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Abstract. We show that for each fixed k, the problem of finding k pairwise vertex-disjoint directed
paths between given pairs of terminals in a directed planar graph is solvable in polynomial time.

1. Introduction and statement of result

In this paper we show that the following problem, the k disjoint paths problem for

directed planar graphs, is solvable in polynomial time, for any fixed k:

given: a directed planar graph D = (V,A) and k pairs (r1, s1), . . . , (rk, sk) of
vertices of D;

find: k pairwise vertex-disjoint directed paths P1, . . . , Pk inD, where Pi runs
from ri to si (i = 1, . . . , k).

(1)

The problem is NP-complete if we do not fix k (even in the undirected case; Lynch
[2]). Moreover, it is NP-complete for k = 2 if we delete the planarity condition (Fortune,
Hopcroft, and Wyllie [1]). This is in contrast to the undirected case (for those believing
NP6=P), where Robertson and Seymour [4] showed that, for any fixed k, the k disjoint paths
problem is polynomial-time solvable for any graph (not necessarily planar).

In this paper we do not aim at obtaining the best possible running time bound, as we
presume that there are much faster (but possibly more complicated) methods for (1) than
the one we describe in this paper. In fact, recently Reed, Robertson, Schrijver, and Seymour
[3] showed that for undirected planar graphs the k disjoint paths problem can be solved
in linear time, for any fixed k. This algorithm makes use of methods from Robertson and
Seymour’s theory of graph minors. A similar algorithm for directed planar graphs might
exist, but probably would require extending parts of graph minors theory to the directed
case.

Our method is based on cohomology over free (nonabelian) groups. For the k disjoint
paths problem we use free groups with k generators. It extends methods given in [5]
for undirected graphs on surfaces based on homotopy. Cohomology is in a sense dual
to homology, and can be defined in any directed graph, even if it is not embedded on
a surface. We apply cohomology to an extension of the planar graph dual of D—just
applying homology to D itself seems not powerful enough.
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We remark that in our approach free groups and (co)homology are used mainly as a
framework to formulate certain ideas smoothly; they give us a convenient tool for recording
shifts of curves over the plane. No deep group theory or topology is used. We could avoid
free groups and cohomology by adopting a more complex notation and terminology, that
would, however, implicitly mimic free groups and cohomology. The present approach also
readily allows application of the algorithm where the embedding of the graph in the plane
is given combinatorially, that is, by a list of the cycles that bound the faces of the graph.

2. The cohomology feasibility problem

2.1. Free groups

The free group Gk, generated by the generators g1, g2, . . . , gk, consists of all words
b1b2 . . . bt where t ≥ 0 and b1, . . . , bt ∈ {g1, g

−1
1 , . . . , gk, g

−1

k } such that bibi+1 6= gjg
−1
j and

bibi+1 6= g−1
j gj for i = 1, . . . t − 1 and j = 1, . . . , k. The product x · y of two such words is

obtained from the concatenation xy by deleting iteratively all occurrences of any gjg
−1
j and

g−1
j gj . (So in our notation x · y 6= xy in general.) This defines a group, with unit element 1

equal to the empty word ∅. We call g1, g
−1
1 , . . . , gk, g

−1

k the symbols. The size |x| of a word
x is the number of symbols occurring in it, counting multiplicities.

A word y is called a segment of a word w if w = xyz for certain words x, z. It is called
a beginning segment if x = 1 and an end segment if z = 1. A subset Γ of a free group is
called hereditary if for each word y ∈ Γ, each segment of y belongs to Γ.

We define a partial order ≤ on Gk by:

x ≤ y ⇔ x is a beginning segment of y.(2)

This gives a lattice if we extend Gk with an element ∞ at infinity. We denote the meet and
join by ∧ and ∨. So x ∧ y is equal to the longest common beginning segment of x and y.
Moreover, x ∨ y = ∞ except if x ≤ y or y ≤ x.

We make two easy observations.

Lemma 1. Let α be a symbol and let x, z ∈ Gk. If x ≤ α · z and z ≤ α−1 · x then

x−1 · α · z = 1 or x = z = 1.

