THE ELLENBERG-GIJSWIJT THEOREM

 Notes for our seminar

 Notes for our seminar

 Lex Schrijver

 Lex Schrijver}

The following is a variant of a lemma given in Terry Tao's blog of May 18, 2016:
Lemma 1. Let L be a linear space, let S be a subspace of L, and let $e_{1}, \ldots, e_{n} \in L$ be linearly independent. Let $t \geq 2$ and define $\tau:=\sum_{i=1}^{n} e_{i}^{\otimes t}$. If τ is a a linear combination of tensors $b_{1} \otimes \cdots \otimes b_{t}$ with $b_{1}, \ldots, b_{t} \in L$ and $b_{j} \in S$ for at least one j, then $n \leq 2 \operatorname{dim}(S)$.

Proof. Consider the quotient space L / S, and define $f_{i}:=e_{i}+S$ for $i=1, \ldots, n$. So $d:=\operatorname{dim}\left\langle f_{1}, \ldots, f_{n}\right\rangle \geq n-\operatorname{dim}(S)$ and, by the condition in the theorem, $\sum_{i=1}^{n} f_{i}^{\otimes t}=0$.

Define $g_{i}:=f_{i}^{\otimes t-1}$ for $i=1, \ldots, n$. Then $\operatorname{dim}\left\langle g_{1}, \ldots, g_{n}\right\rangle \geq d$, since if (say) f_{1}, \ldots, f_{d} are linearly independent, then also $f_{1}^{\otimes t-1}, \ldots, f_{d}^{\otimes t-1}$ are linearly independent.

Now $\sum_{i=1}^{n} g_{i} \otimes f_{i}=0$. This implies $n \geq \operatorname{dim}\left\langle g_{1}, \ldots, g_{n}\right\rangle+\operatorname{dim}\left\langle f_{1}, \ldots, f_{n}\right\rangle \geq 2 d$. To see this, let G and F be the matrices $\left[g_{1}, \ldots, g_{n}\right]$ and $\left[f_{1}, \ldots, f_{n}\right]$. Then $G F^{\top}=0$, so the row space of G is orthogonal to the row space of F, hence $\operatorname{rank}(G)+\operatorname{rank}(F) \leq n$.

Concluding, $d \geq n-\operatorname{dim}(S)$ and $n \geq 2 d$, hence $2 \operatorname{dim}(S) \geq n$.
Let q be a prime power and let $t, n \in \mathbb{Z}_{+}$. Let $A \subseteq \mathbb{F}_{q}^{n}$ and $\lambda_{1}, \ldots, \lambda_{t} \in \mathbb{F}_{q}$, with $\lambda_{1}+\cdots+\lambda_{t}=0$. For any real $d \geq 0$, let $m_{q, n}(d)$ be the number of monomials in x_{1}, \ldots, x_{n} of degree at most d in which each x_{i} has degree at most $q-1$. Jordan Ellenberg and Dion Gijswijt [1] showed:

Theorem. If for all $a_{1}, \ldots, a_{t} \in A, \lambda_{1} a_{1}+\cdots+\lambda_{t} a_{t}=0$ implies $a_{1}=\cdots=a_{t}$, then

$$
\begin{equation*}
|A| \leq 2 m_{q, n}\left(\frac{1}{t}(q-1) n\right) . \tag{1}
\end{equation*}
$$

Proof. Let $p(x):=\prod_{i=1}^{n}\left(1-x_{i}^{q-1}\right)$ for $x \in \mathbb{F}_{q}^{n}$. Define the following tensor $\tau \in\left(\mathbb{F}_{q}^{A}\right)^{\otimes t}$:

$$
\begin{equation*}
\tau:=\sum_{a_{1}, \ldots, a_{t} \in A} p\left(\lambda_{1} a_{1}+\cdots+\lambda_{t} a_{t}\right) e_{a_{1}} \otimes \cdots \otimes e_{a_{t}}=\sum_{a \in A} e_{a}^{\otimes t} \tag{2}
\end{equation*}
$$

the latter equality by the condition on A, since $p(x)=\delta_{x, 0}$. $\left(e_{a}\right.$ denotes the indicator function $A \rightarrow \mathbb{F}_{q}$ of a.)

Now, for $z_{1}, \ldots, z_{t} \in \mathbb{F}_{q}^{n}, p\left(\lambda_{1} z_{1}+\cdots+\lambda_{t} z_{t}\right)$ is a sum of products $p_{1}\left(z_{1}\right) \cdots p_{t}\left(z_{t}\right)$ of polynomials with at least one p_{j} having degree at most $\frac{1}{t}(q-1) n$. Hence τ is a sum of tensors $b_{1} \otimes \cdots \otimes b_{t}$ with $b_{j}=\sum_{a \in A} p_{j}(a) e_{a}=p_{j} \mid A$ for some polynomial p_{j}, with at least one p_{j} having degree at most $\frac{1}{t}(q-1) n$. In other words, τ is a sum of tensors $b_{1} \otimes \cdots \otimes b_{t}$ with at least one b_{j} in

$$
\begin{equation*}
S:=\left\{f|A| f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg}(f) \leq \frac{1}{t}(q-1) n\right\} \tag{3}
\end{equation*}
$$

So, by the Lemma, $|A| \leq 2 \operatorname{dim}(S) \leq 2 m_{q, n}\left(\frac{1}{t}(q-1) n\right)$.

