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Abstract. We sharpen the characterization of Szegedy of graph invariants

fb(G) =
∑

φ:EG→[n]

∏

v∈V G

b(φ(δ(v))),

where b is a real-valued function defined on the collection of all multisubsets of [n] := {1, . . . , n}.

1. Introduction

Laci Lovász is a main inspirator of the new area of graph limits and graph connection
matrices and their relations to graph parameters, partition functions, mathematical physics,
reflection positivity, and extremal combinatorics. Prompted by Lovász’s questions, Balázs
Szegedy [5] characterized graph invariants in the ‘edge model’. His proof is based on a
highly original combination of methods from invariant theory and real algebraic geometry.
It answers a question formulated in [1], which paper considers the corresponding ‘vertex
model’.

In this paper we give a sharpening of Szegedy’s theorem and give a slightly shorter
proof, although parts of our proof follow the scheme of Szegedy’s proof. New elements
of the present paper are the connections between linking of graphs and differentiation of
polynomials and the use of a deep theorem of Procesi and Schwarz [4] in real invariant
theory.

Let G be the collection of all finite graphs, where two graphs are considered to be
the same if they are isomorphic. Graphs may have loops and multiple edges. Moreover,
‘pointless’ edges are allowed, that is, loops without a vertex. We use the notation

(1) [n] := {1, . . . , n}

for any n ∈ N, where N = {0, 1, 2, . . .}.
A graph invariant is any function f : G → R. In this paper, as in Szegedy [5], we

consider graph invariants obtained as follows. Let n ∈ N and let An be the collection of
all multisubsets of [n], that is, of all multisets with elements from [n]. (So each element of
[n] has a ‘multiplicity’ in any α ∈ An. There is a one-to-one relation between An and N

n,
given by the multiplicities of i ∈ [n] in a multiset α ∈ An.)

For b : An → R define fb : G → R by

(2) fb(G) =
∑

φ:EG→[n]

∏

v∈V G

b(φ(δ(v)))
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for G ∈ G. Here V G and EG denote the sets of vertices and edges of G, respectively, δ(v)
is the set of edges incident with v, and φ(δ(v)) is the multiset of φ-values on δ(v), counting
muytiplicities. (Actually, also δ(v) is a multiset, as loops at v occur twice in δ(v).)

Several graph invariants are equal to fb for some appropriate b. For instance, the number
of proper n-edge-colourings of a graph G is equal to fb(G), where, for α ∈ An, b(α) = 1 if
all elements of [n] have multiplicity 0 or 1 in α, and b(α) = 0 otherwise. The number of
perfect matchings in G is equal to fb(G) for n = 2 and b(α) = 1 if the multiplicity of 1 in
α is equal to 1, and b(α) = 0 otherwise. For more background, see de la Harpe and Jones
[3] and Freedman, Lovász, and Schrijver [1].

We characterize which graph invariants f satisfy f = fb for some n ∈ N and b : An → R,
extending the characterizing of Szegedy [5]. We also prove that fb = fc if and only if c
arises from b by an orthogonal transformation. (Szegedy proved sufficiency here.)

2. The characterization

To describe the characterization, call a graph invariant f multiplicative if f(K0) = 1 and
f(GH) = f(G)f(H) for any G,H ∈ G. Here K0 is the graph with no vertices and no edges,
and GH denotes the disjoint union of G and H.

We also need the following operation. Let u and v be distinct vertices of a graph G,
and let π be a bijection from δ(u) to δ(v). (This obviously requires that deg(u) = deg(v).)
Let Gu,v,π be the graph obtained as follows (where we consider the graph as topological
space). Delete u and v from G, and for each e ∈ δ(u), reconnect e to π(e). So the open
ends of e and π(e) are glued together with a new topological point (which however will not
be a vertex). It might be that e = π(e) (so e connects u and v), in which case we create a
pointless loop.

We need a repeated application of this operation, denoted as follows. Let u1, v1, . . . , uk, vk
be distinct vertices of graph G and let πi : δ(ui) → δ(vi) be a bijection, for each i = 1, . . . , k.
Then we set

(3) Gu1,v1,π1,...,uk,vk ,πk
:= (· · · (Gu1,v1,π1) · · · )uk ,vk,πk

.

