Graph invariants in the spin model

Alexander Schrijver!

Abstract. Given a symmetric n X n matrix A, we define, for any graph G,

faG) = > I @ow.sw-

¢:VG—{1,....n} wweEG

We characterize for which graph parameters f there is a complex matrix A with f = f4, and similarly
for real A. We show that f4 uniquely determines A, up to permuting rows and (simultaneously)
columns. The proofs are based on the Nullstellensatz and some elementary invariant-theoretic
techniques.

1. Introduction

Let G denote the collection of all finite graphs, allowing loops and multiple edges, and
considering two graphs the same if they are isomorphic. A graph invariant is a function
f:G—C.

We characterize the following type of graph invariants. Let n € N and let A = (a; ;) be
a symmetric complex n x n matrix. Define f4 : G — C by

(1) a6 = > I eswew:

(j)VG—>[TL] weEG

Here VG and EG denote the sets of vertices and edges of G, respectively. Any edge
connecting vertices u and v is denoted by uv. (So if there are k parallel vertices connecting
u and v, the term agy(,) 4(v) occurs k times.) Moreover,

(2) [n] :={1,...,n} for any n € N.

We give characterizations for A complex and for A real.

The graph invariants f4 are motivated by parameters coming from mathematical physics
and from graph theory. For instance, if A = J — I, where J is the n x n all-one matrix and
I is the n x n identity matrix, then f4(G) is equal to the number of proper n-colorings of

the vertices of G. If A = ( b

1 0
of G.
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), then f4(G) is equal to the number of independent sets




In terms of mathematical physics, these are graph invariants in the ‘spin model’, where
vertices can be in n ‘states’ and the value is determined by the values taken on edges. This
is opposite to the ‘vertex model’” (sometimes called ‘edge model’!), where the roles of vertex
and edge are interchanged (cf. Szegedy [6]). For motivation and more examples, see de la
Harpe and Jones [2]. For related work, see Freedman, Lovédsz, and Schrijver [1], Lovész and
Schrijver [3,4], and Lovéasz and Szegedy [5].

2. Survey of results

In order to characterize the graph invariants fa, we call a graph invariant f multiplicative
if

(3) F(Ko) =1 and f(GH) = f(G)f(H) for all G, H € G.

Here Ky is the graph G with no vertices and edges. Moreover, GH denotes the disjoint
union of graphs G and H.

In the characterization we also need the Mobius function on partitions. Let P be a
partition of a finite set X; that is, P is an (unordered) collection of disjoint nonempty
subsets of X, with union X. The sets in P are called the classes of P. Let IIx denote the
set of partitions of X. If () and P are partitions of X, then we put ) < P if for each class
C of @ there is a class of P containing C'. The Médbius function is the unique function pp
defined on partitions P satisfying

(4) > 1o =6pry

Q<P

for any partition P of X. Here Tx denotes the trivial partition {{v} | v € X} of X, and
opry = 1if P=Tx, and dp7, =0 otherwise.?

For any graph G and any partition P of VG, the graph G/P is defined to be the graph
with vertex set P and with for each edge wv € EG an edge C,C,, where C, and C, are
the classes of P containing v and v respectively. (So in G/P generally several loops and
multiple edges will arise.)

Now we can formulate our first characterization:

Theorem 1. Let f: G — C. Then f = fa for some n € N and some symmetric matriz
A € C™™ if and only if f is multiplicative and

Tt can be seen that pp := HCep(fl)‘C‘71(|C| — 1)!, but we do not need this expression.



(5) Y. wrf(G/P)=0

Pellya
for each graph G with |VG| > f(Ki).

Here K is the graph G with one vertex and no edges.
From Theorem 1 we derive a characterization of those f4 with A real. For i € N, let K}
denote the graph with vertex set {1,2} and ¢ parallel edges connecting the two vertices.

Corollary la. Let f : G — R. Then f = fa for some n € N and some symmetric matriz
A € R™™ if and only if the conditions of Theorem 1 hold and moreover the matrix

%m(erl)

© L= (F057))

i,j=0
is positive semidefinite, where m := | f(K1)].

The method of proof of this theorem is inspired by Szegedy [6]. As consequence of
Corollary 1la we will derive the following characterization in terms of labeled graphs, that
relates to a characterization of Freedman, Lovész, and Schrijver [1].

