™'). By (56), ¢ # x. Since ¢ '¢(a)d € (a) and {(u,z), (w,2)} € E we know d > z.
Similarly, d’ > z, contradicting (57). |

Remark 1. Condition (54) cannot be relaxed to requiring that for each cycle P there
exists an # € G such that 27! - ¢(P) - = belongs to H(P). To see this, let G be the
free group generated by g and h. Let D be the directed graph with one vertex v and
two loops, a and b, attached at v. Define ¢(a) := h, H(a) := {1,h, 9,97, 9 'h,hg} and
#(b) := ghg™', H(b) := {1,h,g,g ', hg~t,gh}. If 271 - $(a)-x € H(a) then the first symbol
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of z is not equal to g. If 271 - ¢(b) - 2! € H(b) then the first symbol of z is equal to g. So
there is no x such that both hold.

On the other hand, for each path P there is an z such that 27 '-¢(P)-x € H(P). Indeed,
for each k € Z, ¢p(ab’) € H(ab*) and ¢(v*a) € H(b*a). Tt follows that if P starts or ends
with a or !, then ¢(P) € H(P). Moreover, for each k € Z, g~' - ¢(a*b) - g € H(aFb) and
g1 - p(ba*) - g € H(ba"). So if P starts and ends with b or b~! then g=' - ¢(P)-g € H(P).

1

The fact that Theorem [3 is a good characterization relies on the facts that if the co-
homology feasibility problem for free partially commutative groups has a solution, it has
one of small size, and that if paths P, Q violating (54) would exist, there are such paths
of polynomial length. (Both facts follow from the polynomial-time solvability of the sub-
routine.) We can check in polynomial time whether or not for given u — u paths P and Q
there exists an x € G such that z- ¢(P) - x~! belongs to H(P) and z - ¢(Q) - v~ ! belongs to
#(Q). (By the closedness of H(P) and H(Q) we have to consider for x only beginning seg-
ments of ¢(P), #(P)~!, ¢(Q), #(Q)~!. The number of such candidates for z is polynomially
bounded.)

4.8. R-cohomologous functions

In order to obtain results about paths instead of circuits, we extend the notion of cohomol-
ogous functions to ‘R-cohomologous’ functions. Again, let D = (V, A) be a directed graph,
and let (G, ) be a group. Moreover, let R C V. Then two functions ¢, : A — G are called
R-cohomologous if there exists a function p : V' — G such that

(58) (i) p(v) =0 for all v € R;
(ii) ¥(a) = p(u) - ¢(a) - p(w)~! for each arc a = (u, w).

Again this defines an equivalence relation.

(One easily checks that if each component of D contains at least one vertex in R, then
¢ and 1 are equivalent, if and only if ¢(P) = ¢(P) for each r — s path P with r,s € R. If
D is connected and R = {r}, there is a one-to-one correspondence between R-cohomology
classes and homomorphisms ® : 7(D) — G, given by ®((P)) := ¢(P) for any r — r path
P. Here 7(D) denotes the fundamental group of D with base point r, and (P) denotes the
homotopy class containing path P. Note that 7(D) itself is a free group. We will not use
these observations in the sequel.)

Consider the R-cohomology feasibility problem:

(59) given: a directed graph D = (V, A), a subset R of V, a function ¢ : A — G, and for
each a € A, a subset H(a) of G;
find: a function ¢ : A — G such that 1 is R-cohomologous to ¢ and such that
¥ (a) € H(a) for each a € A.

So equivalent is finding a function p : V' — G such that p(v) = 0 for all v € R and
p(u) - p(a) - p(w)~ € H(a) for each arc a = (u,w).
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If G is a free partially commutative group G and each H(a) is closed, we can reduce
problem (59) easily to the cohomology feasibility problem for free partially commutative
groups. We just add a loop at each vertex v € R, add a new generator gg to the set of
generators, and define ¢(a) := go and H(a) := {0, go} for each new arc (loop) a. Let D, ¢
and C denote the modified input. One easily checks that the cohomology feasibility problem
for D,¢,C is equivalent to the R-cohomology problem for D, ¢, C. (Indeed, any feasible
potential p for D, ¢, C should satisfy p(v) = 0 for all v € R.)

Thus we have:

Theorem 4. The R-cohomology feasibility problem for free partially commutative groups
1s solvable in polynomial time. |

We can also derive from Theorem [3 a good characterization:

Theorem 5. Let be given a directed graph D = (V, A), a subset R of V, a free partially
commutative group G, a function ¢ : A — G, and for each arc a, a closed subset H(a)
of G. Then there exists a function ¢» : A — G such that 1 is R-cohomologous to ¢ and
W(a) € H(a) for each arc a, if and only if

(60) (i) for each r — s path P with r,s € R one has ¢(P) € H(P);
(ii) for each vertex s and each two s — s paths P,Q there exists an x € G such that
x-¢(P) -2~ belongs to H(P) and x - ¢(Q) - =1 belongs to H(Q).