Proposition. For all q, α with $\alpha<\frac{1}{2}(q-1): \lim _{n \rightarrow \infty} m_{q, n}(\alpha n)^{1 / n}<q$.

Proof. Define $f(x):=\sum_{i} x^{i-\alpha}$ (here and below i ranges over $0, \ldots, q-1$). As $\lim _{x \downarrow 0} f(x)=$ ∞ and $f^{\prime}(1)=\sum_{i}(i-\alpha)>0$, there exists $r \in(0,1)$ that attains the minimum of f on $(0,1]$. So $f^{\prime}(r)=0$, hence $\sum_{i}(i-\alpha) r^{i}=0$.

Define $s:=\sum_{i} r^{i}$ and $z_{i}:=s^{-1} r^{i}$ for $i=0, \ldots, q-1$. So $\sum_{i} z_{i}=1$ and $\sum_{i} i z_{i}=\alpha$. Now let $y=\left(y_{0}, \ldots, y_{q-1}\right) \in \mathbb{R}_{+}^{q}$ with $y_{i} \geq 0$ for each $i, \sum_{i} y_{i}=1$, and $\sum_{i} i y_{i} \leq \alpha$. Consider the functions $h(x):=\sum_{i} x_{i} \log x_{i}$ for $x=\left(x_{0}, \ldots, x_{q-1}\right)$ and $g(\lambda):=h(z+\lambda(y-z))$ for $\lambda \geq 0$. Then

$$
\begin{align*}
& \left.\frac{d g(\lambda)}{d \lambda}\right|_{\lambda=0}=\left.\sum_{i} \frac{d h(x)}{d x_{i}}\right|_{x=z}\left(y_{i}-z_{i}\right)=\sum_{i}\left(1+\log z_{i}\right)\left(y_{i}-z_{i}\right)= \tag{4}\\
& \sum_{i}(1-\log s+i \log r)\left(y_{i}-z_{i}\right)=\log r \sum_{i} i\left(y_{i}-z_{i}\right) \geq 0
\end{align*}
$$

(as $\sum_{i} y_{i}=1=\sum_{i} z_{i}, \sum_{i} i y_{i} \leq \alpha=\sum_{i} i z_{i}$, and $\log r<0$). Hence, since h is convex, $g(1) \geq g(0)$, so $h(y) \geq h(z)$; that is, $\prod_{i} y_{i}^{y_{i}} \geq \prod_{i} z_{i}^{z_{i}}$.

Now, for any monomial in x_{1}, \ldots, x_{n}, consider the number n_{i} of variables x_{j} of degree i (for $i=0, \ldots, q-1$). So $\sum_{i} n_{i}=n$ and the degree is $\sum_{i} i n_{i}$. As the number of $\left(n_{0}, \ldots, n_{q-1}\right) \in \mathbb{Z}_{+}^{q}$ with $\sum_{i} n_{i}=n$ is at most n^{q}, we have, with Stirling,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} m_{q, n}(\alpha n)^{1 / n}=\lim _{n \rightarrow \infty}\left(\sum_{\substack{n_{0}, \ldots, n_{q-1} \in \mathbb{Z}_{+} \\
\sum_{i} i_{i}=n \\
\sum_{i}=n}}\binom{n}{n_{0}, \ldots, n_{q-1}}\right)^{1 / n}= \tag{5}\\
& \left.\lim _{n \rightarrow \infty} \sup _{\substack{n_{0}, \ldots, n_{q}-1 \in \mathbb{Z}_{+} \\
\sum_{i} n_{i}=n}}^{\sum_{i} i_{i} \leq \alpha n} \begin{array}{c}
n \\
n_{0}, \ldots, n_{q-1}
\end{array}\right)^{1 / n}=\sup _{\substack{1 / n \\
y_{0}, \ldots, y_{q-1} \geq 0 \\
\sum_{i} y_{i}=1 \\
\sum_{i} i y_{i} \leq \alpha}} \prod_{i} y_{i}^{-y_{i}}=\prod_{i} z_{i}^{-z_{i}}= \\
& \prod_{i}\left(s^{-1} r^{i}\right)^{-z_{i}}=s^{\sum_{i} z_{i}} r^{-\sum_{i} i z_{i}}=s r^{-\alpha}=\sum_{i} r^{i-\alpha}=f(r)<f(1)=q .
\end{align*}
$$

References

[1] J.S. Ellenberg, D. Gijswijt, On large subsets of \mathbb{F}_{q}^{n} with no three-term arithmetic progression, Annals of Mathematics 185 (2017) 339-343.