A k-labeled graph is a pair (G, u) of a graph G and an element u of VGF, ie., a k-tuple
of vertices of G. (The vertices in u need not be different.) Let Gi denote the collection of
k-labeled graphs. For two k-labeled graphs (G, ) and (H,w), let the graph (G, u) * (H,w)
be obtained by taking the disjoint union of G and H, and next identifying u; and w;, for
i=1,...,k (In other words, add for each i = 1,...,k a new edge connecting u; and w;,
and next contract each new edge.) Then My, is the G, x Gj, matrix defined by

(7) (Mf,k>(G,u),(H,w) = f((G,'LL) * (H7 w))
for (G,u), (H,w) € G.

Corollary 1b. Let f : G — R. Then f = fa for some n and some symmetric matrix
A € R™™ if and only if f is multiplicative and My, is positive semidefinite for each
ke N.

Here an infinite matrix is positive semidefinite if each finite principal submatrix is pos-
itive semidefinite. The positive semidefiniteness of the matrices My, can be viewed as a
form of ‘reflection positivity’ of f.

As a consequence of Corollary 1b the following can be derived (as was noticed by Laci
Lovéasz). Let G denote the collection of graphs without parallel edges, but loops are allowed
— at most one at each vertex. Let Gi be the collection of k-labeled graphs (G, u) with



G € G. For (G,u), (H,w) € Gy, let the graph (G, u)*(H, w) be obtained from (G, u) * (H, w)
by replacing parallel edges by one edge. Then the G x G matrix My is defined by

(8) (Myk) (@ (i) = F(Gyw)¥(H, w))

for (G,u), (H,w) € Gr.

For G,H € G, let hom(G, H) denote the number of homomorphisms G — H (that
is, adjacency preserving functions VG — VH). Let hom(-, H) denote the function G
hom(G, H) for G € G.

Corollary lc. Let f : G — R. Then f = hom(-, H) for some H € G if and only if f is
multiplicative and My, is positive semidefinite for each k € N.

This sharpens a theorem of Lovész and Schrijver [4], where, instead of multiplicativity,
more strongly it is required that there exists an n € N such that for each k € N, the matrix
My has rank at most n*. So Corollary lc states that we need to stipulate this only for
k=0.

The derivation of Corollary 1c is by applying Corollary 1b to the function f g—R
with f (G) = f(G ) for G € G, where G arises from G by replacing parallel edges by one
edge.

An interesting question is how these results relate to the following theorem of Freedman,
Lovész, and Schrijver [1]. For any b € R’} and any symmetric matrix A = (a; ;) € C*"*",
let fp 4 : G — C be defined by

(9) fon(G) = > <H b¢<v>> ( I1 %<u>,¢<v>>

6 VG—[n] \veVa webEd

for any graph G. So fa = f1,4, where 1 denotes the all-one function on [n].

Let G’ denote the set of loopless graphs (but multiple edges are allowed). Consider any
function f : " — R. For any k, let M/ Tk be the submatrix of My induced by the rows and
columns indexed by those k-labeled graphs (G, u) for which G is loopless and all vertices in
u are distinct. Then in [1] the following is proved:

(10) Let n € Nand f : ¢ — R. Then f = f; 4|G" for some b € R’ and some
symmetric matrix A € R™ " if and only if f(Ky) = 1 and M J’ck is positive
semidefinite and has rank at most n*, for each k € N.

The proof in [1] is also algebraic (based on finite-dimensional commutative algebra and
on idempotents), but rather different from the proof scheme given in the present paper



(based on the Nullstellensatz and on invariant-theoretic methods). It is unclear if both
results (Corollary 1b and (10)) can be proved by one common method.

Back to G and f4, we will show as a side result that f4 uniquely determines A, up to
permuting rows and (simultaneously) columns:

Theorem 2. Let A € C™ and A’ € CV*" be symmetric matrices. Then fa = farif and
only if n=n' and A’ = PTAP for some n x n permutation matriz P.

So if H and H' are graphs in G with hom(-, H) = hom(-, H'), then H and H’ are
isomorphic.

