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Abstract. We characterize which graph invariants are partition functions of a spin model over C,
in terms of the rank growth of associated ‘connection matrices’.

1. Introduction

In this paper, all graphs are undirected and finite and may have loops and multiple edges.
An edge connecting vertices u and v is denoted by uv. Let G denote the collection of all
undirected graphs, two of them being the same if they are isomorphic. A graph invariant is
any function f : G → C. We consider a special class of graph invariants, namely partition
functions of spin models, defined as follows.

Let n ∈ Z+. Following de la Harpe and Jones [4], call any symmetric matrix A ∈ C
n×n

a spin model (over C), with n states. The partition function of A is the function pA : G → C

defined for any graph G = (V, E) by

(1) pA(G) :=
∑

κ:V →[n]

∏

uv∈E

Aκ(u),κ(v).

Here and below, for n ∈ Z+,

(2) [n] := {1, . . . , n}.

If G has k parallel vertices connecting u and v, the factor Aφ(u),φ(v) occurs k times in (1).
The graph invariants pA are motivated by parameters coming from mathematical physics

and from graph theory. For instance, the Ising model corresponds to the matrix

(3) A =

(

exp(R/kT ) exp(−R/kT )
exp(−R/kT ) exp(R/kT )

)

,

where R is a positive constant, k is the Boltzmann constant, and T is the temperature. We
refer to [1], [4], and [9] for motivation and more examples, and to [3], [5], [6], and [7] for
related work and background.

In [7], partition functions of spin models were characterized in terms of certain Moebius
transforms of graphs. In the present paper, we characterize these graph invariants in terms
of the rank growth of associated ‘connection matrices’. Rank growth of related connection
matrices (but for ‘k-labeled graphs’) together with positive semidefiniteness was considered
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in Freedman, Lovász, and Schrijver [3] to characterize spin functions of real vertex models
with weights on the states.

We describe the characterization. A k-marked graph is a pair (G, µ) of a graph G =
(V, E) and a function µ : [k] → V . We call i ∈ [k] a mark of vertex µ(i). (We do not require
that µ is injective, like for k-labeled graphs. So a vertex may have several marks.) Let Gk

be the collection of k-marked graphs.
If (G, µ) and (H, ν) are k-marked graphs, then (G, µ)(H, ν) is defined to be the graph

obtained from the disjoint union of G and H by identifying equally marked vertices in G
and H. (Another way of describing this is that we take the disjoint union of G and H,
add edges connecting µ(i) and ν(i), for i = 1, . . . , k, and finally contract each of these new
edges.)

Let f : G → C and k ∈ Z+. The k-th connection matrix is the Gk × Gk matrix Cf,k

defined by

(4) (Cf,k)(G,µ),(H,ν) := f((G, µ)(H, ν))

for (G, µ), (H, ν) ∈ Gk.
By ∅ we denote the graph with no vertices and edges. We can now formulate the

characterization.

Theorem 1. Let f : G → C. Then f = pA for some symmetric A ∈ C
n×n and some

n ∈ Z+ if and only if f(∅) = 1 and there is a c such that for each k: rank(Cf,k) ≤ ck.

Our proof utilizes the characterization of partition functions of spin models given in [7],
which uses the Nullstellensatz. One may alternatively apply the techniques described in
Freedman, Lovász, and Schrijver [3]. With these techniques one may also extend Theorem
1 to more general structures like directed graphs and hypergraphs.

A related theorem can be proved for the vertex model, where the roles of vertices and
edges are interchanged, using the characterization given in Draisma, Gijswijt, Lovász, Regts,
and Schrijver [2] — see [8].

2. Partitions

As preliminary to the proof of Theorem 1, we give a (most probably folklore) proposition on
partitions. A partition of a set X is an (unordered) collection of pairwise disjoint nonempty
subsets of X with union X. The sets in P are called the classes of P . So |P | is the number
of classes of P .

Let Πn denote the collection of partitions of [n]. We put P ≤ Q if P is a refinement of
Q, that is, if each class of P is contained in some class of Q. Then (Πn,≤) is a lattice; we
denote the join by ∨.

Let Z be the ‘zeta matrix’, i.e., the Πn × Πn matrix with ZP,Q := 1 if P ≤ Q and
ZP,Q := 0 otherwise. Let M := Z−1 (the ‘Moebius matrix’).

