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Abstra
t. We survey some re
ent results on �nding and 
ounting per-fe
t mat
hings in regular bipartite graphs, with appli
ations to bipar-tite edge-
olouring and the dimer 
onstant. Main results are improved
omplexity bounds for �nding a perfe
t mat
hing in a regular bipartitegraph and for edge-
olouring bipartite graphs, the solution of a problemof Erd}os and R�enyi 
on
erning lower bounds for the number of perfe
tmat
hings, and an improved lower bound for the 3-dimensional dimer
onstant.
1 Finding a perfe
t mat
hing in a regular bipartite graphThe fastest known algorithms for �nding a perfe
t mat
hing in a general bipartitegraph have running time of order about O(pnm) (Hop
roft and Karp [12℄, Federand Motwani [8℄) or O(n2:376) (Ibarra and Moran [13℄). For regular bipartitegraphs, however, faster algorithms are known: Cole and Hop
roft [4℄ gave anO(m logn) algorithm, while Cole [3℄ gave an O(22O(k)n) algorithm, where k isthe degree of the verti
es. So the latter algorithm is linear-time for any �xed k.We now des
ribe an easy O(k2n) (= O(km)) algorithm ([17℄). Here is the ideafor k = 3.Let G be a 3-regular bipartite graph. Find a 
ir
uit C in G, by �nding apath Q = v0; e1; v1; : : :, till we arrive at a vertex vk where we have been before(that is, vk = vi for some i < k). Next delete from G every se
ond edge of C.The remaining edges of C form the middle edges of paths of length 3 in theremaining graph G0. Repla
e ea
h su
h path P by an edge eP 
onne
ting theends of P . The resulting graph G00 is 3-regular and bipartite. Find re
ursively aperfe
t mat
hing M in G00. Repla
e any edge eP that o

urs in M by the twoend edges of P . For ea
h of the other paths P , add its middle edge to M . Thisgives a perfe
t mat
hing in G0, hen
e in G, as required.To obtain a linear-time algorithm, one should use in the re
ursion the tailv0; e1; v1; : : : ; vi of the path Q to �nd the next 
ir
uit in G00. Then the time spenton running through the tail when �nding the su

essive 
ir
uits will not be lost,and any re
ursive step takes amortized time jV Cj. Sin
e in any re
ursive step,the size of the graph redu
es also by jV Cj, the algorithm is linear-time.This gives the theorem of Cole [3℄:Theorem 1. A perfe
t mat
hing in a 3-regular bipartite graph 
an be found inlinear time.



We next des
ribe the extension to k-regular bipartite graphs. This uses aweighting of the edges.Let G = (V;E) be a k-regular bipartite graph. Initially, set w(e) := 1 forea
h edge e. Next, iteratively, �nd a 
ir
uit C in G, split the edge set EC of Cinto two mat
hings M and N , in su
h a way thatXe2M w(e) � Xe2N w(e); (1)
reset w(e) := w(e) + 1 if e 2M and w(e) := w(e)� 1 if e 2 N , delete the edgese with w(e) = 0, and iterate.Again we �nd C by following a path, and we keep its tail (if nontrivial) forthe next iteration. Note that the resetting maintains the propertyXe3v w(e) = k for ea
h vertex v: (2)
So as long as there exist edges e with w(e) < k, we 
an �nd a 
ir
uit. Hen
e, theiterations stop if w(e) = k for ea
h edge e. In that 
ase, the edges form a perfe
tmat
hing, and we are done.The key to estimating the running time is 
onsideringXe2Ew(e)2: (3)
This sum is bounded by 12k2jV j. Moreover, in any iteration, this sum in
reasesby Xe2M((w(e) + 1)2 � w(e)2) +Xe2N((w(e)� 1)2 � w(e)2)= Xe2M(2w(e) + 1) +Xe2N(�2w(e) + 1) � jM j+ jN j = jECj (4)
(by (1)). Sin
e the amortized time of any iteration is proportional to jECj, thisgives an O(k2n) = O(km) running time bound ([17℄):Theorem 2. A perfe
t mat
hing in a k-regular bipartite graph 
an be found inO(km) time.
2 Edge-
olouringThe latter result implies an O(km) algorithm for �nding an optimum edge-
olouring of a bipartite graph G, where k denotes the maximum degree. (Anoptimum edge-
olouring 
olours the edges with k 
olours su
h that ea
h 
olourforms a mat
hing.)First observe that one trivially obtains an O(k2m) algorithm. Indeed, we 
anassume that the bipartite graph G is k-regular (as we 
an extend G to a k-regular



