
LLOYD’S THEOREM

Notes for our seminar — Lex Schrijver

Fix n, e, and q ∈ N, and set Q = {0, . . . , q − 1}. For c, d ∈ Qn, let dist(c, d) be the
Hamming distance of c and d, that is, the number of i ∈ [n] with ci 6= di. An e-perfect code
is a subset C ⊆ Qn such that the balls {d | dist(c, d) ≤ e} for c ∈ C partition Qn.

The following was proved by Lloyd [4] for prime powers q, and by Bassalygo [1], Delsarte
[2], and Lenstra [3] for general q.

Theorem (Lloyd’s theorem). If an e-perfect code exists, then the (‘Lloyd’) polynomial

(1) Le(x) :=
e∑

l=0

(−1)l(q − 1)e−l
(
x−1
l

)(
n−x
e−l
)

has e distinct zeroes among 1, . . . , n.

Proof. It will be convenient to assume that Q is equal to the ring Z/qZ.
For any c ∈ Qn, let |c| be the weight of c, that is, the number of nonzero entries in c.

So |c| = dist(0, c). For any C ⊆ Qn, let wC be the weight enumerator of C, that is, the
function wC : {0, . . . , n} → Z with wC(i) equals to the number of c ∈ C with |c| = i (for
i = 0, . . . , n}). First, we have:

(2) if an e-perfect code exists, then {wC | C e-perfect code} spans a subspace of
R{0,...,n} of dimension at least e+ 1.

Indeed, let C be an e-perfect code. For each i = 0, . . . , e, choose a word a with |a| = i, and
set Ci := {a + c | c ∈ C}. Then Ci is an e-perfect code, with wCi(j) = δi,j for j = 0, . . . , e
(as a is the unique word in Ci at distance ≤ e from 0). So {wCi | i = 0, . . . , e} is linearly
independent, and we have (2).

For each k = 0, . . . , n, define the {0, . . . , n} × {0, . . . , n} matrix Mk by

(3) (Mk)i,j := number of a ∈ Qn with |a| = i and dist(a, b) = k,

for i, j = 0, . . . , n, where b is an arbirary word with |b| = j. The value (3) is independent
of the choice of b, since for any other word b′ with |b′| = j there is an isometry on Qn that
fixes 0 and brings b to b′. Define

(4) M≤e :=

e∑
k=0

Mk.

Then

(5) for any e-perfect code C, M≤ewC = wQn .

Indeed, for any k ≤ e and i, (MkwC)i =
∑

c∈C(Mk)i,|c|, which is the number of words of
weight i at distance k from C. So (M≤ewC)i is equal to the number of words of weight i
at distance ≤ e from C. Since C is an e-perfect code, this is equal to the total number of
words of weight i, which is (wQn)i.

Now (2) and (5) imply:
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(6) if an e-perfect code exists, then corank(M≤e) ≥ e.

Hence it suffices to prove that

(7) corank(M≤e) is equal to the number s ∈ {1, . . . , n} with Le(s) = 0.

To this end, let for s, i = 0, . . . , n:

(8) Kk,s :=
k∑

l=0

(−1)l(q − 1)k−l
(
s
l

)(
n−s
k−l
)

(the k-th Krawtchouk polynomial).
Let α be a primitive q-th root of unity. Then for any word d with |d| = s:

(9) Kk,s =
∑

c,|c|=k

αc·d,

where c · d :=
∑

i cidi. Indeed, let S be the support of d. We can split the summands in (9)
by the support I of c:

(10)
∑

c,|c|=k

αc·d =
∑
I⊆[n]
|I|=k

∏
i∈I∩S

q−1∑
ci=1

αci·di ·
∏

i∈I\S

q−1∑
ci=1

αci·0 ·
∏

i∈[n]\I

α0·di =

∑
I⊆[n]
|I|=k

∏
i∈I∩S

(−1) ·
∏

i∈I\S

(q − 1) ·
∏

i∈[n]\I

1 =

k∑
l=0

(
s
l

)
(−1)l

(
n−s
k−l
)
(q − 1)k−l = Kk,s.

This gives, for all s, t = 0, . . . , n:

(11) (KMkK)s,t = δs,tq
nKk,t.

Indeed, choose d with |d| = t arbitrarily. Then

(12) (KMkK)s,t =
∑
i,j

Ks,i(Mk)i,jKj,t =
∑
i,j

∑
c,|c|=j

∑
b,|b|=i

dist(b,c)=k

∑
a,|a|=s

αa·bα−c·d =

∑
a
|a|=s

∑
b,c

dist(b,c)=k

αa·bα−d·c =
∑
a,u

|a|=s,|u|=k

∑
c

αa·(c+u)α−d·c =

∑
a,u

|a|=s,|u|=k

αa·u
∑
c

α(a−d)·c =
∑
a,u

|a|=s,|u|=k

αa·uδa,dq
n = δs,tq

n
∑
u
|u|=k

αd·u = δs,tq
nKk,t.

So X 7→ KXK simultaneously diagonalizes all Mk, with qn times the k-th row of K as
diagonal of KMkK. Hence it diagonalizes M≤e and implies

(13) corank(M≤e) is equal to the number of s with
∑e

k=0Kk,s = 0.

Now

(14)

e∑
k=0

Kk,s = Le(s).
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This follows by induction on e from

(15) Le−1(s) +Ke,s = Le(s).

The latter follows from
(
s
l

)
−
(
s−1
l

)
=
(
s−1
l−1
)
:

(16) Ke,s − Le(s) =
e∑

l=0

(−1)l(q − 1)e−l
(
s
l

)(
n−s
e−l
)
−

e∑
l=0

(−1)l(q − 1)e−l
(
s−1
l

)(
n−s
e−l
)

=

e∑
l=1

(−1)l(q − 1)e−l
(
s−1
l−1
)(

n−s
e−l
)

= −
e−1∑
l=0

(−1)l(q − 1)e−1−l
(
s−1
l

)(
n−s

e−1−l
)

= −Le−1(s).

This proves the theorem (note that Le(0) > 0).
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