Now define the G × G matrix Mf,k by

(4) (Mf,k)G,H :=
∑

u1,v1,π1,...,uk,vk,πk

f((GH)u1,v1,π1,...,uk,vk,πk
)

for G,H ∈ G, where the sum extends over all distinct u1, . . . , uk ∈ V G, distinct v1, . . . , vk ∈
V H, and bijections πi : δG(ui) → δH(vi), for i = 1, . . . , k.

Theorem 1. Let f : G → R. Then f = fb for some n ∈ N and some b : An → R if and

only if f is multiplicative and Mf,k is positive semidefinite for each k = 0, 1, . . ..

The positive semidefiniteness of Mf,k can be seen as a form of ‘reflection positivity’ of f .
In Section 6, we derive Szegedy’s characterization from Theorem 1. In Section 7 we prove
that b is uniquely determined by f , up to certain orthogonal transformations.
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3. Some framework

Let Q denote the collection of all formal real linear combinations
∑

G γGG of graphs (with at
most finitely many γG nonzero). These are called quantum graphs. By taking the disjoint
union GH as multiplication, Q becomes a commutative algebra. The function f can be
extended linearly to Q.

For G,H ∈ G and k ∈ N, define the quantum graph λk(G,H) by

(5) λk(G,H) :=
∑

u1,v1,π1,...,uk,vk,πk

(GH)u1,v1,π1,...,uk,vk,πk
,

where the sum is taken over the same set as in (4). We can extend λk(G,H) linearly to a
bilinear function Q×Q → Q. As

(6) Mf,k(G,H) = f(λk(G,H)),

the positive semidefiniteness of Mf,k is equivalent to the fact that f(λk(γ, γ)) ≥ 0 for each
γ ∈ Q.

For each α ∈ An, we introduce a variable xα. For each G ∈ G, define the following
polynomial in R[xα | α ∈ An]:

(7) pn(G) :=
∑

φ:EG→[n]

∏

v∈V G

xφ(δ(v)).

So fb(G) = pn(G)(b) for any b : An → R. We extend pn linearly to Q.
Let O(n) be the group of (real) orthogonal n×nmatrices. The group O(n) acts (linearly)

on R[y1, . . . , yn], and via the bijection

(8) xα ↔
∏

i∈α

yi

between the variables xα and monomials in R[y1, . . . , yn], O(n) also acts on R[xα | α ∈ An].
Then, by the First Fundamental Theorem of invariant theory for the orthogonal group O(n)
(cf. Goodman and Wallach [2]), we have

(9) pn(Q) = R[xα | α ∈ An]
O(n).

(The latter denotes as usual the set of polynomials in R[xα | α ∈ An] invariant under O(n).)
This can be seen using the connection (8).

4. Derivatives

For any polynomial p ∈ R[xα | α ∈ An], let dp be its derivative, being an element of
R[xα | α ∈ An] ⊗R Ln, where Ln is the space of linear functions in R[xα | α ∈ An]. Then
dkp ∈ R[xα | α ∈ An] ⊗R L

⊗k
n .
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Let 〈., .〉 be the inner product on Ln given by

(10) 〈xα, xβ〉 := cαδα,β

for α, β ∈ An, where

(11) cα :=

n
∏

i=1

µi(α)!,

where µi(α) denotes the multiplicity of i in α. This induces an inner product on L⊗k
n for

each k. With the usual product of polynomials in R[xα | α ∈ An], this gives an inner
product on R[xα | α ∈ An] ⊗R L

⊗k
n with values in R[xα | α ∈ An].

The following lemma is basic to our proof, and is used several times in it.

Lemma 1. For all graphs G,H and k, n ∈ N:

(12) pn(λk(G,H)) = 〈dkpn(G), dkpn(H)〉.