bipartite graph, in linear time). Then iteratively �nd a perfe
t mat
hing in Gand delete it from G. The su

essive perfe
t mat
hings form the 
olours. This
an be done by applying k times the O(km) algorithm, yielding O(k2m).However, with a method of Gabow [10℄, one may speed up this. If k is odd,�nd a perfe
t mat
hing in G and delete it from G. If k is even, �nd an Eulerianorientation of G (that is, an orientation su
h that the indegree in ea
h vertexis equal to its outdegree). This 
an be done in linear time. Next split the edgeset E of G into the set E1 of edges oriented from one 
olour 
lass of G to theother, and the set E2 of edges oriented in the opposite dire
tion. Then (V;E1)and (V;E2) are 12k-regular bipartite graphs, in whi
h we 
an �nd optimum edge-
olourings re
ursively. Combining them gives an optimum edge-
olouring of G.The running time isO(km+ 2( 12k 12m) + 4( 14k 14m) + � � �) = O(km): (5)Hen
e:Theorem 3. An optimum edge-
olouring of a bipartite graph 
an be found inO(km) time, where k is the maximum degree.
3 Speed-up of Cole, Ost, and S
hirraThe above O(km) algorithm for perfe
t mat
hing in k-regular bipartite graphsraises the question if there is a linear-time algorithm, independent of k. This wasresolved positively by Cole, Ost, and S
hirra [5℄, by a re�nement of the methodabove, utilizing the data-stru
ture of `self-adjusting binary trees'. We outlinetheir method.A �rst improvement is not to repla
e w(e) by w(e) � 1 for the edges in C,but by w(e)� �, where � is the minimum weight of the edges in N . So at leastone edge in N gets weight 0.A se
ond improvement is to store the paths (`
hains') left in the 
ir
uit C(after removing the edges of weight 0), so that these 
hains 
an be used to speedup later 
ir
uit sear
hes. This requires that if in a later 
ir
uit sear
h we hitany su
h 
hain, then relatively fast we should be able to identify the ends of the
hain. (If we have to follow the 
hain vertex by vertex till its end, no gain inrunning time is obtained.) This 
an be done by supplying these 
hains with thedata stru
ture of self-adjusting binary trees (
f. Tarjan [19℄). To get the requiredrunning time, it turns out that these 
hains should have length at most k2 | inthe 
ase that they are longer, split them into 
hains of length about k2.A third improvement is a prepro
essing that redu
es the number of edges ofthe graph from 12kn to at most n log2 k. This is obtained as follows. Start withsetting w(e) := 1 for ea
h edge e. Next, su

essively, for i = 0; 1; : : : ; blog2 k
, dothe following. Consider the set Ei of edges of weight 2i. Iteratively (as above)�nd a 
ir
uit C in Ei, split EC arbitrarily into mat
hings M and N , and resetw(e) := w(e) + 2i = 2i+1 if e 2 M and w(e) := w(e) � 2i = 0 if e 2 N . (So inea
h iteration, the set Ei 
hanges.) In linear time we arrive at the situation that