For n ∈ Z+ and x ∈ C, we define the Πn × Πn matrix Pn(x) by

(5) (Pn(x))P,Q := x|P∨Q|
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for P, Q ∈ Πn.

Proposition 1. Pn(x) is singular if and only if x ∈ {0, 1, . . . , n − 1}.

Proof. Indeed, MPn(x)MT is a diagonal matrix, with

(6) (MPn(x)MT)P,Q = δP,Qx(x − 1) · · · (x − |P | + 1)

for P, Q ∈ Πn. Here δP,Q = 1 if P = Q and δP,Q = 0 otherwise. To prove (6), we can
assume x ∈ Z+, as both sides are polynomials. For φ : [n] → [x], let Uφ be the partition

(7) Uφ := {φ−1(i) | i ∈ [x], φ−1(i) 6= ∅}.

Then, where R and S range over Πn:

(8) (MPn(x)MT)P,Q =
∑

R,S

MP,RMQ,Sx|R∨S| =
∑

R,S

MP,RMQ,S

∑

φ:[n]→[x]
R∨S≤Uφ

1 =

∑

R,S

MP,RMQ,S

∑

φ:[n]→[x]
R,S≤Uφ

1 =
∑

φ:[n]→[x]

(

∑

R≤Uφ

MP,R

)(

∑

S≤Uφ

MQ,S

)

=

∑

φ:[n]→[x]

δP,Uφ
δQ,Uφ

= δP,Q

∑

φ:[n]→[x]

δP,Uφ
= δP,Qx(x − 1) · · · (x − |P | + 1).

3. Proof of Theorem 1

Necessity is easy, and can be seen as follows. Let A be a symmetric n × n matrix, define
f := pA, and let k ∈ Z+. For any k-marked graph (G, µ) and any function λ : [k] → [n],
define

(9) B(G,µ),λ =
∑

κ:V →[n]
κ◦µ=λ

∏

uv∈E

Aκ(u),κ(v),

where G = (V, E). This defines the Gk × [n][k] matrix B, of rank at most nk. Then
Cf,k = BBT, so Cf,k has rank at most nk. This shows necessity.

We next show sufficiency. First observe that the conditions imply that

(10) f(G
.
∪ H) = f(G)f(H)

for all G, H ∈ G, where G
.
∪ H denotes the disjoint union of G and H. This follows from

the facts that the submatrix

(11)

(

f(∅) f(G)

f(H) f(G
.
∪ H)

)
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of Cf,0 has rank at most 1 and that f(∅) = 1.
By Theorem 1 in [7] it suffices to show that for any graph G = (V, E) with V = [k] and

k > f(K1) one has

(12)
∑

P∈Πk

µP f(G/P ) = 0,

where µP := MT,P (with M the Moebius matrix above), where T denotes the trivial parti-
tion of [k] into singletons, and where G/P is the graph obtained from G by merging each
class of P to one vertex (possibly creating several loops and multiple edges).

To prove (12), from here on we fix an integer k > f(K1). We can consider Gk as
a commutative semigroup, by maintaining the marks in the product (G, µ)(H, ν). The
semigroup has a unity, namely the k-marked graph 1k with no edges and k distinct vertices
marked 1, . . . , k.

Let CGk be the semigroup algebra of Gk. We can extend f linearly to CGk. Let I be
the kernel of the matrix Cf,k, which can be considered as a subset of CGk. Then x ∈ I if
and only if f(xy) = 0 for each y ∈ CGk. Hence I is an ideal in CGk, and A := CGk/I is a
finite-dimensional commutative unital algebra with dim(A) = rank(Cf,k). Moreover, as f

is 0 on I, f has a (linear) quotient function f̂ on A. By definition of I, for each nonzero
a ∈ A there is a b ∈ A with f̂(ab) 6= 0.

As |Πn| grows superexponentially in n, there exists an n such that |Πn| > ckn. Fix an
(arbitrary) bijection s : [k] × [n] → [kn]. For each P ∈ Πn and z ∈ CGk, let γP (z) be the
following element of CGkn. For each C ∈ P , let zC be a copy of z. For each i ∈ [k] and
j ∈ [n] assign mark s(i, j) to the vertex of zC that was marked i in the original z, where C
is the class of P containing j.