Proof. Let y := x−1 · α · z, and suppose that y 6= 1. Since x ≤ α · z, it follows that
α · z = xy′ for some y′, and hence y = x−1 · α · z = x−1 · (xy′) = y′. Consequently
xy ∈ Gk; and since z ≤ α−1 · x it follows similarly that zy−1 ∈ Gk, that is, yz−1 ∈ Gk.
Since y 6= 1 this implies that xyz−1 ∈ Gk, and so α = x · y · z−1 = xyz−1. In particular,
1 = |α| = |x| + |y| + |z| ≥ |x| + 1 + |z|. Therefore, x = z = 1.

Lemma 2. Let x, y ∈ Gk. If x 6≤ y then the last symbol of x is equal to the last symbol of

y−1 · x.

Proof. Let z := x ∧ y. Write x = zx′ and y = zy′, where x′ 6= 1. Let α be the first symbol
of x′. Since z = x ∧ y we know α 6≤ y′. Hence (y′)−1 · x′ = (y′)−1x′ (i.e., no cancellation).
Consequently,

y−1 · x = ((y′)−1z−1) · (zx′) = (y′)−1 · x′ = (y′)−1x′.(3)
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Hence, as x′ 6= 1, the last symbol of x is equal to the last symbol of y−1 · x.

2.2. The cohomology feasibility problem for free groups

Let D = (V,A) be a weakly connected directed graph, let r ∈ V , and let (G, ·) be a
group. (We allow directed graphs to have parallel arcs.) Two functions φ, ψ : A −→ G are
called r-cohomologous if there exists a function f : V −→ G such that:

(i) f(r) = 1;

(ii) ψ(a) = f(u)−1 · φ(a) · f(w) for each arc a = (u,w).

(4)

One easily checks that this gives an equivalence relation.
Consider the following cohomology feasibility problem for free groups:

given: a weakly connected directed graph D = (V,A), a vertex r, a function
φ : A −→ Gk, and for each a ∈ A a hereditary subset Γ(a) of Gk;

find: a function ψ : A −→ Gk such that ψ is r-cohomologous to φ and such
that ψ(a) ∈ Γ(a) for each arc a.

(5)

We show:

Theorem 1. The cohomology feasibility problem for free groups is solvable in time bounded

by a polynomial in |A| + σ + k.

Here σ is the maximum size of the words φ(a) and the words in the Γ(a). (In fact we can
drop k and assume that Gk is the free group generated by the generators occurring in the
φ(a) and the words in the Γ(a).)

Note that, by the definition of r-cohomologous, equivalent to finding a ψ as in (5), is
finding a function f : V −→ Gk satisfying:

(i) f(r) = 1;

(ii) f(u)−1 · φ(a) · f(w) ∈ Γ(a) for each arc a = (u,w).

(6)

We call such a function f feasible.
In solving the cohomology feasibility problem for free groups we may assume:

(i) Γ(a) 6= ∅ for each arc a;

(ii) |φ(a)| ≤ 1 for each arc a;

(iii) with each arc a = (u,w) also a−1 = (w, u) is an arc, with φ(a−1) =
φ(a)−1 and Γ(a−1) = Γ(a)−1.

(7)

Here Γ(a)−1 := {x−1|x ∈ Γ(a)}. Condition (7)(ii) can be attained by replacing any arc
a = (u,w) such that φ(a) = β1 . . . βt and t ≥ 2 by a u − w path a1 . . . at with φ(ai) := βi

(i = 1, . . . , t) and Γ(a1) := Γ(a) and Γ(ai) := {1} (i = 2, . . . , t). (Here and below we indicate
a path P by the string of arcs traversed by P (in the order traversed by P ). If P traverses
an arc a in backward direction, then we denote this in the string by a−1. For instance,
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P = a1a
−1
2 a3 means that P traverses first a1 in forward direction, next a2 in backward

direction, and finally a3 in forward direction. The arcs need not be distinct.)

2.3. Pre-feasible functions

Let input D = (V,A), r, φ,Γ for the cohomology feasibility problem for free groups (5)
be given, assuming (7). We call a function f : V −→ Gk pre-feasible if:

(i) f(r) = 1;

(ii) for each arc a = (u,w) with f(u)−1 ·φ(a) · f(w) 6∈ Γ(a) one has f(u) =
f(w) = 1.