Ei 
ontains no 
ir
uits, implying jEij � n�1. Then we go over to the 
ase i+1.So we end up with at most (about) n log2 k edges, together with a weighting wsatisfying (2).For ea
h i, the prepro
essing takes time linear in the size of the initial Ei,whi
h is at most 2�im. Hen
e the prepro
essing takes O(m) time in total. Itturns out that, using the �rst two improvements, the rest of the algorithm takesO(n log3 k) only, whi
h is faster than O(m).This gives the theorem of Cole, Ost, and S
hirra [5℄:Theorem 4. A perfe
t mat
hing in a regular bipartite graph 
an be found inlinear time.With the method des
ribed in Se
tion 2, it has as 
onsequen
e:Corollary 1. An optimum edge-
olouring of a bipartite graph 
an be found inO(m log k) time, where k is the maximum degree.
4 From �nding to 
ounting perfe
t mat
hingsWe now go over to the problem of 
ounting perfe
t mat
hings, or rather giving alower bound for their number. We �rst relate the algorithm des
ribed in Se
tion1, for �nding a perfe
t mat
hing in a 3-regular bipartite graph, to a lower boundof Voorhoeve [21℄ on the number of su
h perfe
t mat
hings.To this end, we modify the algorithm slightly. We may note that when fol-lowing the path Q in �nding the 
ir
uit, we 
an start immediately from thebeginning with removing edges. We don't have to wait till we have a 
ir
uit.This 
an be made more pre
ise as follows.Call a bipartite graph almost 3-regular if all verti
es have degree 3, ex
ept fortwo verti
es of degree 2 (automati
ally belonging to di�erent 
olour 
lasses). Soan almost 3-regular bipartite graph arises by deleting one edge from a 3-regularbipartite graph. Hen
e a linear-time algorithm for �nding a perfe
t mat
hingin an almost 3-regular bipartite graph yields the same for 3-regular bipartitegraphs. We des
ribe su
h an algorithm.Let G be an almost 3-regular bipartite graph, and let u be any of the twoverti
es of degree 2. To �nd a perfe
t mat
hing, we 
an assume that u is notin
ident with the other vertex of degree 2, and that it has two distin
t neighbours,x and y say. (Otherwise, there is an easy redu
tion.)Let u; s; t be the neighbours of x. Delete edge xs. Then edge ux be
omes themiddle edge of a path P = (y; u; x; t). Repla
e it by a new edge eP 
onne
tingy and t. Find re
ursively a perfe
t mat
hing M in the new graph G0. If eP is inM , repla
e it by yu and xt. If eP is not in M , add ux to M . We end up with aperfe
t mat
hing in G.As ea
h iteration takes 
onstant time, and as it redu
es the number of verti
esby 2, this gives a linear-time algorithm. This might be easier to implement thanthe algorithm des
ribed earlier, sin
e only lo
al operations are performed.



This method is in fa
t inspired by the method of Voorhoeve [21℄ to provethat any 3-regular bipartite graph has at least( 43 )n (6)perfe
t mat
hings, where, for 
onvenien
e, n denotes half of the number of ver-ti
es. To prove this bound, it suÆ
es to show that ea
h almost 3-regular bipartitegraph has at least ( 43 )n perfe
t mat
hings. Again, 
hoose a vertex u of degree 2,and we may assume that it has two distin
t neighbours of degree 3. (Otherwise,there is an easy indu
tion.) Let e1; : : : ; e4 be the edges in
ident with a neighbourof u but not with u. For i = 1; : : : ; 4, let Gi be the graph obtained from G bydeleting edge ei. Denote the number of perfe
t mat
hings in any graph H by�(H). Then, by indu
tion, �(Gi) � ( 43 )n�1 (7)for i = 1; : : : ; 4, sin
e repla
ing the path of length 3 through u by a new edge,gives an almost 3-regular bipartite graph Hi with 2(n � 1) verti
es and with�(Hi) = �(Gi). Moreover,�(G1) + � � �+ �(G4) = 3�(G); (8)sin
e ea
h perfe
t mat
hingM in G is maintained in pre
isely three of the Gi (asM 
ontains pre
isely one of e1; : : : ; e4). Combining (7) and (8) gives �(G) � ( 43 )n,as required.In
identally, this may look like an exa
t indu
tive 
al
ulation of �(G), butstri
t inequality is obtained in the redu
tion if u has no two distin
t neighboursof degree 3.So we have proved the theorem of Voorhoeve [21℄:Theorem 5. Any 3-regular bipartite graph on 2n verti
es has at least ( 43 )n per-fe
t mat
hings.With this, Voorhoeve answered a question posed by Erd}os and R�enyi [6℄whether there exists an exponential lower bound on the number of perfe
t mat
h-ings in 3-regular bipartite graphs. (The best bound proved before is only linearin n.)Erd}os and R�enyi formulated their question in terms of permanents, whi
hrelates to the Van der Waerden 
onje
ture (whi
h was not yet proved whenVoorhoeve gave his bound). The permanent of an n� n matrix A = (ai;j) isperA :=X� nYi=1 ai;�(i); (9)
where the sum ranges over all permutations � of f1; : : : ; ng. So if A is nonnegativeand integer, and we make the bipartite graph G with 
olour 
lasses fu1; : : : ; ungand fv1; : : : ; vng and with ai;j edges 
onne
ting ui and vj (for i; j = 1; : : : ; n),then perA is equal to the number of perfe
t mat
hings in G.