Proof. We expand dkpn(G):

(13) dkpn(G) =
∑

α1,...,αk∈An

∑

φ:EG→[n]

d

dxα1

· · ·
d

dxαk

(

∏

v∈V G

xφ(δ(v))

)

⊗xα1 ⊗· · · ⊗xαk
=

∑

α1,...,αk∈An

∑

φ:EG→[n]

∑

u1,...,uk∈V G

∀i:φ(δ(ui))=αi





∏

v∈V G\{u1,...,uk}

xφ(δ(v))



⊗ xα1 ⊗ · · · ⊗ xαk
=

∑

u1,...,uk∈V G

∑

φ:EG→[n]





∏

v∈V G\{u1,...,uk}

xφ(δ(v))



⊗ xφ(δ(u1)) ⊗ · · · ⊗ xφ(δ(uk)).

Here u1, . . . , uk are distinct. Now for any φ : EG→ [n] and ψ : EH → [n] and any u ∈ V G
and v ∈ V H, 〈xφ(δ(u)), xψ(δ(v))〉 is equal to the number of bijections π : δ(u) → δ(v) such
that ψ ◦ π = φ|δ(u). This implies (12). �

5. Proof of Theorem 1

To see necessity, let b : An → R and f = fb. Then, trivially, f is multiplicative. Positive
semidefiniteness of Mf,k follows from

(14) fb(λk(G,H)) = pn(λk(G,H))(b) = 〈dkpn(G)(b), dkpn(H)(b)〉,

using Lemma 1.
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We next show sufficiency. First we have:

Claim 1. Let γ be a quantum graph consisting of k-vertex graphs. If f(λk(γ, γ)) = 0 then

f(γ) = 0.

Proof. We prove the claim by induction on k. So assume that the claim holds for all quantum
graphs made of graphs with less than k vertices.

We can assume that all graphs occurring in γ with nonzero coefficient have the same
degree sequence d1, . . . , dk, since if we would write γ = γ1 + γ2, where all graphs in γ1 have
degree sequence different from those in γ2, then λk(γ1, γ2) = 0, whence f(λk(γi, γi)) = 0 for
i = 1, 2.

Now f(λk(γ, γ)) = 0 implies, by the positive semidefiniteness of Mf,k:

(15) f(λk(γ,H)) = 0 for each graph H.

Let P be the graph with 2k vertices 1, 1′, . . . , k, k′, where for each i = 1, . . . , k, there are
di parallel edges connecting i and i′. If d1, . . . , dk are all distinct, we are done, since then
γ is a multiple of λk(γ, P ), implying with (15) that f(γ) = 0 — but generally there can be
vertices of equal degrees.

The sum in (5) for λk(γ, P ) can be decomposed according to the set I of those compo-
nents of P with both vertices chosen among v1, . . . , vk and to the set J of those components
of P with no vertices chosen among v1, . . . , vk (necessarily |I| = |J |). Let K denote the set
of components of P , and for J ⊆ K, let PJ be the union of the components in J . Then

(16) λk(γ, P ) =
∑

I,J⊆K
I∩J=∅,|I|=|J|

αI,JγIPJ ,

where αI,J ∈ N with α∅,∅ 6= 0, and where

(17) γI := λ2|I|(γ, PI).

Now for each I ⊆ K, we have λk−2|I|(γI , γI) = λk(γ, γIPI). Hence

(18) f(λk−2|I|(γI , γI)) = f(λk(γ, γIPI)) = 0,

by (15). So by induction, if I 6= ∅ then f(γI) = 0. Therefore, by (16), since f(λk(γ, P )) = 0
and α∅,∅ 6= 0, f(γ) = f(γ∅P∅) = 0. �

Let O be the graph just consisting of the pointless loop.

Claim 2. f(O) ∈ N.

Proof. Suppose not. Then we can choose a k ∈ N with
(

f(O)
k

)

< 0. For each π ∈ Sk, let Gπ
be the graph with vertex set [k] and edges {i, π(i)} for i = 1, . . . , k. (So Gπ is 2-regular.)
Define
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(19) γ :=
∑

π∈Sk

sgn(π)Gπ.

Then for any n:

(20) pn(γ) =
∑

π∈Sk

sgn(π)pn(Gπ) =
∑

π∈Sk

sgn(π)
∑

φ:EGπ→[n]

∏

v∈V Gπ

xφ(δ(v)) =

∑

π∈Sk

sgn(π)
∑

φ:[k]→[n]

∏

v∈[k]

x{φ(v),φ◦π−1(v)} =
∑

φ:[k]→[n]

∑

π∈Sk

sgn(π)
∏

v∈[k]

x{φ(v),φ◦π(v)}.

