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Abstract. For an undirected graph G = (V, E) and a collection S of disjoint subsets of V , an S-path
is a path connecting different sets in S. We give a short proof of Mader’s min-max theorem for the
maximum number of disjoint S-paths.

Let G = (V,E) be an undirected graph and let S be a collection of disjoint subsets of V .
An S-path is a path connecting two different sets in S. Mader [4] gave the following min-max
relation for the maximum number of (vertex-)disjoint S-paths, where S :=

⋃
S.

Mader’s S-paths theorem. The maximum number of disjoint S-paths is equal to the
minimum value of

|U0| +
n∑

i=1

b1

2
|Bi|c,(1)

taken over all partitions U0, . . . , Un of V such that each S-path disjoint from U0, traverses
some edge spanned by some Ui. Here Bi denotes the set of vertices in Ui that belong to S or
have a neighbour in V \ (U0 ∪ Ui).

Lovász [3] gave an alternative proof, by deriving it from his matroid matching theorem.
Here we give a short proof of Mader’s theorem.

Let µ be the minimum value obtained in (1). Trivially, the maximum number of disjoint
S-paths is at most µ, since any S-path disjoint from U0 and traversing an edge spanned by
Ui, traverses at least two vertices in Bi.

I. First, the case where |T | = 1 for each T ∈ S was shown by Gallai [2], by reduction to
matching theory as follows. Let the graph G̃ = (Ṽ , Ẽ) arise from G by adding a disjoint copy
G′ of G − S, and making the copy v′ of each v ∈ V \ S adjacent to v and to all neighbours
of v in G. We claim that G̃ has a matching of size µ + |V \ S|. Indeed, by the Tutte-Berge
formula ([5],[1]), it suffices to prove that for any Ũ0 ⊆ Ṽ :

|Ũ0| +
n∑

i=1

b1

2
|Ũi|c ≥ µ + |V \ S|,(2)

where Ũ1, . . . , Ũn are the components of G̃− Ũ0. Now if for some v ∈ V \S exactly one of v, v′

belongs to Ũ0, then we can delete it from Ũ0, thereby not increasing the left hand side of (2).
So we can assume that for each v ∈ V \ S, either v, v′ ∈ Ũ0 or v, v′ 6∈ Ũ0. Let Ui := Ũi ∩ V

for i = 0, . . . , n. Then U1, . . . , Un are the components of G − U0, and we have:

|Ũ0| +
n∑

i=1

b1

2
|Ũi|c = |U0| +

n∑

i=1

b1

2
|Ui ∩ S|c + |V \ S| ≥ µ + |V \ S|(3)

(since in this case Bi = Ui ∩ S for i = 1, . . . , n), showing (2).

1CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and Department of Mathematics, University

of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

1



So G̃ has a matching M of size µ + |V \ S|. Let N be the matching {vv′|v ∈ V \ S} in
G̃. As |M | = µ + |V \ S| = µ + |N |, the union M ∪ N has at least µ components with more
edges in M than in N . Each such component is a path connecting two vertices in S. Then
contracting the edges in N yields µ disjoint S-paths in G.

II. We now consider the general case. Fixing V , choose a counterexample E, S minimizing

|E| − |{{t, u}|t, u ∈ V,∃T,U ∈ S : t ∈ T, u ∈ U, T 6= U}|.(4)

By part I, there exists a T ∈ S with |T | ≥ 2. Then T is independent in G, since any edge e

spanned by T can be deleted without changing the maximum and minimum value in Mader’s
theorem (as any S-path traversing e contains an S-path not containing e, and as deleting e

does not change any set Bi), while decreasing (4).
Choose s ∈ T . Replacing S by S ′ := (S \ {T}) ∪ {T \ {s}, {s}} decreases (4), but not

the minimum in Mader’s theorem (as each S-path is an S ′-path and as
⋃
S ′ = S). So there

exists a collection P of µ disjoint S ′-paths. We can assume that no path in P has any internal
vertex in S.

Necessarily, there is a path P0 ∈ P connecting s with another vertex in T , all other paths in
P being S-paths. Let u be an internal vertex of P0. Replacing S by S ′′ := (S\{T})∪{T∪{u}}
decreases (4), but not the minimum in Mader’s theorem (as each S-path is an S ′′-path and
as

⋃
S ′′ ⊃ S). So there exists a collection Q of µ disjoint S ′′-paths. Choose Q such that no

internal vertex of any path in Q belongs to S ∪{u}, and such that Q uses a minimal number
of edges not used by P.

Necessarily, u is an end of some path Q0 ∈ Q, all other paths in Q being S-paths. As
|P| = |Q| and as u is not an end of any path in P, there exists an end v of some path P ∈ P
that is not an end of any path in Q. Now P intersects at least one path in Q (since otherwise
P 6= P0, and (Q \ {Q0}) ∪ {P} would consist of µ disjoint S-paths). So when following P

starting at v, there is a first vertex w that is on some path in Q, say on Q ∈ Q.
For any end x of Q let Qx be the x−w part of Q, let P v be the v −w part of P , and let

U be the set in S ′′ containing v. Then for any end x of Q we have that Qx is part of P or the
other end of Q belongs to U , since otherwise by rerouting part Qx of Q along P v, Q remains
an S ′′-path disjoint from the other paths in Q, while we decrease the number of edges used
by Q and not by P , contradicting the minimality assumption.

Let y, z be the ends of Q. We can assume that y 6∈ U . Then Qz is part of P , hence Qy

is not part of P (as Q is not part of P , as otherwise Q = P , and hence v is an end of Q), so
z ∈ U . As z is on P and as also v belongs to U and is on P , we have P = P0. So U = T ∪{u}
and Q = Q0 (since Qz is part of P , so z = u). But then rerouting part Qz of Q along P v

gives µ disjoint S-paths, contradicting our assumption.
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