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1. The Tutte-Berge formula

For any graph G, let ν(G) denote the maximum size of a matching in G. Moreover, let
K(G) denote the set of components of G.

Berge [1] derived the following from the characterization of Tutte [5] of the existence of
a perfect matching in a graph:

Theorem 1 (Tutte-Berge formula). Let G = (V,E) be a graph. Then

(1) ν(G) = min
U⊆V
|U |+

∑
K∈K(G−U)

b12 |K|c.

Proof. The maximum is at most the minimum, since for each U ⊆ V , each edge of G
intersects U or is contained in a component of G− U . As U intersects at most |U | disjoint
edges, and as any component K contains at most b12 |K|c disjoint edges, we have ≤ in (1).

We prove the reverse inequality by induction on |V |, the case V = ∅ being trivial. We
can assume that G is connected, as otherwise we can apply induction to the components of
G.

First assume that there exists a vertex v covered by all maximum-size matchings. Then
ν(G− v) = ν(G)− 1, and by induction there exists a subset U ′ of V \ {v} with

(2) ν(G− v) = |U ′|+
∑

K∈K(G−v−U)

b12 |K|c.

Then U := U ′ ∪ {v} gives equality in (1).
So we can assume that there is no such v. We show 2ν(G) ≥ |V | − 1, which implies

ν(G) ≥ d12(|V | − 1)e = b12 |V |c. Taking U = ∅ then gives the theorem.
Indeed suppose to the contrary that 2ν(G) ≤ |V | − 2. So each maximum-size matching

M misses at least two distinct vertices u and v. Among all such M,u, v, choose them such
that the distance dist(u, v) of u and v in G is as small as possible.

If dist(u, v) = 1, then u and v are adjacent, and hence we can augment M by uv, contra-
dicting the maximality of |M |. So dist(u, v) ≥ 2, and hence we can choose an intermediate
vertex t on a shortest u − v path. By assumption, there exists a maximum-size matching
N missing t.

Consider the component P of the graph (V,M ∪N) containing t. As N misses t, P is a
path with end t. As M and N are maximum-size matchings, P contains an equal number of
edges in M as in N . Since M misses u and v, P cannot cover both u and v. So by symmetry
we can assume that P misses u. Exchanging M and N on P , M becomes a maximum-size
matching missing both u and t. Since dist(u, t) < dist(u, v), this contradicts the minimality
of dist(u, v).
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2. Gallai’s theorem

Let G = (V,E) be a graph and let T ⊆ V . A path is called a T -path if its ends are distinct
vertices in T and no internal vertex belongs to T .

Gallai [2] derived the following from the Tutte-Berge formula.

Theorem 2 (Gallai’s disjoint T -paths theorem). Let G = (V,E) be a graph and let T ⊆ V .
The maximum number of disjoint T -paths is equal to

(3) min
U⊆V
|U |+

∑
K∈K(G−U)

b12 |K ∩ T |c.

Proof. The maximum is at most the minimum, since for each U ⊆ V , each T -path intersects
U or has both ends in K ∩ T for some component K of G− U .

To see equality, let µ be equal to the minimum value of (3). Let the graph G̃ = (Ṽ , Ẽ)
arise from G by adding a disjoint copy G′ of G−T , and making the copy v′ of each v ∈ V \T
adjacent to v and to all neighbours of v in G. By the Tutte-Berge formula, G̃ has a matching
M of size µ+ |V \ T |. To see this, we must prove that for any Ũ ⊆ Ṽ :

(4) |Ũ |+
∑

K̃∈K(G̃−Ũ)

b12 |K̃|c ≥ µ+ |V \ T |.

Now if for some v ∈ V \ T exactly one of v, v′ belongs to Ũ , then we can delete it from Ũ ,
thereby not increasing the left-hand side of (4).

So we can assume that for each v ∈ V \ T , either v, v′ ∈ Ũ or v, v′ 6∈ Ũ . Define
U := Ũ ∩ V . Then each component K of G− U is equal to K̃ ∩ V for some component K̃
of G̃− Ũ . Hence

(5) |Ũ |+
∑

K̃∈K(G̃−Ũ)

b12 |K̃|c = |U |+ |V \ T |+
∑

K∈K(G−U)

b12 |K ∩ T |c ≥ µ+ |V \ T |.

Thus we have (4).
So G̃ has a matching M of size µ + |V \ T |. Let N be the matching {vv′ | v ∈ V \ T}

in G̃. As |M | = µ + |V \ T | = µ + |N |, the union M ∪N has at least µ components with
more edges in M than in N . Each such component is a path connecting two vertices in T .
Then contracting the edges in N yields µ disjoint T -paths in G.
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3. Mader’s theorem

Let G = (V,E) be a graph and let S be a collection of disjoint nonempty subsets of V . A
path in G is called an S-path if it connects two different sets in S and has no internal vertex
in any set in S. Denote T :=

⋃
S.