Now if φ is not injective, then φ = φ ◦ π for some π ∈ Sk with sgn(π) = −1, and hence the
last inner sum is 0. So if n < k then pn(γ) = 0. If n = k, then pn(γ) contains the term
x{1,1} · · · x{k,k} with nonzero coefficient, so pk(γ) 6= 0.

Since λk(γ, γ) is a sum of graphs with no vertices, we know that λk(γ, γ) = q(O) for
some polynomial q ∈ R[y], of degree at most k. Then, if n < k,

(21) q(n) = q(pn(O)) = pn(q(O)) = pn(λk(γ, γ)) = 0,

with Lemma 1, as pn(γ) = 0. Moreover, q(k) = pk(λk(γ, γ)) > 0, as pk(γ) 6= 0 (again using
Lemma 1). So q(y) = c

(

y
k

)

for some c > 0. Therefore,

(22) f(λk(γ, γ)) = f(q(O)) = q(f(O)) = c
(

f(O)
k

)

< 0,

contradicting the positive semidefiniteness condition. �

This gives us n:

(23) n := f(O).

Then Claim 1 implies:

(24) there is linear function f̂ : pn(Q) → R such that f = f̂ ◦ p.

Otherwise, there is a quantum graph γ with pn(γ) = 0 and f(γ) 6= 0. We can assume that
pn(γ) is homogeneous, that is, all graphs in γ have the same number of vertices, k say.
Hence, since λk(γ, γ) is a polynomial in O, and since f(O) = n = pn(O),

(25) f(λk(γ, γ)) = pn(λk(γ, γ)) = 0,

by Lemma 1. So by Claim 1, f(γ) = 0. This proves (24).
In fact, f̂ is an algebra homomorphism, since for all G,H ∈ G:

(26) f̂(pn(G)pn(H)) = f̂(pn(GH)) = f(GH) = f(G)f(H) = f̂(pn(G))f̂ (pn(H)).

6



Then for all G,H ∈ G, using Lemma 1:

(27) f̂(〈dpn(G), dpn(H)〉) = f̂(pn(λ1(G,H))) = f(λ1(G,H)) = (Mf,1)G,H .

Since Mf,1 is positive semidefinite, (27) implies that for each q ∈ pn(Q):

(28) f̂(〈dq, dq〉) ≥ 0.

Now choose ∆ ∈ N. Let G∆ be the set of graphs of maximum degree at most ∆, and let
Q∆ be the set of all formal linear combinations of graphs in G∆. Define

(29) An,∆ := {α ∈ An | |α| ≤ ∆}.

By (28) and since the inner product 〈., .〉 on Ln is O(n)-invariant, the theorem of Procesi
and Schwarz [4] (which we can apply in view of (9)) implies the existence of a b ∈ R

An,∆

such that f̂(p) = p(b) for each p ∈ pn(Q∆). So

(30) f(G) = f̂(pn(G)) = pn(G)(b) = fb(G)

for each G ∈ G∆.
This can be extended to the collection G of all graphs. For each d, let K

(d)
2 be the graph

with two vertices, connected by d parallel edges. Then any b : An → R with f = fb satisfies

(31) b(α)2 ≤ f(K
(|α|)
2 )

for α ∈ An.
For each ∆ ∈ N, define

(32) B∆ := {b : An → R | f(G) = fb(G) for each G ∈ G∆, b(α)2 ≤ f(K
(|α|)
2 ) for each

α ∈ An}.

By the above, B∆ 6= ∅ for each ∆. As each B∆ is compact by Tychonoff’s theorem, and as
B∆ ⊇ B∆′ if ∆ ≤ ∆′, we know

⋂

∆B∆ 6= ∅. Any b in this intersection satisfies f = fb.

Note that the positive semidefiniteness of Mf,k for k 6= 1 is only used to prove Claims

2 and 1. If we know that f = f̂ ◦ pn for some linear function f̂ : pn(Q) → R and some n,
then it suffices to require that Mf,1 is positive semidefinite and f is multiplicative.

