LLOYD'S THEOREM

Notes for our seminar — Lex Schrijver

Fix n, e, and $q \in \mathbb{N}$, and set $Q = \{0, \ldots, q-1\}$. For $c, d \in Q^n$, let dist(c, d) be the Hamming distance of c and d, that is, the number of $i \in [n]$ with $c_i \neq d_i$. An *e-perfect code* is a subset $C \subseteq Q^n$ such that the balls $\{d \mid \text{dist}(c, d) \leq e\}$ for $c \in C$ partition Q^n .

The following was proved by Lloyd [4] for prime powers q, and by Bassalygo [1], Delsarte [2], and Lenstra [3] for general q.

Theorem (Lloyd's theorem). If an e-perfect code exists, then the ('Lloyd') polynomial

(1)
$$L_e(x) := \sum_{l=0}^{e} (-1)^l (q-1)^{e-l} {\binom{x-1}{l}} {\binom{n-x}{e-l}}$$

has e distinct zeroes among $1, \ldots, n$.

Proof. It will be convenient to assume that Q is equal to the ring $\mathbb{Z}/q\mathbb{Z}$.

For any $c \in Q^n$, let |c| be the *weight* of c, that is, the number of nonzero entries in c. So |c| = dist(0, c). For any $C \subseteq Q^n$, let w_C be the *weight enumerator* of C, that is, the function $w_C : \{0, \ldots, n\} \to \mathbb{Z}$ with $w_C(i)$ equals to the number of $c \in C$ with |c| = i (for $i = 0, \ldots, n\}$). First, we have:

(2) if an *e*-perfect code exists, then $\{w_C \mid C \text{ e-perfect code}\}$ spans a subspace of $\mathbb{R}^{\{0,\dots,n\}}$ of dimension at least e + 1.

Indeed, let C be an e-perfect code. For each $i = 0, \ldots, e$, choose a word a with |a| = i, and set $C_i := \{a + c \mid c \in C\}$. Then C_i is an e-perfect code, with $w_{C_i}(j) = \delta_{i,j}$ for $j = 0, \ldots, e$ (as a is the unique word in C_i at distance $\leq e$ from 0). So $\{w_{C_i} \mid i = 0, \ldots, e\}$ is linearly independent, and we have (2).

For each k = 0, ..., n, define the $\{0, ..., n\} \times \{0, ..., n\}$ matrix M_k by

(3)
$$(M_k)_{i,j} :=$$
 number of $a \in Q^n$ with $|a| = i$ and dist $(a, b) = k$,

for i, j = 0, ..., n, where b is an arbitrary word with |b| = j. The value (3) is independent of the choice of b, since for any other word b' with |b'| = j there is an isometry on Q^n that fixes 0 and brings b to b'. Define

(4)
$$M_{\leq e} := \sum_{k=0}^{e} M_k.$$

Then

(5) for any *e*-perfect code C, $M_{\leq e}w_C = w_{Q^n}$.

Indeed, for any $k \leq e$ and i, $(M_k w_C)_i = \sum_{c \in C} (M_k)_{i,|c|}$, which is the number of words of weight i at distance k from C. So $(M_{\leq e} w_C)_i$ is equal to the number of words of weight i at distance $\leq e$ from C. Since C is an e-perfect code, this is equal to the total number of words of weight i, which is $(w_{Q^n})_i$.

Now (2) and (5) imply:

(6) if an *e*-perfect code exists, then $\operatorname{corank}(M_{\leq e}) \geq e$.

Hence it suffices to prove that

(7)
$$\operatorname{corank}(M_{\leq e})$$
 is equal to the number $s \in \{1, \ldots, n\}$ with $L_e(s) = 0$

To this end, let for $s, i = 0, \ldots, n$:

(8)
$$K_{k,s} := \sum_{l=0}^{k} (-1)^{l} (q-1)^{k-l} {s \choose l} {n-s \choose k-l}$$

(the k-th Krawtchouk polynomial).

