On the graphon space
Notes for our seminar
Lex Schrijver

Let W be the set of measurable functions [0,1]2 — R, and let W, be the set of those
W € W with image in [0,1] (the graphons). Let G be the group of measure preserving
bijections on [0, 1], as acting on W. For any W € W, and any simple graph F', let

(1) t(F,W) = / H w(xi, xj)dx.
0VE i cER
The following was proved by Borgs, Chayes, Lovasz, Sés, and Vesztergombi [1]:

Theorem 1. For UW € Wy, if t(F,U) = t(F,W) for each simple graph F, then
oo(U, W) = 0.

Proof. 1. Let §; := d;/G. We first show that for each W € W:

2) lim E[5, (W, H(k, W))] = 0.

Suppose to the contrary that for some € > 0 there are infinitely many k with E[o1 (W, H(k, W))]
> . Choose a step function U with di(U, W) < €/3. Then (where, for x € [0,1]%, W, de-
notes the weighted graph with vertex set [k] and weight W (x;, ;) on edge ij with i # j):

(3) E[dy (H(k, U), H(k, W))] = /[0 U W

k
= [ W)~ Wi alde < [ 0@~ W)y =

i,j=1 [071]2
i#£]
di (U, W).

Hence E[6; (U, H(k,U))] > ¢/3 for infinitely many k. So to prove (2), we can assume that

W is a step function, with intervals as steps. Let Ji := {z € [0,1]F | 21 < 2y < --- < a3}
Then it suffices to show

(4) lim k!/ di (W, Wy)dx = 0.
Ik

k—oo

To prove (4), we can assume that W = 1y, g2 for some «, 8 € [0,1] (by the sublinearity
of diy (W, W) in W). Setting v:=1—«a — § we have, if i + j + 1 =k,

(5) (W1 wape) < 2|5 — ol + 5 =)



This gives the following, where the term % corrects for the zeros on the diagonal of W:

(6) k:!/ G (W, Wy)de < $+2 > (ivl;vl)aiﬂj'yl(‘% —a|+]E—4]).
i i+j+=k

With Cauchy-Schwarz we have

k
@) > (L) —al =X (el - )i —al <
i+j-+l=Fk =0
k
(Z (lf)ai(l - oz)k_i(% - 04)2)1/2 = (afTaz)lﬂ’
=0

which tends to 0 as k — co. By symmetry, we have a similar estimate for the other part in
the summation in (6), and we have (4), and hence (2).

II. We next show that for each W € W:

(8) lim E[do(H(k, W), G(k, W))] = 0.

k—o0

For any weighted graph (H,w), let G(H) be the random graph where edge ij is chosen
independently with probability w(ij) (i # j). Let H have vertex set [k]. Then for any fixed
S C [k], by the Chernoff-Hoeffding inequality,

(9) Pr(| > (e (i) —w(if)]) > 26%2) = Prl| Y (e (i) — wlif))| > k2] <
1,JES z‘,_j<ejs

2e~F* /IS < Ze*k,

where eq(g)(ij) = 1 if ij € E(G(H)) and eg(g(ij) = 0 otherwise. This gives

(10)  Prida(G(H), H) > 42 < PrEs € (K : | Y (ean(if) — wli)] > 267
< 2F2e7F, e

Since do(G(H), H) < 1, this implies

(11) E[dn(G(H), H)] < 4k~Y/2 4 2F9¢F,

Now substitute H := H(k,W). As G(H(k,W)) = G(k, W) and as the right hand side of
(11) tends to 0 as k — oo, we get (8).

ITI. We finally derive the theorem. We have for any k:

(12) 5|:|(U7 W) < E[(SD(Ua G(k7 W))] + E[(SD(G(kv W)v W)] =



E[oq(U,G(k,U))] + E[oa(G(k, W), W)].

The equality follows from the condition in the theorem. By (2) and (8), the last expression
in (12) tends to 0 as k — oo (using dg < di). So ég(U, W) = 0. |

Let F be the collection of all connected simple graphs. Note that the distance function

= ) 0P
U9 o= e )

for 2,y € [0,1]7 gives the Tychonoff product topology on [0,1]7, since for each m, there
are only finitely many F' € F with |E(F)| < m.

Let Wy//G be the space obtained from (W, d0)/G by identifying points at distance 0.
(So its points are the closures of the G-orbits in Wjy.) Define 7: Wy//G — [0,1]” by

(14) T(W)(F) :=t(F,W)

for W e Wy and F € F. Since |t(F,U) — t(F,W)|/|E(F)| < dg(U, W) for all U, W € W,

T is continuous.
Corollary la. 7 is injective.

Proof. This is equivalent to Theorem 1. |

By (2) and (8), the graphs among the graphons span W, and hence also the range of
7. The latter can be characterized by reflection positivity (Lovasz and Szegedy [2]).
Corollary la implies a strengthening of Theorem 1:

Corollary 1b. There exists a function ¢ : (0,1] — (0,1] such that

[t(EF,U) — t(F, W)
[E(F)|

(15) > p(0o(U, W))

for allUW € Wy and F € F.

Proof. This follows from the fact that 7 is continuous and bijective between compact metric
spaces, and that hence 7! is uniformly continuous. |

Bound (15) is qualitative. In [1] it is proved that one can take ¢ of order (exp exp(1/x))~L.

Appendix: The Chernoff-Hoeffding inequality

First note that for any a € [0,1] and ¢ € R we have

(16) ae'=D 4 (1 —a)e % < et +e7h) < e’



s (0, ael=@? 4 (1 - ) —t) = (1 —a)(—a,e” ™) + a(l — a,e1 =), hence it is below the
line connecting (—1,e*) and (1, ¢e'), by the convexity of e*. The second inequality in (16)
follows by Taylor expanswn.

Theorem 2 (Chernoff-Hoeffding inequality). Let z1,...,z, be independent random vari-
ables from {0,1}. Then for A > 0:

n

(17) Pr)> (w; — Elzg]) > N < e/,

i=1

Proof. We have

n

(18) e/\Q/"Pr[Z(xi —Elz;]) >\ = e)‘2/"Pr[e)‘(Z?:1(”_E[’“m/” > e>‘2/n] <
i=1
E[MEim (@—Elwl)/n) — E[H AMEi—Blzil)/n] — H E[eM@i—Bled)/n] <
i=1 i=1

n

2 /9,2 2
He)\ /2n® _ e)\ /Qn’
=1

where the first inequality is Markov’s inequality and the last inequality follows from (16).
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