$\mathbf{Tutte}\textbf{-}\mathbf{Berge} \Rightarrow \mathbf{Gallai} \Rightarrow \mathbf{Mader}$

Notes for our seminar Lex Schrijver

1. The Tutte-Berge formula

For any graph G, let $\nu(G)$ denote the maximum size of a matching in G. Moreover, let $\mathcal{K}(G)$ denote the set of components of G.

Berge [1] derived the following from the characterization of Tutte [5] of the existence of a perfect matching in a graph:

Theorem 1 (Tutte-Berge formula). Let G = (V, E) be a graph. Then

(1)
$$\nu(G) = \min_{U \subseteq V} |U| + \sum_{K \in \mathcal{K}(G-U)} \lfloor \frac{1}{2} |K| \rfloor$$

Proof. The maximum is at most the minimum, since for each $U \subseteq V$, each edge of G intersects U or is contained in a component of G - U. As U intersects at most |U| disjoint edges, and as any component K contains at most $\lfloor \frac{1}{2}|K| \rfloor$ disjoint edges, we have \leq in (1).

We prove the reverse inequality by induction on |V|, the case $V = \emptyset$ being trivial. We can assume that G is connected, as otherwise we can apply induction to the components of G.

First assume that there exists a vertex v covered by all maximum-size matchings. Then $\nu(G-v) = \nu(G) - 1$, and by induction there exists a subset U' of $V \setminus \{v\}$ with

(2)
$$\nu(G-v) = |U'| + \sum_{K \in \mathcal{K}(G-v-U)} \lfloor \frac{1}{2} |K| \rfloor.$$

Then $U := U' \cup \{v\}$ gives equality in (1).

So we can assume that there is no such v. We show $2\nu(G) \ge |V| - 1$, which implies $\nu(G) \ge \lfloor \frac{1}{2}(|V| - 1) \rfloor = \lfloor \frac{1}{2}|V| \rfloor$. Taking $U = \emptyset$ then gives the theorem.

Indeed suppose to the contrary that $2\nu(G) \leq |V| - 2$. So each maximum-size matching M misses at least two distinct vertices u and v. Among all such M, u, v, choose them such that the distance dist(u, v) of u and v in G is as small as possible.

If dist(u, v) = 1, then u and v are adjacent, and hence we can augment M by uv, contradicting the maximality of |M|. So dist $(u, v) \ge 2$, and hence we can choose an intermediate vertex t on a shortest u - v path. By assumption, there exists a maximum-size matching N missing t.

Consider the component P of the graph $(V, M \cup N)$ containing t. As N misses t, P is a path with end t. As M and N are maximum-size matchings, P contains an equal number of edges in M as in N. Since M misses u and v, P cannot cover both u and v. So by symmetry we can assume that P misses u. Exchanging M and N on P, M becomes a maximum-size matching missing both u and t. Since dist(u, t) < dist(u, v), this contradicts the minimality of dist(u, v).

2. Gallai's theorem

Let G = (V, E) be a graph and let $T \subseteq V$. A path is called a *T*-path if its ends are distinct vertices in *T* and no internal vertex belongs to *T*.

Gallai [2] derived the following from the Tutte-Berge formula.

Theorem 2 (Gallai's disjoint *T*-paths theorem). Let G = (V, E) be a graph and let $T \subseteq V$. The maximum number of disjoint *T*-paths is equal to

(3)
$$\min_{U \subseteq V} |U| + \sum_{K \in \mathcal{K}(G-U)} \lfloor \frac{1}{2} |K \cap T| \rfloor.$$

Proof. The maximum is at most the minimum, since for each $U \subseteq V$, each *T*-path intersects U or has both ends in $K \cap T$ for some component K of G - U.