(8)

Define a partial order ≤ on the set GV
k of all functions f : V −→ Gk by:

f ≤ g ⇔ f(v) ≤ g(v) for each v ∈ V .(9)

It is easy to see that GV
k forms a lattice if we add an element ∞ at infinity. Let ∧ and ∨

denote the meet and join.
Pre-feasibility behaves nicely with respect to this lattice:

Proposition 1. If f1 and f2 are pre-feasible then so is f := f1 ∧ f2.

Proof. Clearly f(r) = 1. Let a = (u,w) be an arc such that y := f(u)−1 · φ(a) · f(w) 6∈
Γ(a) while not f(u) = f(w) = 1. By Lemma 1 and by symmetry we may assume that
f(u) 6≤ φ(a) · f(w). Let x and x′ be such that f1(u) = f(u)x and f2(u) = f(u)x′, and let z
and z′ be such that f1(w) = f(w)z and f2(w) = f(w)z′. Let α and β be the first and last
symbol, respectively, of y. Since z1 ∧ z2 = 1 we know β−1 6≤ z or β−1 6≤ z′. Without loss of
generality, β−1 6≤ z.

Since f(u) 6≤ φ(a) ·f(w), by Lemma 2 the first symbol of f(u)−1 is equal to α. So α 6≤ x,
and hence

f1(u)
−1 · φ(a) · f1(w) = x−1 · y · z = x−1yz.(10)

So y is a segment of f1(u)
−1 · φ(a) · f1(w). By the heredity of Γ(a) this implies that

f1(u)
−1 · φ(a) · f1(w) 6∈ Γ(a). So, as f1 is pre-feasible, f1(u) = f1(w) = 1. Therefore

f(u) = f(w) = 1.

So for any function f : V −→ Gk there exists a smallest pre-feasible function f̄ ≥ f ,
provided there exists at least one pre-feasible function g ≥ f . If no such g exists we set
f̄ := ∞. We observe:

Proposition 2. If f̄ is finite then:

(i) f(r) = 1 and |f(v)| < 2σ|V | for each vertex v;

(ii) for each arc a = (u,w): if f(u)−1 · φ(a) · f(w) 6∈ Γ(a) then f(u) ≤
φ(a) · f(w) or f(w) ≤ φ(a−1) · f(u).

(11)
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Proof. Clearly, f(r) ≤ f̄(r) = 1. Moreover, by induction on the minimum number t of arcs
in any r − v path one shows |f̄(v)| ≤ 2σt. Indeed, if a = (u, v) is the last arc in the path
then y := f̄(u)−1 ·φ(a) · f̄(v) belongs to Γ(a) or is equal to φ(a), and hence has size at most
σ. So

|f̄(v)| = |f̄(u) · φ(a)−1 · y| ≤ |f̄(u)| + |φ(a)| + σ ≤ 2σ(t− 1) + 1 + σ ≤ 2σt.(12)

This implies |f(v)| ≤ |f̄(v)| < 2σ|V |.
To see (ii), suppose f(u) 6≤ φ(a) · f(w) and f(w) 6≤ φ(a−1) · f(u). The first implies

(by Lemma 2) that the first symbol of f(u)−1 · φ(a) · f(w) is equal to the first symbol of
f(u)−1. The second implies (again by Lemma 2) that the last symbol of f(u)−1 ·φ(a) ·f(w)
is equal to the last symbol of f(w). Since f ≤ f̄ , it follows that f(u)−1 · φ(a) · f(w) is a
segment of f̄(u)−1 · φ(a) · f̄(w). So f̄(u)−1 · φ(a) · f̄(w) 6∈ Γ(a). Hence, as f̄ is pre-feasible,
f̄(u) = f̄(w) = 1, and therefore f(u) = 1. This contradicts the fact that f(u) 6≤ φ(a) ·f(w).

2.4. A subroutine finding f̄

Let input D = (V,A), r, φ,Γ for the cohomology feasibility problem for free groups (5)
be given, again assuming (7). We describe a polynomial-time subroutine that outputs f̄ for
any given f : V −→ Gk.