Mader [3] showed the following (we follow the proof of [4], deriving Mader’s theorem
from Gallai’s theorem).

Theorem 3 (Mader’s disjoint S-paths theorem). The maximum number of disjoint S-paths
is equal to the minimum value of

(6) |U0|+
n∑

i=1

b12 |Bi|c,

taken over all partitions U0, . . . , Un of V (over all n) such that each S-path intersects U0

or traverses some edge spanned by some Ui. Here Bi denotes the set of vertices in Ui that
belong to T or have a neighbour in V \ (U0 ∪ Ui).

Proof. Let µ be the minimum value of (6). Trivially, the maximum number of disjoint
S-paths is at most µ, since any S-path disjoint from U0 and traversing an edge spanned by
Ui, traverses at least two vertices in Bi.

To prove the reverse inequality, fix V , and choose a counterexample E, S minimizing

(7) |E| − |{{x, y} | x, y ∈ V,∃X,Y ∈ S : x ∈ X, y ∈ Y,X 6= Y }|.

Then each X ∈ S is a stable set of G, since deleting any edge e spanned by X does not
change the maximum and minimum value in Mader’s theorem (as no S-path traverses e
and as deleting e does not change any set Bi), while it decreases (7).

Moreover, |S| ≥ 2, since if |S| ≤ 1, no S-paths exist, and we can tale U0 = ∅ and for the
sets U1, . . . , Un all singletons from V .

If |X| = 1 for each X ∈ S, the theorem reduces to Gallai’s disjoint T -paths theorem:
we can take for U0 any set U minimizing (3), and for U1, . . . , Un the components of G−U .

So |X| ≥ 2 for some X ∈ S. Choose s ∈ X. Define

(8) S ′ := (S \ {X}) ∪ {X \ {s}, {s}}.

Replacing S by S ′ does not decrease the minimum in Mader’s theorem (as each S-path is
an S ′-path and as

⋃
S ′ = T ). But it decreases (7), hence there exists a collection P of µ

disjoint S ′-paths.
Necessarily, there is a path P0 ∈ P connecting s with another vertex in X (otherwise

P forms µ disjoint S-paths). Then all other paths in P are S-paths. Let u be an internal
vertex of P0 (u exists, since X is a stable set). Define

(9) S ′′ := (S \ {X}) ∪ {X ∪ {u}}.

Replacing S by S ′′ does not decrease the minimum in Mader’s theorem (as each S-path is
an S ′′-path and as

⋃
S ′′ ⊇ T ). But it decreases (7), hence there exists a collection Q of µ

disjoint S ′′-paths. Choose Q such that Q uses a minimal number of edges not used by P.
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Necessarily, u is an end of some path Q0 ∈ Q (otherwise Q forms µ disjoint S-paths).
Then all other paths in Q are S-paths. As |P| = |Q| and as u is not an end of any path in
P, there exists an end r of some path P ∈ P that is not an end of any path in Q.

Then P intersects some path in Q (otherwise (Q \ {Q0}) ∪ {P} would form µ disjoint
S-paths). So when following P starting from r, there is a first vertex w that is on some
path in Q, say on Q ∈ Q.

Let t′ and t′′ be the ends of Q, and let Q′ and Q′′ be the w− t′ and w− t′′ subpaths of Q
(possibly of length 0). Let P ′ be the r−w part of P , and let Y be the set in S ′′ containing
r. Then

(10) t′′ 6∈ Y implies EQ′ ⊆ EP ; similarly: t′ 6∈ Y implies EQ′′ ⊆ EP .

Indeed, if t′′ 6∈ Y and EQ′ 6⊆ EP , we can replace part Q′ of Q by P ′, to obtain a collection
Q′ of µ disjoint S ′′-paths with a fewer number of edges not used by P. This contradicts our
minimality assumption. So we have the first statement in (10), and by symmetry also the
second.

Since Q is an S ′′-path, at least one of t′, t′′ does not belong to Y . By symmetry we can
assume that t′′ 6∈ Y . So by (10), EQ′ ⊆ EP .

If P 6= P0, then
⋃
S ′′ intersects P only in the ends of P . So EQ′ ⊆ EP implies that t′

is the other end of P (than r). As r ∈ Y , we know t′ 6∈ Y . So by (10), EQ′′ ⊆ EP , hence
also t′′ is the other end of P . So t′′ = t′, a contradiction.

So P = P0. As Y contains r and as both ends of P0 belong to X, we know Y = X ∪{u}.
Moreover, w must be on the r − u part of P0 (since u is covered by Q0 and since w is the
first vertex from r on P0 covered by Q). So t′ = u, and hence, as t′ is an end of Q, we know
Q = Q0. Also, Q′ is equal to the w − u part of P . As u ∈ Y , we know t′′ 6∈ Y , so the path
P ′Q′′ is an S-path. So replacing Q0 = Q′Q′′ by P ′Q′′ gives µ disjoint S-paths, as required.
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