Proof. Necessity being trivial, we show sufficiency. We extend D, C, ¢ to D,C ,¢~> as above.
It suffices to show that implies (with respect to D, C, ¢).

Let P and @) be two s — s paths in D, for some s € V. We must show that

(61) there exists an 2 € G such that z- ¢(P) -z~ € C(P) and z- $(Q) -z~ ! € C(Q).

I. If P and @) do not traverse any of the new loops attached at the points in R, then
(61) directly follows from (60)(ii).

II. If both P and @ traverse some of the new loops, we can write P = Pya1P; -+ - ay P,
and Q = Qob1Q1 - b,Qy, wWhere aq,...,a,, and by,...,b, are new loops, and Py, ..., P,
and Qo,...,Qy are paths in the original graph D.

By (60)(i), ¢(P;) € H(P;) fori =1,...,m—1 and ¢(Q;) € H(Q;) fori =1,...,n— 1.
Moreover, by the construction of D, C, ¢, one has that qg(ai) € C’(ai) fori=1,...,m and
o(b;) € C(by) fori=1,...,n.

Consider the ‘surpluses’ O'(PO_I), o(Pp), O'(QO_I), o(Qy). Let x be one of largest size. We
show that

(62) ¢(T) -z~ € H(T) for each T € {Py !, P, Qp ', Qun}-

Without loss of generality, z = o(Py ). Let y := B(Py'). So ¢(Py') = yx. If z is an
end segment of ¢(T'), then trivially o(7T') is end segment ofz (as z is at least as large as z),
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and hence ¢(T) - 27! belongs to H(T). If x is not an end segment of ¢(T) then the last
symbol of ¢(T) -z~ is equal to the last symbol of 27 1. So ¢(T) - p(Py) = ng(T) (z~y™1) =
&(T) - =)y~ belongs to H(T) - H(P,) (since TPy is an r — 7/ path with r,7’ € R). As by
definition y is the largest beginning segment of ¢(F; 1) that belongs to H (Py D), it follows
that ¢(7T') - = must belong to H(T). This proves (62).

It implies that z-¢(P) -2~ ! = (z-¢(Pp))- d(ar) - ¢(Py)----- G(am) - (¢(Pp)-2~1) belongs
to H(FPy) - H(ap) - H(Py)----- H(ay,) - H(Py) = H(P). Similarly for (), thus proving (61)).

III. If only one of P and @) traverses some of the new loops, we may assume that P does
so. Write P = Pya1 P - - - ay Py, such that aq, ..., a,, are new loops and Py, P, ..., P, are
paths in D. As in part II one shows that there exists an x € G such that x - ¢(FPp) € H(FPp)
and ¢(Py,) - 27! € H(P,,). We may assume that = = 0, i.e., ¢(Fy) € H(Py) and ¢(P,,) €
H(Py,,). (We can reset ¢(a) := x - ¢(a) for each arc a with tail s and ¢(a) := ¢(a) - z~! for
each arc a with head s.)

By (60)(ii), there exists a beginning segment u of ¢(Q) such that u=! - ¢(Q) - u belongs
to H(Q). If both ¢(Py') - u € H(Py') and ¢(Py,) - u € H(Py), then as in part II,
u™t-¢(P)-u € H(P), and we have (61). So we may assume that this is not the case.
Hence the largest beginning segment y of ¢(Q) such that both ¢(Py ') -y € H(P, ') and
d(Pp) -y € H(Py,), satisfies y # ¢(Q). Simﬂarly, we may assume that the largest beginning
segment z of #(Q)~! such that both ¢(Py ') -2 € H(Py ') and ¢(P,,) - z € H(Py,), satisfies
2 4 6(Q)]

By definition of y and z we can choose T,U € {P; 1. P} such that y is the largest
beginning segment of ¢(Q) with ¢(T") -y € H(T) and z is the largest beginning segment of
#(Q)~! with ¢(U) - 2 € H(U).

We may assume that z = (). (We can reset ¢(a) := z - ¢(a) for each arc s with tail a and
#(a) := ¢(a) - z=* for each arc with head s.)

First assume y = (). Then ¢(TQU ') = ¢(T)p(Q)p(U)~ 1. (Note that ¢(T) - p(Q) =
d(T)p(Q) since ¢(T) € H(T) and y = () is the largest beginning segment of ¢(Q) with
#(T) -y € H(T). Similarly, ¢(Q) - p(U)™' = ¢(Q)p(U)~L.) Since ¢(TQU ') belongs to
H(TQU') by (60)(i), it follows that ¢(Q) belongs to H(Q). So we can take z = () in (61).

Next assume y # (. Then ¢(Q) and ¢(Q)~! do not have any nonempty common
beginning segment. (Otherwise there is a nonempty common beginning segment y’ of y and
#(Q)~t. Then ¢(U) -y’ € H(U), contradicting the fact that z = () is the largest beginning
segment of ¢(Q) ! satisfying ¢(U) -z € H(U).)