6. Derivation of Szegedy’s theorem

We now derive as a consequence the theorem of Szegedy [5]. Consider some k ∈ N. A k-exit

graph is a pair (G,u) of an undirected graph G and an element u ∈ V Gk such that the ui
are distinct vertices, each of degree 1. Let Gk denote the collection of k-exit graphs.
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If (G,u) and (H, v) are k-exit graphs, then (G,u)·(H, v) is the undirected graph obtained
by taking the disjoint union of G and H, and, for each i = 1, . . . , k, deleting ui and vi and
adding a new point connecting the ends left by ui and vi.

Let Gk be the collection of k-exit graphs. For f : G → R, define the Gk×Gk matrix Nf,k

by

(33) (Nf,k)(G,u),(H,v) := f((G,u) · (H, v))

for (G,u), (H, v) ∈ Gk. Then ([5]):

Corollary 1a. Let f : G → R. Then f = fb for some n ∈ N and some b : An → R if and

only if f is multiplicative and Nf,k is positive semidefinite for each k ∈ N.

Proof. Necessity follows similarly as in Theorem 1. To see sufficiency, let for any graph G
and any d ∈ N, Gd be the quantum d-exit graph being the sum of all d-exit graphs obtained
as follows. Choose a vertex v of degree d, delete v topologically from G, and add vertices of
degree 1 to the loose ends. Let F be the graph obtained this way. Order these new vertices
in a vector in u ∈ V F d. The sum of these (F, u) makes Gd. So Gd is a sum of precisely d!m
d-exit graphs, where m is the number of vertices of degree d in G.

We can repeat this to define the quantum d1 + · · · + dk-exit graph Gd1,...,dk
for any

d1, . . . , dk ∈ N, where we concatenate the exit vectors. Then

(34) λk(G,H) =
∑

d1,...,dk

cd1,...,dk
Gd1,...,dk

·Hd1,...,dk

for some cd1,...,dk
> 0 (namely, the inverse of the number of permutations π ∈ Sk with

dπ(i) = di for each i ∈ [k]). Hence for any quantum graph γ:

(35) f(λk(γ, γ)) =
∑

d1,...,dk

cd1,...,dk
f(γd1,...,dk

· γd1,...,dk
) ≥ 0,

by the positive semidefiniteness of the Nf,l.

7. Uniqueness of b

We finally consider the uniqueness of b, and extend a theorem of Szegedy [5] (who showed
sufficiency). As usual, bU denotes the result of the action of U on b.

Theorem 2. Let b : An → R and c : Am → R. Then fb = fc if and only if n = m and

c = bU for some U ∈ O(n).

Proof. Sufficiency can be seen as follows. Let n = m and c = bU for some U ∈ O(n). Then
for any graph G, using (9),

(36) fb(G) = pn(G)(b) = pn(G)U
−1

(b) = pn(G)(bU ) = fbU (G) = fc(G).

8



Conversely, let fb(G) = fc(G) for each graph G. Then n = fb(O) = fc(O) = m. We
show that for each ∆ ∈ N, there exists U ∈ O(n) such that c|An,∆ = bU |An,∆, where An,∆
is as in (29). As O(n) is compact, this implies that there exists U ∈ O(n) with c = bU .

Suppose that c|An,∆ 6= bU |An,∆ for each U ∈ O(n). Then the sets

(37) S := {bU |An,∆ | U ∈ O(n)} and T := {cU |An,∆ | U ∈ O(n)}

are compact and disjoint subsets of R
An,∆ . So, by the Stone-Weierstrass theorem, there

exists a polynomial q ∈ R[xα | α ∈ An,∆] such that q(s) ≤ 0 for each s ∈ S and q(t) ≥ 1 for
each t ∈ T . Replacing q by

(38)

∫

O(n)
qUdµ(U)

(where µ is the normalized Haar measure on O(n)), we can assume that qU = q for each
U ∈ O(n). Hence by (9), q ∈ pn(Q), say q = pn(γ) with γ ∈ Q. Then fb(γ) = pn(γ)(b) =
q(b) ≤ 0 and fc(γ) = pn(γ)(c) = q(c) ≥ 1. This contradicts fb = fc.

Acknowledgement. I am indebted to Jan Draisma for pointing out reference [4] to me.
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