If f is pre-feasible, output f̄ := f . If f violates (11), output f̄ := ∞. Otherwise choose
an arc a = (u,w) satisfying f(u)−1 · φ(a) · f(w) 6∈ Γ(a) and f(w) 6≤ φ(a−1) · f(u) (as f is
not pre-feasible and satisfies (11), such an arc exists by Lemma 1). Perform the following

Iteration: Write φ(a) · f(w) = xy, with y ∈ Γ(a) and |y| as large as possible, and reset
f(u) := x,

and start anew.

Proposition 3. In the iteration, resetting f increases |f(u)| and does not change f̄ .

Proof. Consider the iteration. Denote by f ′ the reset f . As (11)(ii) holds, f(u) ≤ φ(a) ·
f(w). Since f(u)−1 · φ(a) · f(w) 6∈ Γ(a), f(u) is a segment of x with f(u) 6= x. So
|f ′(u)| > |f(u)|.

To see f̄ ′ = f̄ , we must show f ′ ≤ f̄ , that is, f ′(u) ≤ f̄(u) if f̄ is finite. Suppose that f̄
is finite and that f ′(u) 6≤ f̄(u). Let β be the last symbol of x = f ′(u). As x 6≤ f̄(u) and as
φ(a) · f(w) = xy, βy is an end segment of f̄(u)−1 · φ(a) · f(w).

Since φ(a) · f(w) 6≤ f̄(u) (as x ≤ φ(a) · f(w)), by Lemma 2 the last symbol of f̄(u)−1 ·
φ(a) · f(w) is equal to the last symbol of φ(a) · f(w). Since φ(a) · f(w) 6≤ f(u) (as x ≤
φ(a) · f(w) and f(u) ≤ f̄(u)), by Lemma 2 the last symbol of φ(a) · f(w) is equal to the
last symbol of f(u)−1 ·φ(a) · f(w). Since f(w) 6≤ φ(a−1) · f(u), by Lemma 2 the last symbol
of f(u)−1 · φ(a) · f(w) is equal to the last symbol of f(w). Concluding, the last symbol
of f̄(u)−1 · φ(a) · f(w) is equal to the last symbol of f(w). Hence f̄(u)−1 · φ(a) · f(w) is a
beginning segment of f̄(u)−1 · φ(a) · f̄(w). So βy is a segment of f̄(u)−1 · φ(a) · f̄(w), and
hence βy belongs to Γ(a). This contradicts the maximality of y.
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Since at each iteration |f(u)| increases for some vertex u, after at most 2σ|V |2 iterations
either we get a prefeasible function f or (11) is violated. Thus the subroutine is polynomial-
time.

2.5. Algorithm for the cohomology feasibility problem for free groups

Let input D = (V,A), r, φ,Γ for the cohomology feasibility problem for free groups (5)
be given. We find a feasible function f as follows.

Again we may assume (7). For every a = (u,w) ∈ A let fa be the function defined by:
fa(u) := φ(a) and fa(v) := 1 for each v 6= u. Let E be the set of pairs {a, a′} from A for
which f̄a ∨ f̄a′ is finite and pre-feasible. Let E ′ be the set of pairs {a, a−1} with a ∈ A and
φ(a) 6∈ Γ(a).

We search for a subset X of A such that each pair in X belongs to E and such that X
intersects each pair in E ′. This is a special case of the 2-satisfiability problem, and hence
can be solved in polynomial time.

Proposition 4. If X exists then the function f :=
∨

a∈X f̄a is feasible. If X does not exist

then there is no feasible function.

Proof. First assume that X exists. Let f be as given. Since f̄a∨ f̄a′ is finite and pre-feasible
for each two a, a′ in X, f is finite and f(r) = 1. Moreover, suppose f(u)−1·φ(a)·f(w) 6∈ Γ(a)
for some arc a = (u,w). Let f(u) = f̄a′(u) and f(w) = f̄a′′(w) for a′, a′′ ∈ X. As f̄a′ ∨ f̄a′′

is pre-feasible, f̄a′(u) = f̄a′′(w) = 1. So φ(a) 6∈ Γ(a), and hence a or a−1 belongs to X. By
symmetry we may assume a ∈ X. Then