Now let ¢ := |y| and let yo,...,y be all beginning segments of y, with |y;| = i for
i =0,...,t. Note that for each ¢ =0,...,t one has

(63) &(Prm) - yi € H(Pp,).

This follows from the fact that ¢(P,,) - y; is a beginning segment of at least one of ¢(FPy,)
and ¢(Pp,) - y, where both belong to H(P,,). Similarly,

(64) G(Pyt) -y € H(Py Y.

As in part II of this proof, (63) and (64) imply

27



(65) y; 1 ¢(P)-y; € H(P) for each i =0, ...t
We show that for at least one i € {0,...,t} one has

(66) yi ' 6(Q) - yi belongs to H(Q).

Combining this with (65) gives (61).
Suppose does not hold. Let z; := y;l - d(Q)yi—1 for i =1,...,t. Then

(67) JTQTIUTY) = (&(T) - y)zze—1-- 2218(Q)(U) ™!

(i.e., no cancellations except at the -; this follows from the facts that z = (), that ¢(Q) and
#(Q)~! have no nonempty common beginning segment, and that ¥ is the largest beginning
segment of ¢(Q) such that ¢(7T) -y belongs to H(T)).

Then the assumption that (66) does not hold for any i = 0, ...t implies that ¢(TQ* U 1)
does not belong to H(TQ1U~1), contradicting (60)(i). |

5. Directed graphs on surfaces and homologous functions

5.1. Directed graphs on surfaces and homologous functions

An embedding of a directed graph D = (V, A) in a compact orientable surface S (with each
face being an open disk), can be described by a collection of cycles (‘faces’) C1,...,C} such
that for each arc a of D, each of a and a~! occurs exactly once in Cj, .. .,Cy. For our
purposes, such a cycle collection is enough to perform the algorithms below. (We assume
that each face is an open disk, which assumption does not restrict the generality of our
results.)

We can think of the cycles (1, ..., C} as giving the clockwise orientation of the faces. In
this interpretation, the face that traverses a in forward direction is at the right-hand side
of a, and the face that traverses a in backward direction is at the left-hand side of a.

Note that by Euler’s formula, |V| 4 f = |A| + 2 — 2h, where h is the number of handles
of the surface. Below when fixing a surface, we in fact just fix h.

For any directed graphD = (V, A) embedded on a compact orientable surface, the dual
graph D* = (F, A*) has vertex set the collection F of faces of D, while for any arc a of D
there is an arc a* of D* with as tail the face of D at the right-hand side of a and as head
the face of D at the left hand side. We define for any function ¢ on A the function ¢* on
A* by ¢*(a*) := ¢(a) for each a € A.

If a directed graph D = (V, A) is embedded on a compact orientable surface S, we can
dualize the concept of cohomologous functions to ‘homologous’ functions.

Denote by F the collection of faces of D. Let (G,-) be a group. We call two function
¢, : A — G homologous if there exists a function p : F — G such that for each arc a we
have p(F) - ¢(a) - p(F')~' = ¢(a), where F and F' are the faces at the right-hand side and
left-hand side of a, respectively.

The relation to cohomology is direct: ¢ and v are homologous (in D), if and only if ¢*
and ¥* are cohomologous (in D*).
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It follows that the homology feasibility problem:

(68) given: a directed graph D = (V, A) embedded on a compact orientable surface S, a
function ¢ : A — G, and for each a € A, a subset H(a) of G;
find: a function ¢ : A — G such that v is homologous to ¢ and such that ¥ (a) € H(a)
for each a € A,

is solvable in polynomial time if G is a free partially commutative group and each H(a) is
closed.

5.2. Circulations and cycle decompositions

Let D = (V, A) be a directed graph embedded on a compact orientable surface S, and let
(G,-) be a group. We call a function ¢ : A — G a circulation if for each vertex v of D we
have

(69) ar) ) - pagn) ) =1
where a1, ...,a,, are the arcs incident with v, in clockwise order, and (v, q;) := +1 if a;
enters v, and := —1 if a; leaves v. (If a; is a loop at v we should be more careful.)

So ¢ is a circulation, if and only if for each cycle m bounding a face of D* one has
¢*(m) = 1. Note that in this last characterization it is not necessary to restrict oneself
to clockwise cycles. Consider e.g. three arcs, a,b,c entering v, in clockwise order, with
od(a) - ¢(b) - p(c) = 1. Then ¢(c) - ¢(b) - ¢(a) is generally not equal to 1. However, for
7 := a*b*c*, both ¢*(n) and ¢*(7~!) are equal to 1.

It is easy to check that if ¢ is a circulation and v is homologous to ¢, then % is again a
circulation.

If G is a free group, any circulation ¢ : A — G can be decomposed as follows. Replace
any arc a of D by t := |¢(a)| parallel arcs aq,...,a; (from right to left), yielding the graph
Dy = (V, Ay). Define ¢'(a;) := &, where & is the ith symbol in ¢(a), for i =1,...,¢.

