Tutte-Berge \Rightarrow Gallai \Rightarrow Mader

Notes for our seminar

Lex Schrijver

1. The Tutte-Berge formula

For any graph G, let $\nu(G)$ denote the maximum size of a matching in G. Moreover, let $\mathcal{K}(G)$ denote the set of components of G.

Berge [1] derived the following from the characterization of Tutte [5] of the existence of a perfect matching in a graph:

Theorem 1 (Tutte-Berge formula). Let $G=(V, E)$ be a graph. Then

$$
\begin{equation*}
\nu(G)=\min _{U \subseteq V}|U|+\sum_{K \in \mathcal{K}(G-U)}\left\lfloor\frac{1}{2}|K|\right\rfloor . \tag{1}
\end{equation*}
$$

Proof. The maximum is at most the minimum, since for each $U \subseteq V$, each edge of G intersects U or is contained in a component of $G-U$. As U intersects at most $|U|$ disjoint edges, and as any component K contains at most $\left\lfloor\frac{1}{2}|K|\right\rfloor$ disjoint edges, we have \leq in (1).

We prove the reverse inequality by induction on $|V|$, the case $V=\emptyset$ being trivial. We can assume that G is connected, as otherwise we can apply induction to the components of G.

First assume that there exists a vertex v covered by all maximum-size matchings. Then $\nu(G-v)=\nu(G)-1$, and by induction there exists a subset U^{\prime} of $V \backslash\{v\}$ with

$$
\begin{equation*}
\nu(G-v)=\left|U^{\prime}\right|+\sum_{K \in \mathcal{K}(G-v-U)}\left\lfloor\frac{1}{2}|K|\right\rfloor . \tag{2}
\end{equation*}
$$

Then $U:=U^{\prime} \cup\{v\}$ gives equality in (11).
So we can assume that there is no such v. We show $2 \nu(G) \geq|V|-1$, which implies $\nu(G) \geq\left\lceil\frac{1}{2}(|V|-1)\right\rceil=\left\lfloor\frac{1}{2}|V|\right\rfloor$. Taking $U=\emptyset$ then gives the theorem.

Indeed suppose to the contrary that $2 \nu(G) \leq|V|-2$. So each maximum-size matching M misses at least two distinct vertices u and v. Among all such M, u, v, choose them such that the distance $\operatorname{dist}(u, v)$ of u and v in G is as small as possible.

If $\operatorname{dist}(u, v)=1$, then u and v are adjacent, and hence we can augment M by $u v$, contradicting the maximality of $|M|$. So $\operatorname{dist}(u, v) \geq 2$, and hence we can choose an intermediate vertex t on a shortest $u-v$ path. By assumption, there exists a maximum-size matching N missing t.

Consider the component P of the graph $(V, M \cup N)$ containing t. As N misses t, P is a path with end t. As M and N are maximum-size matchings, P contains an equal number of edges in M as in N. Since M misses u and v, P cannot cover both u and v. So by symmetry we can assume that P misses u. Exchanging M and N on P, M becomes a maximum-size matching missing both u and t. Since $\operatorname{dist}(u, t)<\operatorname{dist}(u, v)$, this contradicts the minimality of $\operatorname{dist}(u, v)$.

2. Gallai's theorem

Let $G=(V, E)$ be a graph and let $T \subseteq V$. A path is called a T-path if its ends are distinct vertices in T and no internal vertex belongs to T.

Gallai [2] derived the following from the Tutte-Berge formula.
Theorem 2 (Gallai's disjoint T-paths theorem). Let $G=(V, E)$ be a graph and let $T \subseteq V$. The maximum number of disjoint T-paths is equal to

$$
\begin{equation*}
\min _{U \subseteq V}|U|+\sum_{K \in \mathcal{K}(G-U)}\left\lfloor\frac{1}{2}|K \cap T|\right\rfloor \tag{3}
\end{equation*}
$$

Proof. The maximum is at most the minimum, since for each $U \subseteq V$, each T-path intersects U or has both ends in $K \cap T$ for some component K of $G-U$.

To see equality, let μ be equal to the minimum value of (3). Let the graph $\widetilde{G}=(\widetilde{V}, \widetilde{E})$ arise from G by adding a disjoint copy G^{\prime} of $G-T$, and making the copy v^{\prime} of each $v \in V \backslash T$ adjacent to v and to all neighbours of v in G. By the Tutte-Berge formula, \widetilde{G} has a matching M of size $\mu+|V \backslash T|$. To see this, we must prove that for any $\widetilde{U} \subseteq \widetilde{V}$:

$$
\begin{equation*}
|\widetilde{U}|+\sum_{\widetilde{K} \in \mathcal{K}(\widetilde{G}-\widetilde{U})}\left\lfloor\frac{1}{2}|\widetilde{K}|\right\rfloor \geq \mu+|V \backslash T| \tag{4}
\end{equation*}
$$

Now if for some $v \in V \backslash T$ exactly one of v, v^{\prime} belongs to \widetilde{U}, then we can delete it from \widetilde{U}, thereby not increasing the left-hand side of (4).