φ(a) = fa(u) ≤ f̄a(u) ≤ f(u) = f̄a′(u) = 1,(13)

a contradiction.
Assume conversely that there exists a feasible function f . Let X be the set of arcs

a = (u,w) with the property that φ(a) ≤ f(u). Then X intersects each pair in E ′. For let
a = (u,w) be an arc satisfying a 6∈ X and a−1 6∈ X, that is, φ(a) 6≤ f(u) and φ(a−1) 6≤ f(w).
Hence f(u)−1·φ(a)·f(w) = f(u)−1φ(a)f(w). So f(u)−1·φ(a)·f(w) contains φ(a) as segment
(as |φ(a)| ≤ 1). So φ(a) ∈ Γ(a) and hence {a, a−1} 6∈ E′.

Moreover, each pair in X belongs to E. For let {a′, a′′} be a pair in X. We show
that {a′, a′′} ∈ E, that is, f ′ := f̄a′ ∨ f̄a′′ is finite and pre-feasible. As a′ ∈ X, we have
φ(a′) ≤ f(u) and hence fa′ ≤ f , implying f̄a′ ≤ f . Similarly, f̄a′′ ≤ f . So f ′ is finite and
f ′(r) = 1. Consider an arc a = (u,w) with y := f ′(u)−1 · φ(a) · f ′(w) 6∈ Γ(a). We may
assume f ′(u) = f̄a′(u) and f ′(w) = f̄a′′(w) (since f̄a′ and f̄a′′ are pre-feasible). To show
f ′(u) = f ′(w) = 1, by Lemma 1 we may assume f ′(w) 6≤ φ(a−1) · f ′(u).

First assume f ′(u) 6≤ φ(a) · f ′(w). Then by Lemma 2 the first and the last symbol of
y are equal to the first symbol of f ′(u)−1 and the last symbol of f ′(w), respectively. Since
f ′ ≤ f this implies that y is a segment of f(u)−1 · φ(a) · f(w) ∈ Γ(a). This contradicts the
heredity of Γ(a) as y 6∈ Γ(a).

Second assume f ′(u) ≤ φ(a) · f ′(w). So φ(a) · f ′(w) = f ′(u)y for some y. Since f̄a′′(u) ≤
f ′(u) it follows that y is an end segment of

f̄a′′(u)−1 · (f ′(u)y) = f̄a′′(u)−1 · φ(a) · f ′(w) = f̄a′′(u)−1 · φ(a) · f̄a′′(w).(14)
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So f̄a′′(u)−1 · φ(a) · f̄a′′(w) 6∈ Γ(a), since y 6∈ Γ(a). As f̄a′′ is pre-feasible, this implies
f̄a′′(u) = f̄a′′(w) = 1; so f ′(w) = 1. Hence f ′(u) ≤ φ(a) and therefore, since y 6∈ Γ(a) and
|φ(a)| ≤ 1, f ′(u) = 1.

Thus we have proved Theorem 1.

3. The k disjoint paths problem for directed planar graphs

3.1. Directed planar graphs, R-homology and flows

Let input D = (V,A), r1, s1, . . . , rk, sk for problem (1) be given. In solving (1) we may
assume that D is weakly connected, and that for each i = 1, . . . , k, ri is incident with exactly
one arc, which is leaving ri, and si is incident with exactly one arc, which is entering si.
We fix an embedding of D. Let F denote the collection of faces of D and let R be the
unbounded face of D.

Call two functions φ, ψ : A −→ Gk R-homologous if there exists a function f : F −→ Gk

such that

(i) f(R) = 1;

(ii) f(F )−1 · φ(a) · f(F ′) = ψ(a) for each arc a, where F and F ′ are the
faces at the left-hand side and right-hand side of a, respectively.