Consider now any vertex v. Since holds we can find a perfect matching on the arcs
of Dy incident with v (more precisely, on {1,...,m}) in such a way that:

(70) (i) for any matched pair {a,b} we have ¢(a)*("®) = ¢/(b)~("b);
(i) if {a,b} and {c,d} are matched pairs, thenthe path a=*®®p(®:b) does not cross
the path ¢~ =0 g=(d) af .

Combining all matched pairs, at all vertices, we obtain a decomposition of A4 into a collec-
tion C of cycles, which we call a cycle decomposition of ¢. The cycles do not have any fixed
end point (formally speaking, we identify all cyclic permutations of the cycle). No cycle in
C crosses itself or any of the other cycles in C.

Each cycle C in C has associated with it a symbol £(C) from gl,gfl,gg,g;, ..., such
that for each arc a of Dy, if C traverses a in forward direction then ¢'(a) = ¢(C) and if C
traverses a in backward direction then ¢'(a) = £(C)~!. The collection C together with the
function € : C — {g1,9; L go, 95 Lo, } uniquely determine ¢ (but generally not conversely).
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We may consider the cycles in C as cycles in D (rather than in D) if, for each arc a of
D, we keep track of the order (from right to left) in which the cycles in C traverse a.

5.3. Disjoint circulations

Let D = (V, A) be a directed graph embedded on a compact orientable surface. We call
a circulation ¢ : A — G, simple and directed if any cycle decomposition of ¢ consists of
pairwise vertex-disjoint simple directed cycles. (A cycle is simple if no vertex is traversed
more than once (except for the end vertices). A cycle is directed if it does not contain a1
for any arc a.)

Consider the problem:

(71) given: a directed graph D = (V, A) embedded on a compact orientable surface S and
a circulation ¢ : A — Gyo;
find: a simple and directed circulation 1 homologous to ¢.

In order to show that this problem is solvable in polynomial time, we define for each
directed graph D embedded on a compact orientable surface S, the ‘extended’ dual graph
Dt = (F, A") as the graph obtained from D* by adding in each face of D* all chords. (So
generally DT is not embeddable in S.) More precisely, for each nonempty path 7 on the
boundary of any face of D*, DT has an arc a,; if 7 is an F' — F’ path, a, runs from F to
F’. (Since each arc a* is such a path, D' contains D* as a subgraph.)

For any ¢ : A — G, where G is a group, define ¢+ : AT — G by ¢+ (ar) := ¢*(m) for
each a, € AT.

Theorem 6. Problem (71) is solvable in polynomial time.
Proof. Define

(72) H(ar) :={1,91,92,...} if 7 := a* for any arc a* of D*,
H(ay) := {l,gl,gfl,gg,ggl, ...} for all other arcs a, of DT.

By Theorem [2 we can find in polynomial time a function ¥ : AT — G4 such that ¢
is cohomologous to ¢ and such that ¥(ar) € H(a,) for each arc a, of DT. Defining
¥(a) :=9(a*) for each a € A gives a solution of (71).

Moreover, if (71) has a solution 1, then such a function ¥ exists, viz. ¥ := ™, as one
directly checks. |

5.4. The torus

Theorem|3 implies a good characterization for the feasibility of (71), in terms of closed curves
on S. It is related to the one given in [11], where for any undirected graph G embedded on
a compact surface S and any set of pairwise disjoint simple closed curves C1,...,Cy on S,
it was characterized when there exist pairwise disjoint simple circuits C1, ..., C}, in G such
that C/ is freely homotopic to C; for ¢ = 1,..., k. (Freely homotopic means that there is
no ‘base point’.) However, in the present paper we consider the homology relation, which
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is coarser than homotopy, and so the two characterization do not seem to follow from each
other.

However, if S is the torus, the two concepts coincide. This case has been dealt with by
Seymour Seymour [14] (cf. Ding, Schrijver, and Seymour [3]).

Let S = 8! x S! be the torus, where S' is a closed curve. Let S; be the closed
curve S! x {1} on S (fixing some orientation). Let Ci,...,Cy be pairwise disjoint simple
closed curves on S, each being freely homotopic to Sy or to S| ! choosing indices such that
C4,...,C occur cyclically around the torus (when going from the left-hand side of S; to
the right-hand side). We let the sign of Ci,...,Cy to be the vector x € {+1,—1}* where
x; = +1 if C; is freely homotopic to 51, and z; := —1 if C; is freely homotopic to S| L

For each closed curve L on S let the winding number w(L) be equal to the number of
times L crosses S7 from right to left, minus the number of times L crosses S1 from left to
right.

Let D = (V, A) be a directed graph embedded on the torus S, and let L be a closed curve
on S with w(L) > 0. We say that L fits x € {41, —1}* if L traverses points p1, ... s Prw(L)»
in this order, such that for each j =1,..., kw(L):

(73) either (i) pj € V,
or (ii) p; is on some arc a of D such that D crosses a from right to left if z; = +1,
and D crosses a from left to right if x; = —1,

taking indices of z; modulo k. We derive the following theorem of Seymour [14]:

Theorem 7. Let D = (V,A) be a directed graph embedded on the torus S and let z €
{+1,—-1}*. Then D contains pairwise disjoint simple directed circuits each being freely
homotopic to S1 or Sl_l, with sign x, if and only if

(74) each closed curve L on S fits some cyclic permutation of x.