To see equality, let μ be equal to the minimum value of (3). Let the graph $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ arise from G by adding a disjoint copy G' of G-T, and making the copy v' of each $v \in V \setminus T$ adjacent to v and to all neighbours of v in G. By the Tutte-Berge formula, \widetilde{G} has a matching M of size $\mu + |V \setminus T|$. To see this, we must prove that for any $\widetilde{U} \subseteq \widetilde{V}$:

(4)
$$|\widetilde{U}| + \sum_{\widetilde{K} \in \mathcal{K}(\widetilde{G} - \widetilde{U})} \lfloor \frac{1}{2} |\widetilde{K}| \rfloor \ge \mu + |V \setminus T|.$$

Now if for some $v \in V \setminus T$ exactly one of v, v' belongs to \widetilde{U} , then we can delete it from \widetilde{U} , thereby not increasing the left-hand side of (4).

So we can assume that for each $v \in V \setminus T$, either $v, v' \in \widetilde{U}$ or $v, v' \notin \widetilde{U}$. Define $U := \widetilde{U} \cap V$. Then each component K of G - U is equal to $\widetilde{K} \cap V$ for some component \widetilde{K} of $\widetilde{G} - \widetilde{U}$. Hence

(5)
$$|\widetilde{U}| + \sum_{\widetilde{K} \in \mathcal{K}(\widetilde{G} - \widetilde{U})} \lfloor \frac{1}{2} |\widetilde{K}| \rfloor = |U| + |V \setminus T| + \sum_{K \in \mathcal{K}(G - U)} \lfloor \frac{1}{2} |K \cap T| \rfloor \ge \mu + |V \setminus T|.$$

Thus we have (4).

So G has a matching M of size $\mu + |V \setminus T|$. Let N be the matching $\{vv' \mid v \in V \setminus T\}$ in \tilde{G} . As $|M| = \mu + |V \setminus T| = \mu + |N|$, the union $M \cup N$ has at least μ components with more edges in M than in N. Each such component is a path connecting two vertices in T. Then contracting the edges in N yields μ disjoint T-paths in G.

3. Mader's theorem

Let G = (V, E) be a graph and let S be a collection of disjoint nonempty subsets of V. A path in G is called an S-path if it connects two different sets in S and has no internal vertex in any set in S. Denote $T := \bigcup S$.

Mader [3] showed the following (we follow the proof of [4], deriving Mader's theorem from Gallai's theorem).

Theorem 3 (Mader's disjoint S-paths theorem). The maximum number of disjoint S-paths is equal to the minimum value of

(6)
$$|U_0| + \sum_{i=1}^n \lfloor \frac{1}{2} |B_i| \rfloor,$$

taken over all partitions U_0, \ldots, U_n of V (over all n) such that each S-path intersects U_0 or traverses some edge spanned by some U_i . Here B_i denotes the set of vertices in U_i that belong to T or have a neighbour in $V \setminus (U_0 \cup U_i)$.

Proof. Let μ be the minimum value of (6). Trivially, the maximum number of disjoint S-paths is at most μ , since any S-path disjoint from U_0 and traversing an edge spanned by U_i , traverses at least two vertices in B_i .

To prove the reverse inequality, fix V, and choose a counterexample E, S minimizing

(7)
$$|E| - |\{\{x, y\} \mid x, y \in V, \exists X, Y \in \mathcal{S} : x \in X, y \in Y, X \neq Y\}|.$$

Then each $X \in S$ is a stable set of G, since deleting any edge e spanned by X does not change the maximum and minimum value in Mader's theorem (as no S-path traverses eand as deleting e does not change any set B_i), while it decreases (7).

Moreover, $|S| \ge 2$, since if $|S| \le 1$, no S-paths exist, and we can tale $U_0 = \emptyset$ and for the sets U_1, \ldots, U_n all singletons from V.

If |X| = 1 for each $X \in S$, the theorem reduces to Gallai's disjoint *T*-paths theorem: we can take for U_0 any set *U* minimizing (3), and for U_1, \ldots, U_n the components of G - U.

So $|X| \ge 2$ for some $X \in \mathcal{S}$. Choose $s \in X$. Define

(8)
$$\mathcal{S}' := (\mathcal{S} \setminus \{X\}) \cup \{X \setminus \{s\}, \{s\}\}.$$

Replacing S by S' does not decrease the minimum in Mader's theorem (as each S-path is an S'-path and as $\bigcup S' = T$). But it decreases (7), hence there exists a collection \mathcal{P} of μ disjoint S'-paths.