Call a matrix k-regular if it is nonnegative and integer and if ea
h row sumand ea
h 
olumn sum is equal to k. Then Erd}os and R�enyi asked for an expo-nential lower bound for the permanents of 3-regular matri
es.The Van der Waerden 
onje
ture (van der Waerden [22℄) asserts that thepermanents of any n� n doubly sto
hasti
 matrix is at leastn!nn : (10)(A matrix is doubly sto
hasti
 if it is nonnegative and ea
h row sum and ea
h
olumn sum is equal to 1.) The value (10) is attained if all entries of the matrixare equal to 1n . Van der Waerden's 
onje
ture remained open for more thanhalf a 
entury, despite 
onsiderable resear
h e�orts, and was �nally proved byFalikman [7℄.For ea
h k-regular matrix A, the matrix 1kA is doubly sto
hasti
 and satis�esper 1kA = k�nperA. So Van der Waerden's 
onje
ture implies that the permanentof any k-regular matrix is at leastknn!nn � (ke )n: (11)(This 
onsequen
e in fa
t 
an be seen to be equivalent to Van der Waerden's
onje
ture.) Hen
e also Falikman's theorem implies an exponential lower boundon the number of perfe
t mat
hings in 3-regular bipartite graphs. The lowerbound (ke )n was proved by Bang [1℄ and Friedland [9℄, thus also providing asolution of Erd}os and R�enyi's question.It 
an be proved that the ground number 43 in Voorhoeve's bound is bestpossible ([18℄). To this end, let �3 be the largest real su
h that ea
h 3-regularbipartite graph on 2n verti
es has at least �n3 perfe
t mat
hings. So �3 � 43 .To prove the reverse inequality, �x n, and 
onsider the 
olle
tion G of 3-regular bipartite graphs with 
olour 
lasses fu1; : : : ; ung and fv1; : : : ; vng andwith (labeled) edges e1; : : : ; e3n. ThenjGj = � (3n)!3!n �2 : (12)Indeed, it is equal to the square of the number of ordered partitions of f1; : : : ; 3nginto n 
lasses of size 3.We 
an also pre
isely 
ount for how many graphs G in G, a given subset Mof f1; : : : ; 3ng of size n forms a perfe
t mat
hing in G:�n! (2n)!2n �2 : (13)Sin
e M 
an be 
hosen in �3nn � ways, this implies that the number of pairs G;Mwith G 2 G and M is a perfe
t mat
hing in G is equal to�3nn ��n! (2n)!2n �2 : (14)



By (12) and by de�nition of �3, (14) has as lower bound:� (3n)!3!n �2 �n3 : (15)Therefore, �3 �  �3nn ��n! (2n)!2n �2� 3!n(3n)!�2!1=n n!1�! 43 : (16)(The latter limit uses Stirling's formula.) So �3 = 43 .
5 General kErd}os and R�enyi also asked for the value, for any k, of the largest real �k su
hthat ea
h k-regular bipartite graph G on 2n verti
es has at least �nk perfe
tmat
hings. So by Falikman's theorem (in fa
t, already by the results of Bangand Friedland), �k � ke . On the other hand, the same method as just des
ribedgives ([18℄) �k � (k � 1)k�1kk�2 : (17)In [18℄ it was also 
onje
tured that equality holds:�k = (k � 1)k�1kk�2 : (18)This in fa
t was be proved in [16℄. Hen
e:Theorem 6. Ea
h k-regular bipartite graph with 2n verti
es has at least� (k � 1)k�1kk�2 �n (19)perfe
t mat
hings.In 
ontrast with the simpli
ity of Voorhoeve's method for the 
ase k = 3, theproof for general k is highly 
ompli
ated. It is based on a te
hnique of assigningweights to the edges of the graph similar to the algorithm for �nding a perfe
tmat
hing in a k-regular bipartite graph des
ribed in Se
tion 1.Let us brie
y relate this bound to Falikman's bound. Both bounds are asymp-toti
ally best possible, in di�erent asymptoti
 dire
tions. Let �(k; n) denote theminimum permanent of k-regular n�n matri
es. (Equivalently, of the minimumnumber of perfe
t mat
hings, taken over all k-regular bipartite graphs with 2nverti
es.) So �k = infn2N �(k; n)1=n: (20)