Proof. Necessity being trivial, we show sufficiency. Let & > 1 and let (74) be satisfied.
This easily implies that D has at least one (undirected) circuit C' that is a freely homotopic
to Si. Let G be the free group generated by gi,..., g, and let z := g --- g;*. Define for
each arc a of D, ¢(a) := z if a that is traversed by C in forward direction, ¢(a) := 27! if
a that is traversed by C in backward direction, and ¢(a) := 1 otherwise. Let H(a,) be as
in (72).) Each path P in DT corresponds in a natural way to a curve on S which we also
denote by P.

We show that for each face F' and any two F — F paths P,Q in D% there exists an
x € G such that

(75) r-¢T(P)-x ' ¢ HP)and z-¢(Q) -2~ € H(Q).
We may assume that w(P) > 0 and w(Q) > 0. Note that ¢ (P) = z*() and ¢*(Q) =
2%(Q) Assume that such an z does not exist. Define z; := gffll coogyF fori=0,...,k By

assumption, for each i = 1,...,k there exists an R; € {P,Q} such that z; - ¢+ (R;) - 2z, ¢
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H(R;). Let R := RpRj_1---RiRy. So w(R) = w(Ry) + --- +w(Ry) and ¢t (R) = 2* (),
By (74), some cyclic permutation of ¢ (R) belongs to H(R). Hence 2*(")~1g¥ belongs
to H(R). Since z%(F)~1 = Hil:k(zizw(Ri) -z74) and H(R) = H}:k H(R;), there exists an
i=1,...,ksuch that zz*) -zi_l belongs to H(R;), a contradiction. This show that there
exists an x € G satisfying (75).

Now by Theorem |9 there exists a function ¥ : AT — G cohomologous to ¢+ such that
¥(ar) € H(ay) for each arc a; of DT. Define 1)(a) := ¥(ay+) for each arc a of D. Then v
is a simple and directed circulation homologous to ¢. Since for each cycle P in D* one has
Y*(P) = ¢* (P) it follows that any cycle decomposition of v consists of directed circuits of
the required type. |

A stronger version, also given by Seymour [14], in which we prescribe for each arc a of
D which of the directed circuits C1, ..., Ck are permitted to traverse a, can also be derived.
(To this end we restrict the H(aq+).)

5.5. R-homologous function, 4-joins, and path decompositions

Dual to R-cohomologous functions are R-homologous functions. Let D = (V, A) be a
directed graph embedded on a compact orientable surface S, with face collection F, and let
R C F. Let (G,-) be a group. We call two functions ¢, : A — G R-homologous if there
exists a function p : F — G such that p(F') = 1 for each F' € R and such that for each
arc a we have p(F) - ¢(a) - p(F')~1 = ¢(a), where F and F’ are the faces at the right-hand
side and left-hand side of a, respectively. Again it follows that the R-homology feasibility
problem for free partially commutative groups is solvable in polynomial time.

An extension of the notion of circulation is the ‘6-join’. Let 6 : V' — G (a ‘demand
function’) be such that

(76) each vertex v with d(v) # 1 has degree one.

(That is, v is incident with exactly one arc.) Call a function ¢ : A — G a §-join if for each
vertex v:

(77) ¢(a1)6(v7a1) e Bam) TP = §(v),
where again ai,...,a, are the arcs incident with v in clockwise order, and for any arc a
incident with v, e(v,a) := 41 if a leaves v and (v, a) := —1 if a enters v. So if §(v) = 1 for

each vertex v, any d-join is a circulation.
Let W be the set of vertices v satisfying d(v) # 1, and let R be the collection of faces
incident with at least one vertex in W. One directly checks:

(78) if ¢ is a d-join and 1 is R-homologous to ¢, then 1 is a d-join again.
An extension of the idea of the cycle decomposition of a circulation is that of a ‘path

decomposition’ of a §-join. Let G be a free group. Again we make the directed graph
Dy = (V,Ag). At each vertex v ¢ W we can find a matching as for circulations. Combining
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all matched pairs we obtain a decomposition of A4 into a collection P of paths and cycles,
which we call a path decomposition of ¢. Each path has tail and head in W (possibly the
same vertex). The cycles do not have any given fixed end point (formally speaking, we
identify all cyclic permutations of the cycle). All vertices traversed by the paths except for
their ends, and all vertices traversed by the cycles, belong to V'\ W. Moreover, none of the
paths and cycles crosses itself or any of the other paths and cycles.
Each path and cycle P in P has associated with it a symbol £(P) from {gi, gfl, g2, ggl, S

such that for each arc a of Dy, if P traverses a in forward direction then ¢/(a) = £{(P) and
if P traverses a in backward direction then ¢'(a) = £(P)~!. The pair P, ¢ determines ¢.