Using (10), it is direct to check that for any P, Q ∈ Πn:

(13) f(γP (1k)γQ(z)) =
∏

D∈P∨Q

f(znumber of classes of Q contained in D).

Proposition 2. A is semisimple.

Proof. As A is commutative and finite-dimensional, it suffices to show that any nilpotent
element is zero. To this end, suppose a ∈ A is nilpotent, with a 6= 0. We can assume that
a2 = 0. Then there is an x ∈ CGk with x 6∈ I and x2 ∈ I. As x 6∈ I, f(xy) 6= 0 for some
y ∈ CGk. Let z := xy. Then f(z) 6= 0 and z2 ∈ I. So f(zt) = 0 for all t ≥ 2. By scaling,
we can assume that f(z) = 1.

Then for any P, Q ∈ Πn we have by (13)

(14) f(γP (1k)γQ(z)) = ZP,Q.

As Z is nonsingular, this implies rank(Cf,kn) ≥ |Πn|, contradicting the fact that rank(Cf,kn) ≤
ckn < |Πn|.
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Hence A ∼= C
t, where t = dim(A).

Proposition 3. If a is a nonzero idempotent in A, then f̂(a) is a positive integer.

Proof. Let a = z + I with z ∈ CGk. So f(zt) = f(z) for all t ≥ 1 (as at = a). Then for all
P, Q ∈ Πn we have by (13)

(15) f(γP (1k)γQ(z)) = (f(z))|P∨Q|.

As |Πn| > rank(Cf,kn), this implies that the matrix Pn(f(z)) is singular. So, by Proposition

1, f(z) ∈ Z+, and hence f̂(a) ∈ Z+.
Suppose finally that a is a nonzero idempotent with f̂(a) = 0. Then we can assume

that a is a minimal nonzero idempotent. Hence ab is a scalar multiple of a for each b. So
f̂(ab) = 0 for each b ∈ A, hence a = 0.

For any partition P of [k], let NP be the k-marked graph with vertex set P , no edges,
and where mark i ∈ [k] is given to the element of P that contains i. Define the element b
of CGk by

(16) b :=
∑

P∈Πk

µP NP ,

where, as above,µP = MT,P for all P ∈ Πk and T is the partition of [k] consisting of
singletons.

Proposition 4. b is an idempotent in CGk.

Proof. First note that NP NQ = NP∨Q. Moreover, for each R ∈ Πk:

(17)
∑

P,Q∈Πk
P∨Q=R

µP µQ = µR.

This follows from the uniqueness of µ, since for each S ∈ Πk we have, using µP = MT,P ,

(18)
∑

R≤S

(

∑

P,Q∈Πk
P∨Q=R

µP µQ

)

=
∑

P,Q∈Πk
P∨Q≤S

µP µQ =
(

∑

P≤S

µP

)2
= (δT,S)2 = δT,S .

Since MZ is the identity matrix, (17) follows. Hence

(19) b2 =
∑

P,Q∈Πk

µP µQNP∨Q =
∑

R

∑

P,Q∈Πk
P∨Q=R

µP µQNR =
∑

R

µRNR = b.

Now, for any x ∈ C,
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(20)
∑

P∈Πk

µP x|P | = x(x − 1) · · · (x − k + 1)

(cf. [7] — it also can be derived from (6) and (17)). Hence

(21) f(b) =
∑

P∈Πk

µP f(NP ) =
∑

P∈Πk

µP f(K1)
|P | =

f(K1)(f(K1) − 1) · · · (f(K1) − k + 1) = 0.

The last equality follows from the facts that f(K1) is a nonnegative integer and that f(K1) <
k. So f(b) = 0, and hence by Proposition 3, b ∈ I.

Finally, to prove (12), consider any graph G with k vertices, say with vertex set [k]. Let
vertex i ∈ [k] be marked by i. Since b ∈ I we have f(bG) = 0. This is equivalent to (12),
and finishes the proof of Theorem 1.

4. Final remark

The condition in the theorem says that log(rank(Cf,k)) = O(k). The proof shows that it can
be relaxed to log(rank(Cf,k)) = o(k log k), while keeping the conditions that rank(Cf,0) = 1
and f(∅) = 1. This follows from the fact that if log(rank(Cf,k)) = o(k log k), then for each
k there exists an n with |Πn| > rank(Cf,kn). This is the property used in the proofs of
Propositions 2 and 3.
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