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The following is a variant of a lemma given in Terry Tao’s blog of May 18, 2016:

Lemma 1. Let L be a linear space, let S be a subspace of L, and let e1, . . . , en ∈ L be
linearly independent. Let t ≥ 2 and define τ :=

∑n
i=1 e

⊗t
i . If τ is a a linear combination of

tensors b1 ⊗ · · · ⊗ bt with b1, . . . , bt ∈ L and bj ∈ S for at least one j, then n ≤ 2 dim(S).

Proof. Consider the quotient space L/S, and define fi := ei + S for i = 1, . . . , n. So
d := dim〈f1, . . . , fn〉 ≥ n− dim(S) and, by the condition in the theorem,

∑n
i=1 f

⊗t
i = 0.

Define gi := f⊗t−1i for i = 1, . . . , n. Then dim〈g1, . . . , gn〉 ≥ d, since if (say) f1, . . . , fd
are linearly independent, then also f⊗t−11 , . . . , f⊗t−1d are linearly independent.

Now
∑n

i=1 gi ⊗ fi = 0. This implies n ≥ dim〈g1, . . . , gn〉+ dim〈f1, . . . , fn〉 ≥ 2d. To see
this, let G and F be the matrices [g1, . . . , gn] and [f1, . . . , fn]. Then GFT = 0, so the row
space of G is orthogonal to the row space of F , hence rank(G) + rank(F ) ≤ n.

Concluding, d ≥ n− dim(S) and n ≥ 2d, hence 2 dim(S) ≥ n.

Let q be a prime power and let t, n ∈ Z+. Let A ⊆ Fnq and λ1, . . . , λt ∈ Fq, with
λ1 + · · ·+λt = 0. For any real d ≥ 0, let mq,n(d) be the number of monomials in x1, . . . , xn
of degree at most d in which each xi has degree at most q − 1. Jordan Ellenberg and Dion
Gijswijt [1] showed:

Theorem. If for all a1, . . . , at ∈ A, λ1a1 + · · ·+ λtat = 0 implies a1 = · · · = at, then

(1) |A| ≤ 2mq,n(1t (q − 1)n).

Proof. Let p(x) :=
∏n
i=1(1− x

q−1
i ) for x ∈ Fnq . Define the following tensor τ ∈ (FAq )⊗t:

(2) τ :=
∑

a1,...,at∈A
p(λ1a1 + · · ·+ λtat)ea1 ⊗ · · · ⊗ eat =

∑
a∈A

e⊗ta ,

the latter equality by the condition on A, since p(x) = δx,0. (ea denotes the indicator
function A→ Fq of a.)

Now, for z1, . . . , zt ∈ Fnq , p(λ1z1 + · · · + λtzt) is a sum of products p1(z1) · · · pt(zt) of

polynomials with at least one pj having degree at most 1
t (q − 1)n. Hence τ is a sum of

tensors b1 ⊗ · · · ⊗ bt with bj =
∑

a∈A pj(a)ea = pj |A for some polynomial pj , with at least
one pj having degree at most 1

t (q − 1)n. In other words, τ is a sum of tensors b1 ⊗ · · · ⊗ bt
with at least one bj in

(3) S := {f |A | f ∈ Fq[x1, . . . , xn],deg(f) ≤ 1
t (q − 1)n}.

So, by the Lemma, |A| ≤ 2 dim(S) ≤ 2mq,n(1t (q − 1)n).

Proposition. For all q, α with α < 1
2(q − 1): lim

n→∞
mq,n(αn)1/n < q.
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Proof. Define f(x) :=
∑

i x
i−α (here and below i ranges over 0, . . . , q−1). As limx↓0 f(x) =

∞ and f ′(1) =
∑

i(i − α) > 0, there exists r ∈ (0, 1) that attains the minimum of f on
(0, 1]. So f ′(r) = 0, hence

∑
i(i− α)ri = 0.

Define s :=
∑

i r
i and zi := s−1ri for i = 0, . . . , q−1. So

∑
i zi = 1 and

∑
i izi = α. Now

let y = (y0, . . . , yq−1) ∈ Rq+ with yi ≥ 0 for each i,
∑

i yi = 1, and
∑

i iyi ≤ α. Consider the
functions h(x) :=

∑
i xi log xi for x = (x0, . . . , xq−1) and g(λ) := h(z + λ(y − z)) for λ ≥ 0.

Then

(4)
dg(λ)

dλ

⌋
λ=0

=
∑
i

dh(x)

dxi

⌋
x=z

(yi − zi) =
∑
i

(1 + log zi)(yi − zi) =∑
i

(1− log s+ i log r)(yi − zi) = log r
∑
i

i(yi − zi) ≥ 0

(as
∑

i yi = 1 =
∑

i zi,
∑

i iyi ≤ α =
∑

i izi, and log r < 0). Hence, since h is convex,
g(1) ≥ g(0), so h(y) ≥ h(z); that is,

∏
i y
yi
i ≥

∏
i z
zi
i .

Now, for any monomial in x1, . . . , xn, consider the number ni of variables xj of de-
gree i (for i = 0, . . . , q − 1). So

∑
i ni = n and the degree is

∑
i ini. As the number of

(n0, . . . , nq−1) ∈ Zq+ with
∑

i ni = n is at most nq, we have, with Stirling,

(5) lim
n→∞

mq,n(αn)1/n = lim
n→∞

( ∑
n0,...,nq−1∈Z+∑

i ni=n∑
i ini≤αn

(
n

n0,...,nq−1

))1/n
=

lim
n→∞

sup
n0,...,nq−1∈Z+∑

i ni=n∑
i ini≤αn

(
n

n0,...,nq−1

)1/n
= sup

y0,...,yq−1≥0∑
i yi=1∑
i iyi≤α

∏
i

y−yii =
∏
i

z−zii =

∏
i

(s−1ri)−zi = s
∑
i zir−

∑
i izi = sr−α =

∑
i

ri−α = f(r) < f(1) = q.
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