5.6. Enumerating homology types

With the methods developed before we can find in polynomial time a d-join of given ho-
mology type. In order to be able to consider all homology types of a certain restricted size,
we describe an enumeration. (A related enumeration was given in [12].)

We call a d-join ¢ elementary if ¢ has a path decomposition with paths only (all starting
and ending in W). We first consider the following problem for any p and compact orientable
surface S:

(79) given: a directed graph D = (V, A) embedded on S, with exactly p faces, a natural
number m, and a function § : V — G such that each vertex in the set W :=
{v | d(v) # 1} has degree 1;
find: all elementary d-joins ¢ with |¢(a)| < m for each arc a not incident with any
vertex in W.

Theorem 8. For each fized p and compact orientable surface S, problem (79) is solvable
i polynomial time.

[As input size we take [V| 4 [A] +m + > oy [6(v)].]

Proof. We may assume that |V \ W| = 1. To see this, consider any arc a connecting two
different vertices in V' \ W. Let D' = (V'  A’) arise from D by contracting a. Let ¢§'(v) := ()
for the contracted vertex v, and let ¢ coincide with § on all other vertices. Then for each
d’-join ¢’ there is a unique d-join ¢ such that ¢|A’ = ¢/. So any enumeration of §'-joins
gives directly an enumeration of §-joins.

Let V.= W U{u} for some vertex u. Hence D consists of one vertex u, with a number
of oriented loops at u, and a number of arcs connecting v with the vertices in W, each of
degree one. We may assume that each of the nonloops has tail in W and head u. Let L
denote the set of loops of D. By Euler’s formula, |L| = p+2h — 1. So when considering the
arcs incident with u in clockwise order, there are 2p + 4h — 2 (possibly empty) consecutive
groups of nonloops, separated by loops. Let the jth group, W; say, consist of the arcs
(wja,u), ..., (wjt,,u), in clockwise order. Let D arise from D by identifying for each j all
vertices wj 1, ..., w;; to one vertex w; and identifying all parallel arcs (w;, u) arising.

Consider any elementary d-join with |¢(a)| < m for each loop a of D. Let Py,..., Py
form a path decomposition of ¢. Define the type of a path P; as the path in D obtained
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from P by traversing the arcs in D that are parallel to those in P.

Let Q1,...,Qxk be all types of P, ..., Py that are different from aa™! for any arc a.
We identify type Q with Q~!. Now ¢ is completely determined by the Q;, together with
a word y; in G associated to @; (for each i) that forms the concatenation of the symbols
asociated with the P; of type @Q; (in the appropriate order).

We show that we can choose the ); with the associated words in a polynomially bounded
number of ways (fixing p and h). First we show that K is at most 9p + 18h. Since

Py, ..., Py are pairwise noncrossing, we can decouple the paths Q1,...,Qx at u, so as to
obtain pairwise disjoint paths Q1,..., Q% (disjoint except for their end points). Since any
two Q; are different, the graph H with vertex u and arcs (loops) Qf,..., Q% has no faces

bounded by one or two edges, except for the p original faces of D. So 3(f —p) < 2K, where
f denotes the number of faces of H. As D has at most (2p+4h —2) + 1 vertices, by Euler’s
formula we have, K <2p+4h—1+ f —2+2h < 3p+6h+ %K Therefore K < 9p + 18h.

For any a,b € LU L™, let mg, be the number of times ab or b='a~! occurs in
Q1,...,Qk (counting multiplicities). Since the P; are pairwise noncrossing, we can re-
construct {Q1,...,Qk} from the my, (up to reversing a path).

Now mg, < m for all a,b, since |¢(a)] < m for each a € A. So in enumerating, we can
choose for each pair a,b € L UL™! a nonnegative integer mq, < m. (Since |L| = p+2h —1,
there are at most (m-+ 1)(1”2}“1)2 choices.) For each choice, we try to construct Q1,...,Qx
from the mgp. If we fail or if K > 9p + 18h, we go on to the next choice of the mg,. If we
succeed and K < 9p + 18h, we proceed as follows.

For each i = 1,..., K, if the first arc of Q; equals (w;, ), the word associated with Q;
should be equal to T, where x is some segment of the word

(80) 6(wj) - 6(wje;)-

Here Z denotes the word obtained from z by cancelling iteratively all occurrences of ££71
and £71¢. (In (80) we did not cancel occurrences of €71 or ¢71£. So word (80) need not
be in G.)

Since K < 9p + 18k there are at most (> 1, |§(w;)|)1¥F36" such segments, and we can
consider all choices in polynomial time. Combining all choices gives us a function on the
arcs of D, that is either an elementary d-join, or not. This way we obtain all elementary
d-joins. |

Consider next the following problem for any compact orientable surface S:

(81) given: a directed graph D = (V, A) embedded on S, a natural number m, and a
function § : V' — G, such that each vertex v in the set W := {v | §(v) # 0} has

degree one;
find: d-joins ¢1,...,¢n such that each elementary d-join ¢ with |p(a)| < m for each
arc not incident with W, is R-homologous to at least one of ¢1,..., ¢n, whereR

is the collection of faces incident with at least one vertex in W.