The proofs of these theorems are based on the Nullstellensatz and on some elementary
invariant-theoric methods. A basic tool is the following theorem. For n € N, introduce
variables z; ; for 1 <1 < j < mn. If ¢ > j, let x; ; denote the same variable as z;;. So,
in fact, we introduce a symmetric variable matrix X = (z;;), and we can write C[X] for
Clz11,212,...,%ny]. For any graph G, let p,(G) be the following polynomial in C[X]:

(11) (@)= Y TI sw.sw-

¢:VG—[n] weEG

So pn(G)(A) = fa(G) for any symmetric matrix A € C"*".

The symmetric group Sy, acts on C[X] by z;; + %) x(j) for i,j € [n] and m € Sj,. As
usual, C[X]°» denotes the set of polynomials in C[X] that are invariant under the action
of S,. In other words, C[X]%" consists of all polynomials p(X) with p(PTXP) = p(X)
for each n x n permutation matrix P. It turns out to be equal to the linear hull of the
polynomials p,(G):

Theorem 3. lin{p,(G) | G € G} = C[X]*".

We first prove Theorem 3 and after that Theorem 1, from which we derive Corollaries
la, 1b, and lc. Finally we show Theorem 2. Theorem 3 is used in the proof of Theorems 1
and 2. We start with a few sections with preliminaries.

3. Quantum graphs

A quantum graph is a formal linear combination of finitely many distinct graphs, i.e., it is

(12) > a6,

Geg



where g € C for each G € G, with g nonzero for only finitely many G € G. We identify
any graph H with the quantum graph (12) having y¢ = 1 if G = H, and ¢ = 0 otherwise.

Let QG denote the collection of quantum graphs. This is a commutative algebra, with
multiplication given by

(13) (Z WGG> (Z ﬁHH> =3 3" 16BuGH.
Geg HegG GeG Heg

(As before, GH denotes the disjoint union of G and H.) In other words, QG is the semigroup
algebra asociated with the semigroup G, taking disjoint union as multiplication. Then K
is the unit element.

The function p, can be extended linearly to QG. Note that for all G, H € G:

(14> pn(GH) = pn(G)pn(H)

Hence p,, is an algebra homomorphism QG — C[X], and p,(QG) is a subalgebra of C[X].
(An algebra homomorphism is a linear function maintaining the unit and multiplication.)
4. The Mobius transform of a graph

Choose G € G. The Mébius transform M(G) of G is defined to be the quantum graph

(15) M(G):= Y upG/P.

Pellya

This can be extended linearly to the Mobius transform M («y) of any quantum graph v € QG.
The Mobius transform has an inverse determined by the zeta transform

(16) Z(@) = Y. G/Q.

Q€llyg

Indeed,

A7) ZM(G)=>_> upG/Q=>_> urG/Q=> 6q1,:G/Q=G/Tvc=G.
P Q>P Q P<Q Q

As M is surjective (since M(G) is a linear combination of G and graphs smaller than
G), we also know M(Z(G)) = G for each G € G. (Indeed, G = M(y) for some =, and
v =2Z(M(>)) = Z(G).) So



(18) ZoM =idgg=MoZ.

We can now describe the polynomial p, (M (G)). This is equal to the following polyno-
mial ¢,(G) € C[X]:

(19) w(@) = > ] zsw.sw-

¢:VG—[n]weEG

Het — means that the function is injective. Again, g, can be extended linearly to QG.
To prove that ¢,(G) = pn(M(G)), note that

(20) pn(G): Z Qn(G/Q)

Qellyg

(since each ¢ : VG — [n] can be factorized to an injective function ) — [n] for some unique
partition @ of VG). Hence p,(G) = ¢,(Z(G)) by (16). So p, = ¢, o Z, and hence, by (18),
Gn = pn o M. This implies that p,(QG) = ¢,(QG).

5. Proof of Theorem 3

Theorem 3. lin{p,(G) | G € G} = C[X]*".

Proof. Trivially, p,(G) € C[X]%" for any graph G, hence p,(QG) C C[X]*". To see the
reverse inclusion, each monomial m in C[X] is equal to Hz‘je g Tij for some graph G' with
VG = [n]. Then, by definition of g,, ¢.(G) = >_ cg m™, where m™ is obtained from m
by replacing any x; ; by T (;) x(;). Since each polynomial in C[X |57 is a linear combination
of polynomials »_ .o m™, we have CIX]%" C ¢n(QG). As pn(QG) = ¢.(QG), this proves
Theorem 3. |

6. A lemma on the Mobius transform
In the proof of Theorem 1, we need the following equality in the algebra QG:
Lemma 1. For any graph G: M(K\G) = (K1 — |[VG|)M(G).