Then in one asymptoti
 dire
tion one has by (18):infn2N �(k; n)1=nk = 1k�k = �k � 1k �k�1 : (21)In another dire
tion, by Falikman's theorem:infk2N �(k; n)1=nk = n!1=nn : (22)Note that both in (21) and in (22), the right-hand term 
onverges to 1=e, if k orn tends to in�nity.6 Appli
ation to the 3D dimer 
onstantWe �nally apply the lower bound des
ribed in Theorem 6 to obtain a betterlower bound for the 3-dimensional dimer problem. This is one of the 
lassi
alunsolved problems in solid-state 
hemistry. For integers d; n, 
onsider the `blo
k'Hd;n, whi
h is the graph with vertex set f1; : : : ; ngd, two verti
es being adja
entif and only if their Eu
lidean distan
e is 1. In this 
ontext, an edge is 
alleda dimer, and a perfe
t mat
hing a dimer tiling. Let td;n denote the number ofdimer tilings of Hd;n. So td;n > 0 if and only if n is even.Hammersley [11℄ showed that�d := limn!1 1(2n)d log td;2n (23)exists. In fa
t limn!1 1(2n)d log td;2n = supn 1(2n)d log td;2n: (24)Otherwise, there exists a k su
h thatlim infn!1 1(2n)d log td;2n < 1(2k)d log td;2k: (25)However, td;2n � (td;2k)bnk 
d ; (26)sin
e Hd;2n 
ontains bnk 
d disjoint 
opies of Hd;2k su
h that the rest has a perfe
tmat
hing. This implies that the left-hand side in (25) is at leastlim infn!1 bnk 
d(2n)d log td;2k; (27)whi
h is equal to the right-hand side of (25) | a 
ontradi
tion.So �d is de�ned. For d = 2, the value of �d was determined pre
isely byKasteleyn [14℄ and Temperley and Fisher [20℄:�2 = 1� 1Xi=0 (�1)i(2i+ 1)2 = 0:29156090 : : : : (28)



The proof uses the fa
t that H2;n is planar, and that the graph therefore has a`PfaÆan' orientation, making it possible to 
ount dimer tilings by 
al
ulating adeterminant.For dimensions larger than two, no su
h orientation exists, and no exa
tformula for �d is known. Sin
e Hd;n is bipartite and `almost' 2d-regular, one
ould try to apply the results obtained earlier. In fa
t one has:Theorem 7. �d � 12 log�2d:To see this, for ea
h i 2 f1; : : : ; dg and ea
h j 2 f1; 2ng, let Mi;j be a perfe
tmat
hing in the subgraph of Hd;2n spanned byfx 2 f1; : : : ; 2ngd j xi = jg: (29)(So this set represents a `fa
e' of Hd;2n.) Let H 0d;2n be the 2d-regular bipartitegraph obtained from Hd;2n by adding parallel edges for the edges in the Mi;j .Then H 0d;2n has more perfe
t mat
hing than Hd;2n has, but not too mu
h more:�(H 0d;2n) � 2d(2n)d�1�(Hd;2n): (30)This follows from the fa
ts that we have added d(2n)d�1 parallel edges, and thatadding any su
h edge at most doubles the number of perfe
t mat
hings.Sin
e �(H 0d;2n) � �(2n)d=22d (by de�nition of �2d), we have�(Hd;2n) � 2�d(2n)d�1�(2n)d=22d : (31)Therefore,�d � supn 1(2n)d log �2�d(2n)d�1�(2n)d=22d � = supn ( 12 log�2d � d log 22n )= 12 log �2d; (32)proving Theorem 7.Evaluation for d = 3 by using �6 = 55=64, gives the best known lower boundfor �3: �3 � 0:44007584 : : : : (33)The best known upper bound is due to Lundow [15℄: 0:457547 : : :. Computationalexperiments of Bei
hl and Sullivan [2℄ suggest that �3 = 0:4466� 0:0006.
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