Theorem 9. For each fized p and compact orientable surface S, problem (81) is solvable
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in polynomial time when |R| = p.
[Again we take as input size [V|+ [A[+m + > oy |6(v)].]

Proof. Let A’ denote the set of arcs not incident with any vertex in W. Delete iteratively
arcs from D that are incident with at least one face not in R. We end up with a graph
D = (V, A) that has p faces, and such that each elementary d-join in D with |¢(a)| < m for
cach arc a € A', is R-homologous to some elementary d-join in D with |¢(a)| < 2m|A| for
each arc a € A’. Thus Theorem [8 implies the required enumeration.

5.7. Applications to disjoint paths and trees problems

We apply the techniques described above to a number of disjoint paths and disjoint trees
problems.
We first consider the following problem, for any fixed compact surface S and any fixed

D:

(82) given: a directed graph D = (V, A) embedded on S and pairs (r1,s1),..., (7%, Sk)
of vertices of D, with the property that there exist p faces such that each of

r1,81,...,Tk, Sk is incident with at least one of these faces;
find: pairwise vertex-disjoint paths Pi,..., Py, where P; is an r; — s; path (i =
1,...,k).

Theorem 10. For each fixred compact orientable surface S and each fixed p, problem (82)
1s solvable in polynomial time.

Proof. We may assume that rq,s1,...,7%, St all are distinct and have degree one. Let R
be the collection of faces incident with at least one of r1,s1,...,7k, s. Define §(r;) 1= g;
and d(s;) := g;l for i = 1,..., k. Moreover, define 6(v) := () for all other vertices v.

By Theorem/[9 we can find in polynomial time (fixing S and p) a list of d-joins ¢1, ..., dN
in D such that each elementary d-join ¢ with |p(a)| < 1 for each arc a not incident with
r1,81,--.,Tk, Sk, i R-homologous to at least one of the ¢;.

Consider the extended dual graph Dt of D (cf. Section[3). Define for each arc a, of
D+:

(83) H(az) :={0,01,...,9x} if T = a* for some a € A;
H(az) :=={0,91,97", ... ,gk,gk_l} for all other a, .

By Theorem (2) we can find in polynomial time a function ¥ that is R-cohomologous to gb;r
in D, with 9(b) € H(b) for each arc b of D, provided that such a ¢ exists. If we find one,
define 1(a) := ¥(a*), for each arc a of D. Then 9 is a d-join in D (as it is R-homologous to
¢;), and any path decomposition of 1) into paths of cycles contains pairwise disjoint paths
P, ..., P, as required.

If for none of i = 1,..., N we find such a ¥ we may conclude that problem (82) has
no solution. For suppose Pi,..., P, is a solution. Define ¢(a) := g; if P; traverses a
(i=1,...,k)and ¢(a) := 1 if a is not traversed by any Py, ..., P;. Since ¢ is an elementary
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d-join with |p(a)| < 1 for each arc a, there exists an i € {1,..., N} such that ¢ and ¢; are
R-homologous. However, for this i, there exists a 9 as above, viz. 9 := ¢*. This contradicts
our assumption. |

A special case applies to (1):

Corollary 10a. For each fixed k, the k disjoint paths problem for directed planar graphs is
solvable in polynomial time.

Proof. Directly from Theorem |

An extension of Theorem [10 applies to the following problem:

(84) given: a directed graph D = (V, A) embedded on S and pairs (r1,51),. .., (7%, Sk)
with r,...,r € V and Sy,...,S; C V, with the property that there exist p

faces such that each vertex in {ry,...,rp}US1U---USj is incident with at least
one of the faces;

find: pairwise vertex-disjoint rooted trees T1,..., Ty, where T; has root r; and covers
Si (i=1,...,k).

Theorem 11. For each fixred compact orientable surface S and each fixed p, problem (84)
1s solvable in polynomial time.

Proof. We may assume that all vertices in W := {ry,..., 7} US1U---US} are distinct and
have degree one. Let R be the collection of faces incident with at least one vertex in W.
Define §(r;) := ng” and 0(s) := g; ! for s € S;, for i = 1,..., k. Moreover, define §(v) := 1
for all other vertices v.

By Theorem/[9 we can find in polynomial time (fixing S and p) a list of d-joins ¢1, ..., dn
in D such that each elementary d-join ¢ with |¢(a)| < |V] for each arc a not incident with
r1,81,...,Tk, Sk, 18 R-homologous to at least one of the ¢,.

Again consider the extended dual graph DT of D. Define for each arc a, of DT:

(85) H(ay) ={gl|i=1,...,k;n€Z,n >0} if 7 = a* for some a € A;
H(az):={g'|i=1,...,k;n € Z} for all other a,.