Proof. Let ¢ be the linear function QG — QG determined by

(21) 6(G) = (K1 + VGG



for G € G. Then one has for any v € QG:

(22) ¢(Z(v)) = Z(K1y),

since for any H € G,

(23) S(Z(H)=¢( Y, H/P)= > &H/P)= Y (Ki+|P)H/P=
Pelly g Pelly g Pelly g
Z(K.H).

The last equality follows from the fact that sum (16) giving Z (K H) can be split into those
Q containing V K as a singleton, and those () not containing V K7 as a singleton — hence
V K is added to some class in some partition P of VH.

This proves (22), which implies, setting v := M(G), that ¢(G) = Z(K;M(G)), and
hence M(¢(G)) = K1 M(G). Therefore with (21) we obtain

(24) M(K\G) = M(¢(G)) - [VGIM(G) = (K1 — [VG)M(G). 1

7. A lemma on the Mobius inverse function of partitions

For P,Q € Iy, let PV @ denote the smallest (with respect to <) partition satisfying
P,Q<PVQ.

Lemma 2. Let V' be a set with |V| = k. Then for each x € C and t > 1 one has

(25) S ey PVl Z (e 1) (o k1),
Py,... Pelly

Proof. Since both sides in (25) are polynomials, it suffices to prove it for z € N. For any
function ¢ : [k] — [z], let Q4 be the partition

(26) Qs :={67'(i) |i € [a], 67" (3) # 0}

Then

(27> Z upy - MPt‘%JPlVMVPt' = Z upy - pp, Z 1=

Pi,...,Pelly Pr,...,Pelly ¢:[k]—[z]
Pyv--VPi<Qq



Z Z Kby P, = Z (Z“P)t: Z 0Q4 Ty =

gilk]—[a] Pr,...Pi<Qy gilk]—[z] P<Qs ¢:[k]—[a]
Yo ol=a@-1)--(z-k+1) [
g:[k— ]

8. Proof of Theorem 1

Theorem 1. Let f : G — C. Then f = fa for some n € N and some symmetric matrix
A e C™™ if and only if f is multiplicative and

(28) > upf(G/P)=0

Pelly g

for each graph G with |VG| > f(K7).

Proof. To see necessity, suppose f = f4 for some n € N and some symmetric matrix
A € C™". Then trivially f is multiplicative. Moreover, f(M(G)) = 0 if VG| > f(K1),
since f(K1) =n, and

(29) FIM(G)) = pn(M(G))(A) = 4u(G)(A) =0,

as qn(G) = 0 if [V G| > n (since then there is no injective function VG — [n]).
We next show sufficiency. First, f(K7) is a nonnegative integer. For if not, there is a

nonnegative integer k > f(Kp) with (f(fl)) # 0. Let Nj be the graph with vertex set [k]
and no edges. Then, by the condition in Theorem 1,

(30) 0= upfNi/P)= Y upf(E)Fl = (FE)

Pel‘[[k] PEH[k]

(by Lemma 2), a contradiction. So f(K;) € N. Define n := f(K}).
Next we show:

(31) f = f opp for some algebra homomorphism f : pn(QG) — C.
We first show that there exists a linear function f : pn(QG) — C with fopn = f. For

this we must show that, for any v € QG, if p,(7) = 0 then f(y) = 0. Equivalently, if
pn(M(y)) = 0 then f(M(vy)) = 0. That is, since p, o M = gy,



(32) if gn(v) = 0 then f(M(y)) = 0.

Suppose not. Choose v with ¢,(y) = 0 and f(M(v)) # 0, minimizing the sum of |VG]|
over those graphs G with vg # 0. If [VG| > n, then ¢,(G) = 0 and f(M(G)) = 0 (by
assumption). So, by the minimality, if v5 # 0, then |[VG| < n.