So we can assume that for each $v \in V \backslash T$, either $v, v^{\prime} \in \widetilde{U}$ or $v, v^{\prime} \notin \widetilde{U}$. Define $U:=\widetilde{U} \cap V$. Then each component K of $G-U$ is equal to $\widetilde{K} \cap V$ for some component \widetilde{K} of $\widetilde{G}-\widetilde{U}$. Hence

$$
\begin{equation*}
|\widetilde{U}|+\sum_{\widetilde{K} \in \mathcal{K}(\widetilde{G}-\widetilde{U})}\left\lfloor\frac{1}{2}|\widetilde{K}|\right\rfloor=|U|+|V \backslash T|+\sum_{K \in \mathcal{K}(G-U)}\left\lfloor\frac{1}{2}|K \cap T|\right\rfloor \geq \mu+|V \backslash T| \tag{5}
\end{equation*}
$$

Thus we have (4).
So \widetilde{G} has a matching M of size $\mu+|V \backslash T|$. Let N be the matching $\left\{v v^{\prime} \mid v \in V \backslash T\right\}$ in \widetilde{G}. As $|M|=\mu+|V \backslash T|=\mu+|N|$, the union $M \cup N$ has at least μ components with more edges in M than in N. Each such component is a path connecting two vertices in T. Then contracting the edges in N yields μ disjoint T-paths in G.

3. Mader's theorem

Let $G=(V, E)$ be a graph and let \mathcal{S} be a collection of disjoint nonempty subsets of V. A path in G is called an \mathcal{S}-path if it connects two different sets in \mathcal{S} and has no internal vertex in any set in \mathcal{S}. Denote $T:=\bigcup \mathcal{S}$.

Mader [3] showed the following (we follow the proof of [4], deriving Mader's theorem from Gallai's theorem).

Theorem 3 (Mader's disjoint \mathcal{S}-paths theorem). The maximum number of disjoint \mathcal{S}-paths is equal to the minimum value of

$$
\begin{equation*}
\left|U_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|B_{i}\right|\right\rfloor, \tag{6}
\end{equation*}
$$

taken over all partitions U_{0}, \ldots, U_{n} of V (over all n) such that each \mathcal{S}-path intersects U_{0} or traverses some edge spanned by some U_{i}. Here B_{i} denotes the set of vertices in U_{i} that belong to T or have a neighbour in $V \backslash\left(U_{0} \cup U_{i}\right)$.

Proof. Let μ be the minimum value of (6). Trivially, the maximum number of disjoint \mathcal{S}-paths is at most μ, since any \mathcal{S}-path disjoint from U_{0} and traversing an edge spanned by U_{i}, traverses at least two vertices in B_{i}.

To prove the reverse inequality, fix V, and choose a counterexample E, \mathcal{S} minimizing

$$
\begin{equation*}
|E|-|\{\{x, y\} \mid x, y \in V, \exists X, Y \in \mathcal{S}: x \in X, y \in Y, X \neq Y\}| . \tag{7}
\end{equation*}
$$

Then each $X \in \mathcal{S}$ is a stable set of G, since deleting any edge e spanned by X does not change the maximum and minimum value in Mader's theorem (as no \mathcal{S}-path traverses e and as deleting e does not change any set B_{i}), while it decreases (7).

Moreover, $|\mathcal{S}| \geq 2$, since if $|\mathcal{S}| \leq 1$, no \mathcal{S}-paths exist, and we can tale $U_{0}=\emptyset$ and for the sets U_{1}, \ldots, U_{n} all singletons from V.

If $|X|=1$ for each $X \in \mathcal{S}$, the theorem reduces to Gallai's disjoint T-paths theorem: we can take for U_{0} any set U minimizing (3), and for U_{1}, \ldots, U_{n} the components of $G-U$.

So $|X| \geq 2$ for some $X \in \mathcal{S}$. Choose $s \in X$. Define

$$
\begin{equation*}
\mathcal{S}^{\prime}:=(\mathcal{S} \backslash\{X\}) \cup\{X \backslash\{s\},\{s\}\} \tag{8}
\end{equation*}
$$

Replacing \mathcal{S} by \mathcal{S}^{\prime} does not decrease the minimum in Mader's theorem (as each \mathcal{S}-path is an \mathcal{S}^{\prime}-path and as $\bigcup \mathcal{S}^{\prime}=T$). But it decreases (7), hence there exists a collection \mathcal{P} of μ disjoint \mathcal{S}^{\prime}-paths.