By Theorem (2) we can find in polynomial time a function ¢ that is R-cohomologous to ¢
in DT, with 9(b) € H(b) for each arc b of DT, provided that such a 9 exists. If we find one,
define ¢(a) := ¥(a*), for each arc a of D. Then 1 is a d-join in D (as it is R-homologous
to ¢;), and any path decomposition of 1 into paths and cycles contains pairwise disjoint
rooted trees 11, ...,T} as required.

If for none of : = 1,..., N we find such a 1 we may conclude that problem has no

solution. For suppose T1,...,T} is a solution. Define ¢(a) := gﬁ if T; contains a and for [
vertices s in .S; the simple r — s; path in T; traverses a, and ¢(a) := 1 if a is not contained
in any T1,...,T). Since ¢ is an elementary d-join with |¢(a)| < |V| for each arc a, there

exists an i € {1,..., N} such that ¢ and ¢; are R-homologous. However, for this 7, there
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exists a ¥ as above, viz. ¥ := ¢T. This contradicts our assumption. |

A further extension is to the following problem:

(86) given: a directed graph D = (V, A) embedded on S, subsets Ay, ..., A; of A, and pairs
(ri,51),...,(rg, Sk) with r1,...,7, € V and Sy,...,Sr C V, with the property
that there exist p faces such that each vertex in {ry,...,7} US; U---U Sk is
incident with at least one of these faces;

find: pairwise vertex-disjoint rooted trees 77, ...,T, where T; has root r;, covers S;
and contains arcs only in A; (i =1,...,k).

Theorem 12. For each fized compact orientable surface S and each fized p, problem (86)
1s solvable in polynomial time.

Proof. As before, now replacing the first line in by: H(ar) :={¢/'|i=1,...,k,a €
Aisn € Z,n > 0} if 1= a* for a € A. |

We do not see if our methods extend to compact nonorientable surfaces.

5.8. Other groups and the arc-disjoint case

Our algorithms are based on the polynomial-time solvability of the cohomology feasibility
problem for free groups. It might be interesting to investigate in how far the method can
be extended to other groups. Especially, for which groups (G, ) and subsets C' C G is the
following problem solvable in polynomial time:

(87) given: a directed graph D = (V, A) and a function ¢ : A — G;
find: a function ¢ : A — C' cohomologous to ¢.

This might apply to the arc-disjoint case as follows. It is unknown if the following
problem is solvable in polynomial time or NP-complete for k = 2:

(88) given: a directed planar graph and vertices r1, s1,. .., 7k, Sk,
find: find pairwise arc-disjoint paths Pi,..., Py, where P; is an r; — s; path (i =
1,...,k).

If we do not require planarity the problem is NP-complete for & = 2, as follows from the
result of Fortune, Hopcroft, and Wyllie mentioned in section[1l (The vertex-disjoint case
can be reduced to the arc-disjoint case.) The complexity status of (88) is also unknown for
the special case k = 2,71 = $9,81 = ro.

Now if problem is polynomial-time solvable for the group G := Z?, taking C =
{(0,0),(1,0),(0,1)}, then problem (88) is solvable in polynomial time for £ = 2. This can
be seen with a method similar to the one described in the previous sections.

More generally, if the cohomology feasibility problem for free groups is solvable in poly-
nomial time for the group Z*, taking for H(a) the set of all unit basis vectors together
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with the origin, then problem (88) is polynomial-time solvable for this k. Note that Z*
can be considered as the ‘free abelian group’; it is generated by g1, ..., gk, with relations
gi-g9; =95 g foralli,j=1,... k.

This also implies that if the group itself is part of the input of problem (87) (given,
e.g., by generators and relations), then the problem will be NP-hard. This follows from the
NP-completeness of problem (87) for nonfixed k. Note that the algorithm we described for
the cohomology feasibility problem for free groups is polynomial-time also if we do not fix
the number of generators.

In a sense there are the following correspondences:

(89) vertex-disjoint directed paths «— free groups,
arc-disjoint directed paths «+— free abelian groups.

In the undirected case we could add the relations gf =1for¢=1,...,k This gives the
free boolean group (all words made from g1, go, ... with no segment g;g; for any ¢) and the
free abelian boolean groups (= {0, 1}¥), and the following correspondences:

(90) vertex-disjoint undirected paths «— free boolean groups,
edge-disjoint undirected paths «— free abelian boolean groups.

By Robertson and Seymour’s result, for fixed k the k disjoint undirected paths problem is
solvable in polynomial time (for the vertex-disjoint case, and hence also for the edge-disjoint
case). This might suggest that problem (87) is solvable in polynomial time for any fixed
free boolean (abelian) group.

However, problem (87) is NP-complete for G := {0,1}? and C := {(0,0), (1,0), (0,1)},
even if we fix ¢(a) = (1,1) for each arc a. In that case (87) has a solution ¢ if and only if
D is four vertex colorable. (I thank Bert Gerards for this observation.)
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