Necessarily, there is a path $P_0 \in \mathcal{P}$ connecting *s* with another vertex in *X* (otherwise \mathcal{P} forms μ disjoint \mathcal{S} -paths). Then all other paths in \mathcal{P} are \mathcal{S} -paths. Let *u* be an internal vertex of P_0 (*u* exists, since *X* is a stable set). Define

(9)
$$\mathcal{S}'' := (\mathcal{S} \setminus \{X\}) \cup \{X \cup \{u\}\}.$$

Replacing \mathcal{S} by \mathcal{S}'' does not decrease the minimum in Mader's theorem (as each \mathcal{S} -path is an \mathcal{S}'' -path and as $\bigcup \mathcal{S}'' \supseteq T$). But it decreases (7), hence there exists a collection \mathcal{Q} of μ disjoint \mathcal{S}'' -paths. Choose \mathcal{Q} such that \mathcal{Q} uses a minimal number of edges not used by \mathcal{P} . Necessarily, u is an end of some path $Q_0 \in \mathcal{Q}$ (otherwise \mathcal{Q} forms μ disjoint S-paths). Then all other paths in \mathcal{Q} are S-paths. As $|\mathcal{P}| = |\mathcal{Q}|$ and as u is not an end of any path in \mathcal{P} , there exists an end r of some path $P \in \mathcal{P}$ that is not an end of any path in \mathcal{Q} .

Then P intersects some path in \mathcal{Q} (otherwise $(\mathcal{Q} \setminus \{Q_0\}) \cup \{P\}$ would form μ disjoint \mathcal{S} -paths). So when following P starting from r, there is a first vertex w that is on some path in \mathcal{Q} , say on $Q \in \mathcal{Q}$.

Let t' and t'' be the ends of Q, and let Q' and Q'' be the w-t' and w-t'' subpaths of Q (possibly of length 0). Let P' be the r-w part of P, and let Y be the set in \mathcal{S}'' containing r. Then

(10) $t'' \notin Y$ implies $EQ' \subseteq EP$; similarly: $t' \notin Y$ implies $EQ'' \subseteq EP$.

Indeed, if $t'' \notin Y$ and $EQ' \notin EP$, we can replace part Q' of Q by P', to obtain a collection Q' of μ disjoint S''-paths with a fewer number of edges not used by \mathcal{P} . This contradicts our minimality assumption. So we have the first statement in (10), and by symmetry also the second.

Since Q is an \mathcal{S}'' -path, at least one of t', t'' does not belong to Y. By symmetry we can assume that $t'' \notin Y$. So by (10), $EQ' \subseteq EP$.

If $P \neq P_0$, then $\bigcup S''$ intersects P only in the ends of P. So $EQ' \subseteq EP$ implies that t' is the other end of P (than r). As $r \in Y$, we know $t' \notin Y$. So by (10), $EQ'' \subseteq EP$, hence also t'' is the other end of P. So t'' = t', a contradiction.

So $P = P_0$. As Y contains r and as both ends of P_0 belong to X, we know $Y = X \cup \{u\}$. Moreover, w must be on the r - u part of P_0 (since u is covered by Q_0 and since w is the first vertex from r on P_0 covered by Q). So t' = u, and hence, as t' is an end of Q, we know $Q = Q_0$. Also, Q' is equal to the w - u part of P. As $u \in Y$, we know $t'' \notin Y$, so the path P'Q'' is an S-path. So replacing $Q_0 = Q'Q''$ by P'Q'' gives μ disjoint S-paths, as required.

References

- C. Berge, Sur le couplage maximum d'un graphe, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences [Paris] 247 (1958) 258–259.
- [2] T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 12 (1961) 131–173.
- [3] W. Mader, Uber die Maximalzahl kreuzungsfreier H-Wege, Archiv der Mathematik (Basel) 31 (1978) 387–402.
- [4] A. Schrijver, A short proof of Mader's S-paths theorem, Journal of Combinatorial Theory, Series B 82 (2001) 319–321.
- [5] W.T. Tutte, The factorization of linear graphs, The Journal of the London Mathematical Society 22 (1947) 107–111.