Necessarily, there is a path $P_{0} \in \mathcal{P}$ connecting s with another vertex in X (otherwise \mathcal{P} forms μ disjoint \mathcal{S}-paths). Then all other paths in \mathcal{P} are \mathcal{S}-paths. Let u be an internal vertex of P_{0} (u exists, since X is a stable set). Define

$$
\begin{equation*}
\mathcal{S}^{\prime \prime}:=(\mathcal{S} \backslash\{X\}) \cup\{X \cup\{u\}\} . \tag{9}
\end{equation*}
$$

Replacing \mathcal{S} by $\mathcal{S}^{\prime \prime}$ does not decrease the minimum in Mader's theorem (as each \mathcal{S}-path is an $\mathcal{S}^{\prime \prime}$-path and as $\bigcup \mathcal{S}^{\prime \prime} \supseteq T$). But it decreases (7), hence there exists a collection \mathcal{Q} of μ disjoint $\mathcal{S}^{\prime \prime}$-paths. Choose \mathcal{Q} such that \mathcal{Q} uses a minimal number of edges not used by \mathcal{P}.

Necessarily, u is an end of some path $Q_{0} \in \mathcal{Q}$ (otherwise \mathcal{Q} forms μ disjoint \mathcal{S}-paths). Then all other paths in \mathcal{Q} are \mathcal{S}-paths. As $|\mathcal{P}|=|\mathcal{Q}|$ and as u is not an end of any path in \mathcal{P}, there exists an end r of some path $P \in \mathcal{P}$ that is not an end of any path in \mathcal{Q}.

Then P intersects some path in \mathcal{Q} (otherwise $\left(\mathcal{Q} \backslash\left\{Q_{0}\right\}\right) \cup\{P\}$ would form μ disjoint \mathcal{S}-paths). So when following P starting from r, there is a first vertex w that is on some path in \mathcal{Q}, say on $Q \in \mathcal{Q}$.

Let t^{\prime} and $t^{\prime \prime}$ be the ends of Q, and let Q^{\prime} and $Q^{\prime \prime}$ be the $w-t^{\prime}$ and $w-t^{\prime \prime}$ subpaths of Q (possibly of length 0). Let P^{\prime} be the $r-w$ part of P, and let Y be the set in $\mathcal{S}^{\prime \prime}$ containing r. Then

$$
\begin{equation*}
t^{\prime \prime} \notin Y \text { implies } E Q^{\prime} \subseteq E P ; \text { similarly: } t^{\prime} \notin Y \text { implies } E Q^{\prime \prime} \subseteq E P \tag{10}
\end{equation*}
$$

Indeed, if $t^{\prime \prime} \notin Y$ and $E Q^{\prime} \nsubseteq E P$, we can replace part Q^{\prime} of Q by P^{\prime}, to obtain a collection \mathcal{Q}^{\prime} of μ disjoint $\mathcal{S}^{\prime \prime}$-paths with a fewer number of edges not used by \mathcal{P}. This contradicts our minimality assumption. So we have the first statement in 10 , and by symmetry also the second.

Since Q is an $\mathcal{S}^{\prime \prime}$-path, at least one of $t^{\prime}, t^{\prime \prime}$ does not belong to Y. By symmetry we can assume that $t^{\prime \prime} \notin Y$. So by $10, E Q^{\prime} \subseteq E P$.

If $P \neq P_{0}$, then $\bigcup \mathcal{S}^{\prime \prime}$ intersects P only in the ends of P. So $E Q^{\prime} \subseteq E P$ implies that t^{\prime} is the other end of $P(\operatorname{than} r)$. As $r \in Y$, we know $t^{\prime} \notin Y$. So by $\sqrt[10]{10}, E Q^{\prime \prime} \subseteq E P$, hence also $t^{\prime \prime}$ is the other end of P. So $t^{\prime \prime}=t^{\prime}$, a contradiction.

So $P=P_{0}$. As Y contains r and as both ends of P_{0} belong to X, we know $Y=X \cup\{u\}$. Moreover, w must be on the $r-u$ part of P_{0} (since u is covered by Q_{0} and since w is the first vertex from r on P_{0} covered by $\left.\mathcal{Q}\right)$. So $t^{\prime}=u$, and hence, as t^{\prime} is an end of Q, we know $Q=Q_{0}$. Also, Q^{\prime} is equal to the $w-u$ part of P. As $u \in Y$, we know $t^{\prime \prime} \notin Y$, so the path $P^{\prime} Q^{\prime \prime}$ is an \mathcal{S}-path. So replacing $Q_{0}=Q^{\prime} Q^{\prime \prime}$ by $P^{\prime} Q^{\prime \prime}$ gives μ disjoint \mathcal{S}-paths, as required.

References

[1] C. Berge, Sur le couplage maximum d'un graphe, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences [Paris] 247 (1958) 258-259.
[2] T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 12 (1961) 131-173.
[3] W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Archiv der Mathematik (Basel) 31 (1978) 387-402.
[4] A. Schrijver, A short proof of Mader's \mathcal{S}-paths theorem, Journal of Combinatorial Theory, Series B 82 (2001) 319-321.
[5] W.T. Tutte, The factorization of linear graphs, The Journal of the London Mathematical Society 22 (1947) 107-111.