(15)

The relation to cohomologous is direct by duality. The dual graph D∗ = (F , A∗) of D
has as vertex set the collection F of faces of D, while for any arc a of D there is an arc a∗

of D∗ from the face of D at the left-hand side of a to the face at the right-hand side. Define
for any function φ on A the function φ∗ on A∗ by φ∗(a∗) := φ(a) for each a ∈ A. Then φ

and ψ are R-homologous (in D) if and only if φ∗ and ψ∗ are R-cohomologous (in D∗).
For any solution Π = (P1, . . . , Pk) of (1) let ψΠ : A −→ Gk be defined by: ψΠ(a) := gi

if path Pi traverses a (i = 1, . . . , k), and ψΠ(a) := 1 if a is not traversed by any of the Pi.
Call a function φ : A −→ Gk a flow if for each vertex v ∈ V with v 6∈ {r1, s1, . . . , rk, sk}

one has

φ(a1)
ε1 · φ(a2)

ε2 · . . . · φ(an)εn = 1,(16)

where a1, . . . , an are the arcs incident with v, in clockwise order, where εi = +1 if ai has
its tail at v and εi = −1 if ai has its head at v (if ai happens to be a loop we take εi = +1
and εi = −1 at the corresponding positions in (16)), and if moreover for any arc a incident
with ri or si one has φ(a) = gi (i = 1, . . . , k).

Clearly, if Π is a solution of (1) then ψΠ is a flow. Moreover, if φ is a flow and φ′ is
R-homologous to φ, then also φ′ is a flow.

3.2. Deriving a solution from a flow

We first show:

Proposition 5. There exists a polynomial-time algorithm that, for any flow φ, either finds

a solution Π of (1) or concludes that there does not exist a solution Π of (1) such that ψΠ

is R-homologous to φ.
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[Here polynomial-time means: polynomial-time in the size of D and the maximum size
of the φ(a). Note that it is not required that if we find a solution Π of (1), then ψΠ is
R-homologous to φ.]

Proof. Let φ be a flow. Consider the dual graph D∗ = (F , A∗) of D. We construct the
‘extended’ dual graph D+ = (F , A+) by adding in each face of D∗ all chords. (So D+ need
not be planar.) More precisely, for any two vertices F,F ′ of D∗ and any (undirected) F −F ′

path π on the boundary of any face of D∗, extend the graph with an arc, denoted by aπ,
from F to F ′. Define φ+ : A+ −→ Gk by:

(i) φ+(a∗) := φ(a) for each arc a of D;

(ii) φ+(aπ) := φ(a1)
ε1 · . . . · φ(at)

εt for any path π = (a∗1)
ε1 . . . (a∗t )

εt with
ε1, . . . , εt ∈ {+1,−1}.

(17)

(As before, (a∗i )
−1 means that π traverses a∗i in backward direction.) Moreover, let Γ(a∗) :=

{1, g1, . . . , gk} and Γ(aπ) := {1, g1, g
−1
1 , . . . , gk, g

−1

k }.
By Theorem 1 we can find in polynomial time a function ψ that is R-cohomologous to

φ+ in D+, with ψ(b) ∈ Γ(b) for each arc b of D+, provided that such a ψ exists. If we find
such a ψ, let Pi be any directed ri − si path traversing only arcs a satisfying ψ(a∗) = gi

(for i = 1, . . . , k). (Such paths exist since φ is a flow.) Then P1, . . . , Pk form a solution to
(1). Indeed, P1, . . . , Pk are vertex-disjoint, for suppose that there exist arcs a and b of D
that are both incident with a vertex v and ψ(a∗) = g±1

i , ψ(b∗) = g±1
j , and i 6= j. Consider

a shortest path π along the face of D∗ corresponding to v such that π contains arcs a∗ and
b∗. We may assume that we have chosen a and b such that π is as short as possible. Then
|ψ(aπ)| ≥ 2, as ψ(aπ) contains both g±1

i and g±1
j (neither of them can be cancelled, since a

and b are chosen so that π is shortest). This contradicts the fact that ψ(aπ) ∈ Γ(aπ).
If we do not find such a function ψ, we may conclude that there does not exist a solution

Π of (1) such that ψΠ is R-homologous to φ, since otherwise the cohomology feasibility
problem has a solution, viz. ψ := (ψΠ)+.

3.3. Enumerating homology types

In this section we show:

Proposition 6. For each fixed k, we can find in polynomial time flows φ1, . . . , φN with the

property that for each solution Π of (1), ψΠ is R-homologous to at least one of φ1, . . . , φN .

Proof. Consider systems Π = (P1, . . . , Pk) satisfying:

(i) Pi is an undirected path from ri to si, not traversing the same edge
more than once, and not having any self-crossing (i = 1, . . . , k);

(ii) Pi and Pj are edge-disjoint and do not have any crossing (i, j =
1, . . . , k; i 6= j).