Suppose next that some G with vg # 0 has an isolated vertex. So G = K1H for
some graph H. Then ¢,(G) = (n — |VH|)g,(H), by definition (19), and f(M(G)) =
(n—|VH|)f(M(H)), by Lemma 1. So we could replace G in v by (n—|V H|)H, contradicting
our minimality condition.

Now for any graph G with |VG| < n, say VG = [k], ¢,(G) is a scalar multiple of the
polynomial » ¢ m™, where m is the monomial Hije o Tij- If G and G’ are such graphs
and have no isolated vertices, these polynomials have no monomials in common. Since
gn(y) = 0, this implies 7 = 0, hence f(M (7)) = 0, proving (32).

So there is a linear function f : pn(QG) — C with fopn = f. Then f is an algebra
homomorphism, since

A~

(33) Fa(B)pn (7)) = f(pu(B7)) = F(B7) = F(B)F () = F(pu(8)) f (Pn())

for 5,y € QG. This proves (31).
Now let I be the following ideal in p, (QG):

(34) I:={pepa(Q9) | f(p) =0}.

Then the polynomials in I have a common zero. For if not, by Hilbert’s Nullstellensatz
(saying that an ideal in C[X] not containing 1 has a common zero) there exist r1,...,r; € [
and sp, ..., s, € C[X] with

(35) r181+ -+ rpsp = 1.

We can assume that the s; in fact belong to p,(QG). For let o be the Reynolds operator
C[X] — C[X]®", that is,

(36)  o(p)(X)==n"' S p(PTXP),
P

where P extends over the n x n permutation matrices. Then, since r;(PT X P) = r;(X) for
each ¢ and each P,

(37) l=o0(ris1+ -+ rgsg) =ro(s1) + -+ reo(sk).

10



So we can assume that s; = o(s;) for each i. Hence s; € C[X]%". So, by Theorem 3,
s; € pn(QQ) for each i. As I is an ideal in p,(QG), this implies 1 € I. This however gives
the contradiction 1 = f(Ko) = f(pn(Ko)) = f(1) = 0.

So the polynomials in I have a common zero, A say. Now for each G € G, the polynomial
pn(G) — f(G) belongs to I (where f(G) is the constant polynomial with value f(G)). So
pn(G)(A) — f(G) =0, that is fa(G) = f(G), as required. |

9. Derivation of Corollary 1a from Theorem 1

Corollary la. Let f : G — R. Then f = fa for some n € N and some symmetric matriz
A € R™™ if and only if the conditions of Theorem 1 hold and moreover the matriz

m(m+1)

(38) Ly (FUGT))

4,j=0
is positive semidefinite, where m = | f(K7)].

Proof. For necessity it suffices (in view of Theorem 1) to show that L is positive semidef-
inite. Suppose f = fa for some n € N and some symmetric matrix A = (a;;) € R™*".
Then

(39) (Lf)k Kk+l Z akH.

So Ly is positive semidefinite.

We next show sufficiency. By Theorem 1 we know that f = f4 for some n and some
symmetric matrix A = (a; ;) € C"*". We prove that A is real.

Suppose A is not real, say ay j  R. Then there is a polynomial p € C[z] of degree at
most ¢ := gn(n + 1) such that p(ay ;) = i, p(@y ;) = —i, and p(a;;) = 0 for all i, with

a5 ¢ {CLZ‘/JI,EZ‘/J/}. 3 Note that this implies ﬁ(ai@j/) = p(ai/J/) =1iand ;T)(ai/’j/) = p(ai@j/) =
—1i.
Write p = ZZ:O prz® and ¢ := (po,...,ps)". Then

t t n
(40) L= oS (K3 =D pip Y all = Z p(ai,;)P(ai;) < 0.
k,l=0 k,l=0 2,J=1 2,J=1

30Observe the typographical difference between i (the imaginary unit) and 4 (an index).

11



This contradicts the positive semidefiniteness of L. |

10. Derivation of Corollary 1b from Corollary la

Corollary 1b. Let f : G — R. Then f = fa for some n and some symmetric matrizc
A € R™" if and only if [ is multiplicative and My, is positive semidefinite for each
k e N.