Let α be a primitive q-th root of unity. Then for any word d with |d| = s:

(9)
$$K_{k,s} = \sum_{c,|c|=k} \alpha^{c \cdot d},$$

where $c \cdot d := \sum_{i} c_{i} d_{i}$. Indeed, let S be the support of d. We can split the summands in (9) by the support I of c:

(10)
$$\sum_{\substack{c,|c|=k}} \alpha^{c \cdot d} = \sum_{\substack{I \subseteq [n] \\ |I|=k}} \prod_{i \in I \cap S} \sum_{c_i=1}^{q-1} \alpha^{c_i \cdot d_i} \cdot \prod_{i \in I \setminus S} \sum_{c_i=1}^{q-1} \alpha^{c_i \cdot 0} \cdot \prod_{i \in [n] \setminus I} \alpha^{0 \cdot d_i} = \sum_{\substack{I \subseteq [n] \\ |I|=k}} \prod_{i \in I \cap S} (-1) \cdot \prod_{i \in I \setminus S} (q-1) \cdot \prod_{i \in [n] \setminus I} 1 = \sum_{l=0}^{k} {s \choose l} (-1)^l {n-s \choose k-l} (q-1)^{k-l} = K_{k,s}.$$

This gives, for all $s, t = 0, \ldots, n$:

(11)
$$(KM_kK)_{s,t} = \delta_{s,t}q^n K_{k,t}.$$

Indeed, choose d with |d| = t arbitrarily. Then

(12)
$$(KM_{k}K)_{s,t} = \sum_{i,j} K_{s,i}(M_{k})_{i,j}K_{j,t} = \sum_{i,j} \sum_{c,|c|=j} \sum_{\substack{b,|b|=i\\ \operatorname{dist}(b,c)=k}} \sum_{a,|a|=s} \alpha^{a\cdot b} \alpha^{-c\cdot d} = \sum_{\substack{a,u\\|a|=s,|u|=k}} \sum_{c} \alpha^{a\cdot (c+u)} \alpha^{-d\cdot c} = \sum_{\substack{a,|a|=s\\|a|=s,|u|=k}} \sum_{c} \alpha^{a\cdot (c+u)} \alpha^{-d\cdot c} = \sum_{\substack{a,|a|=s\\|a|=s,|u|=k}} \alpha^{a\cdot u} \sum_{c} \alpha^{(a-d)\cdot c} = \sum_{\substack{a,u\\|a|=s,|u|=k}} \alpha^{a\cdot u} \delta_{a,d} q^{n} = \delta_{s,t} q^{n} \sum_{\substack{u\\|u|=k}} \alpha^{d\cdot u} = \delta_{s,t} q^{n} K_{k,t}.$$

So $X \mapsto KXK$ simultaneously diagonalizes all M_k , with q^n times the k-th row of K as diagonal of KM_kK . Hence it diagonalizes $M_{\leq e}$ and implies

(13) $\operatorname{corank}(M_{\leq e})$ is equal to the number of s with $\sum_{k=0}^{e} K_{k,s} = 0$.

Now

(14)
$$\sum_{k=0}^{e} K_{k,s} = L_e(s).$$

This follows by induction on e from

(15)
$$L_{e-1}(s) + K_{e,s} = L_e(s).$$

The latter follows from $\binom{s}{l} - \binom{s-1}{l} = \binom{s-1}{l-1}$:

(16)
$$K_{e,s} - L_{e}(s) = \sum_{l=0}^{e} (-1)^{l} (q-1)^{e-l} {s \choose l} {n-s \choose e-l} - \sum_{l=0}^{e} (-1)^{l} (q-1)^{e-l} {s-1 \choose l} {n-s \choose e-l} = \sum_{l=1}^{e} (-1)^{l} (q-1)^{e-l} {s-1 \choose l-1} {n-s \choose e-l} = -\sum_{l=0}^{e-1} (-1)^{l} (q-1)^{e-l-l} {s-1 \choose l} {n-s \choose e-l-l} = -L_{e-1}(s).$$

This proves the theorem (note that $L_e(0) > 0$).

References

- L.A. Bassalygo, Generalization of Lloyd's theorem to arbitrary alphabet [in Russian], Problemy Upravlenija i Teorii Informacii 2:2 (1973) 133–137 [English translation: Problems of Control and Information Theory 2:2 (1973) 25–28].
- [2] P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Research Reports Supplements 1973 No. 10, Philips Research Laboratories, Eindhoven, 1973.
- [3] H.W. Lenstra, Jr, Two theorems on perfect codes, *Discrete Mathematics* 3 (1972) 125–132.
- [4] S.P. Lloyd, Block coding, The Bell System Technical Journal 36 (1957) 517-535.