(18)

(An undirected path is a path that may traverse arcs in backward direction.)
For any such system Π, define ψΠ : A −→ Gk by ψΠ(a) := gi if Pi traverses a in forward

direction, ψΠ(a) := g−1
i if Pi traverses a in backward direction (i = 1, . . . , k), and ψΠ(a) := 1

if a is not traversed by any Pi.
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We will show that for each fixed k, we can find in polynomial time flows φ1, . . . , φN with
the property that

for each Π satisfying (18), ψΠ is R-homologous to at least one of φ1, . . . , φN .(19)

This is stronger than what we need to show.
Consider a nonloop arc a′ not incident with any ri or si. Contract a′, yielding graph D′.

Let φ′1, . . . , φ
′
N be flows in D′ satisfying (19) with respect to D′. Then for each j there is

a unique flow φj in D such that φj(a) = φ′j(a) for each arc a 6= a′. Moreover, if Π satisfies
(18) in D, then contracting a′ gives a system Π′ satisfying (18) in D′. Hence there exists
a j such that φ′j is R-homologous to ψΠ′ (in D′), implying that φj is R-homologous to ψΠ

(in D).
Concluding, we can obtain from a system of flows satisfying (19) for D′ a system of flows

satisfying (19) for D. Repeating this we obtain that we may assume that there is only one
vertex v in V \ {r1, s1, . . . , rk, sk}, and that each arc not incident with r1, s1, . . . , rk, sk is a
loop at v. We may assume that each loop is oriented clockwise (since presently we are inter-
ested in undirected paths). For each loop l let Xl be the set of vertices in r1, s1, . . . , rk, sk

enclosed by l. Call loops l, l′ parallel if Xl = Xl′ . Trivially, there are at most 22k parallel
classes. (By Euler’s theorem, there are at most 4k parallel classes, but we do not need this
stronger bound, since k is fixed.)

If Π satisfies (18), then there is a system Π′ satisfying (18) such that ψΠ′ is R-homologous
to ψΠ and such that the paths in Π do not contain any loop l with Xl = ∅ and do not contain
l′l−1 or l−1l′ for any two parallel loops l, l′. So we can restrict the systems Π to systems
having this additional property.

For any such system Π and any two subsets B,C ⊆ {a, a−1|a ∈ A}, let xΠ(B,C) denote
the number of occurrences of bc in the paths in Π such that b ∈ B, c ∈ C. Then Π is up to
R-homology fully determined by the system of numbers xΠ(B,C), where B and C range
over all sets

L,L−1 (L a parallel class of loops),
{(ri, v)}, {v, si} (i = 1, . . . , k),

(20)

with L−1 := {l−1|l ∈ L}. Since each such number xΠ(B,C) is at most |A| and since there
are at most 2(k + 22k) sets among (20), for fixed k we can enumerate all possibilities in
polynomial time.

3.4. The disjoint paths problem

Theorem 2. For each fixed k, the k disjoint paths problem for directed planar graphs (1)
is solvable in polynomial time.

Proof. By Proposition 6 we can find in polynomial time (fixing k) a list of flows φ1, . . . , φN

such that for each solution Π of (1), ψΠ is R-homologous to at least one of the φj .
Now for each j = 1, . . . , N we apply the algorithm of Proposition 5 to input φj . If for

some j we find a solution Π of problem (1) we are done. If for each of j = 1, . . . , N it
concludes that there is no solution Π of (1) such that ψΠ is R-homologous to φj , we may
conclude that (1) has no solution at all.
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Quite directly one can extend the method to the following problem:

given: a directed planar graph D = (V,A), k pairs (r1, s1), . . . , (rk, sk) of
vertices of D, and subsets A1, . . . , Ak of A;

find: k pairwise vertex-disjoint directed paths P1, . . . , Pk inD, where Pi runs
from ri to si and uses only arcs in Ai (i = 1, . . . , k).

(21)

The polynomial-time solvability of this problem (for fixed k) follows by restricting in the
proof of Proposition 5 each Γ(a∗) to those gi for which Ai contains a.
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