Proof. To see necessity it suffices to show that My, ;. is positive semidefinite for each
symmetric matrix A € R™*™ and each k € N. This follows from

(41) (M, 1) (G ), () = fA(G ) * (H,w)) =
> > I wwew > Il wwew
x:[k]—[n] v ¢':"/G—T[71] wekG ) inH—T[@ uwveEH
Je[k]:o(uz)=x(4) Vi€ k] (w;)=x(4)

for k-labeled graphs (G, u), (H,w). So My, i is a Gram matrix, hence positive semidefinite.
To see sufficiency, if My o is positive semidefinite, then Ly is positive semidefinite. In-
deed,

(42) (L)kp = FOEST) = F((K5, (1,2)) % (K, (1,2))) = (My2) (5, (1.2)), 5L (1,2))-

So the positive semidefiniteness of My o implies that of L.

We finally show that if [V G| > f(K;) then f(M(G)) = 0. First choose any k > f(K1).
Let Nj be the graph with vertex set [k] and no edges. For any partition P of [k], let P(%)
denote the class of P containing i (for ¢ € [k]), and let

(43) up == (P(1),..., P(k)).

So up € V(N;,/P)*, and hence (Ny/P,up) is a k-labeled graph. Then

(44) ST upugf(Ne/Poup)«(Ni/Quug)) = Y upugf(K1)TVel = (FED k),
P,QEI, P,QEI

by Lemma 2. Hence, since My, is positive semidefinite, (f (fl)) > 0, and therefore, as this

holds for each k > f(K7), we have f(K;) € N. Hence, for k > f(K), (f(fl)) = 0, and so
(44) implies

12



(45) > wppqf(Ne/Poup) = (Np/Q, uq)) = 0.

PQe

Consider now any graph G with k := |V G| > n vertices, say VG = [k]. Define u :=
(1,...,k). Then by the positive semidefiniteness of My, (45) implies

(46) 0= > pupf((Nk/Pup)x(Gu)= > ppf(G/P)= f(M(G)).

So f(M(G)) =0, as required. |
11. Derivation of Corollary 1c from Corollary 1b

Corollary 1c. Let f : G — R. Then f =hom(-,H) for some H € G if and only if f is
multiplicative and My, is positive semidefinite for each k € N.

Proof. Necessity is shown as before. Sufficiency is derived from Corollary 1b as follows.
Let f: G — R be multlphcatlve with My, posmve semidefinite for each k € N. Define

f:G—Rby f(G):= f(G), for G € G, where G arises from G by replacing parallel edges

by one edge. Then f is multiplicative and the matrix M ; ik is positive semidefinite for each

k € N. Hence by Corollary 1b, f = f4 for some n € N and some real symmetric n X n
matrix A = (a; ;). Now it suffices to show that all entries of A belong to {0,1}, since then
A is the adjacency matrix of a graph H, implying fa(G) = hom(G, H) for each G € G.
Now, as fa = f, we know fa(K%) = fa(K}) for each t > 1. So doij aj; = i iy for
each ¢t > 1. Hence Zi,j<az2,j —a; ;)%= Zi’j(aﬁj — Qa?,j + af’j) = 0. Therefore a%’j —a;; =0
for all 4, j. So a;; € {0,1} for all 4, j. |

2. Proof of Theorem 2

Theorem 2. Let A € C"" and A’ € C"*" be symmetric matrices. Then fa = far if and
only ifn=n' and A’ = PTAP for some n x n permutation matriz P.

Proof. Sufficiency being direct, we prove necessity. Suppose fa = far. Then n = n’, since
n = fA(Kl) = fAI(Kl) = n’.

Let II denote the collection of n x n permutation matrices. Suppose A’ # PTAP for all
P € 1II. Then the sets

13



(47) Y :={PTAP|PcIl} and Y := {PTA'P | P c 1T}

are disjoint finite subsets of C"*". Hence there is a polynomial p € C[X] such that p(X) =0
for each X € Y and p(X) =1 for each X € Y'. Let ¢ be the polynomial

(48) ¢(X):=n!"") " p(PTXP).
Pell

So ¢ € C[X]®". Hence, by Theorem 3, ¢ € p,(QG), say ¢ = p,(y) for v € QG. This gives
the contradiction

(49) 0=q(A) =pn(V)(A) = fa(y) = fa(7) = pa(M(A) = q(A)) = 1. [
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