Razmyslov and quivers Notes for our seminar Lex Schrijver

1. Razmyslov

(Razmyslov [3], cf. Procesi [2].) If A, B, C, D are 2×2 matrices, then

(1)
$$\begin{aligned} &2\mathrm{tr}(ABCD) = +(\mathrm{tr}(AB)\mathrm{tr}(CD) + \mathrm{tr}(BC)\mathrm{tr}(DA)) \\ &-(\mathrm{tr}(AB)\mathrm{tr}(C)\mathrm{tr}(D) + \mathrm{tr}(BC)\mathrm{tr}(A)\mathrm{tr}(D) + \mathrm{tr}(CD)\mathrm{tr}(A)\mathrm{tr}(B) + \mathrm{tr}(DA)\mathrm{tr}(B)\mathrm{tr}(C)) \\ &+(\mathrm{tr}(ABC)\mathrm{tr}(D) + \mathrm{tr}(BCD)\mathrm{tr}(A) + \mathrm{tr}(CDA)\mathrm{tr}(B) + \mathrm{tr}(DAB)\mathrm{tr}(C)) \\ &-\mathrm{tr}(AC)\mathrm{tr}(BD) \\ &+\mathrm{tr}(A)\mathrm{tr}(B)\mathrm{tr}(C)\mathrm{tr}(D). \end{aligned}$$

On the other hand, if $A = E_{1,1} - E_{2,2}$, $B = E_{1,2}$, $C = E_{2,1}$, then tr(ABC) = 1, while tr(A) = tr(B) = tr(C) = 0. So tr(ABC) is not in the algebra generated by smaller traces (in fact, over any characteristic).

Let $n, m \in \mathbb{N}$. Consider the polynomial $\operatorname{tr}(X_1 \cdots X_m)$ on $\bigoplus_{i=1}^m \mathbb{R}^{n \times n}$, where $X_1, \ldots, X_m \in \mathbb{R}^{n \times n}$. Let m_n be the largest m for which $\operatorname{tr}(X_1 \ldots X_m)$ is *not* in the algebra generated by traces of products of less than m different X_i (over characteristic 0).

Question: What is m_n ?

Theorem 1 (Razmyslov). $m_n \leq n^2$.

Known: $m_n \ge \binom{n+1}{2}$, with equality if $n \le 3$.

For $m \in \mathbb{N}$, let S'_m be the set of permutations in S_m with at least two orbits. For any $\pi \in S_m$, let Ω_{π} be the set of orbits of π . For any $\omega \in \Omega_{\pi}$, let i_{ω} be the smallest element of ω .

Proposition 1. $m > m_n$ if and only if there exists $\lambda : S'_m \to \mathbb{R}$ such that

(2)
$$\operatorname{tr}(X_1 \cdots X_m) = \sum_{\pi \in S'_m} \lambda_{\pi} \prod_{\omega \in \Omega_{\pi}} \operatorname{tr}(\prod_{j=1}^{|\omega|} X_{\pi^j(i_{\omega})}).$$

Proof. In writing $tr(X_1 \cdots X_m)$ as a linear combination of products of $tr(X_{i_1} \cdots X_{i_k})$ with k < m and $i_1, \ldots, i_k \in [m]$, we can restrict these products to those in which each X_i occurs exactly once (by homogeneity). That is, the summands can be described as the terms in the right hand side of (2).

Let $A_{n,m}$ be the $S_m \times ([n]^m)^2$ matrix with

(3)
$$(A_{n,m})_{\pi,(f,g)} = \delta_{g,f\pi}$$

for $\pi \in S_m$ and $f, g \in [n]^m$. Let $A'_{n,m}$ be the $S'_m \times ([n]^m)^2$ submatrix of $A_{n,m}$.

Proposition 2. $m > m_n$ if and only if $\operatorname{rank}(A'_{n,m}) = \operatorname{rank}(A_{n,m})$.

Proof. Necessity. Suppose $m > m_n$, and let $\lambda : S'_m \to \mathbb{R}$ satisfy (2). By symmetry, it suffices to show that $\lambda A'_{n,m}$ is equal to row γ of $A_{n,m}$, where $\gamma(\mathbf{i})=i+1$ for $i=1,\ldots,m$ (mod m).

Consider a column index $(f,g) \in ([n]^m)^2$. Define $U_k := E_{f(k),g(k)}$ for $k = 1, \ldots, m$. (Here $E_{i,j}$ is the $n \times n$ matrix with 1 in position i, j and 0 elsewhere.) Then

(4)
$$(A_{n,m})_{\gamma,(f,g)} = \delta_{g,f\gamma} = \operatorname{tr}(U_1 \cdots U_m) = \sum_{\pi \in S'_m} \lambda_\pi \prod_{\omega \in \Omega_\pi} \operatorname{tr}(\prod_{j=1}^{|\omega|} U_{\pi^j(i_\omega)}) = \sum_{\pi \in S'_m} \lambda_\pi \delta_{g,f\pi} = \sum_{\pi \in S'_m} \lambda_\pi (A_{n,m})_{f,g}.$$

This proves necessity.

Sufficiency. Reverse the above argumentation. Note that in proving (2) we can assume that each X_k is equal to $E_{i,j}$ for some i, j.

Let $M_{n,m}$ be the $S_m \times S_m$ matrix with

(5)
$$(M_{n,m})_{\pi,\rho} := n^{o(\pi\rho^{-1})},$$

for $\pi, \rho \in S_m$ (where $o(\pi \rho^{-1}) = |\Omega_{\pi \rho^{-1}}|$). Let $M'_{n,m}$ be the $S'_m \times S'_m$ submatrix of $M_{n,m}$.

Proposition 3. $m > m_n$ if and only if $\operatorname{rank}(M'_{n,m}) = \operatorname{rank}(M_{n,m})$.

Proof. $M_{n,m} = A_{n,m}A_{n,m}^{\mathsf{T}}$. Indeed, $(A_{n,m}A_{n,m}^{\mathsf{T}})_{\pi,\rho}$ is equal to the number of $(f,g) \in ([n]^m)^2$ satisfying $g = f\pi$ and $g = f\rho$. Hence it is equal to the number of $f \in [n]^m$ satisfying $f\pi = f\rho$, i.e., $f\pi\rho^{-1} = f$. This number is equal to $n^{o(\pi\rho^{-1})}$.

Note:
$$\operatorname{rank}(A_{n,m}) = \operatorname{rank}(M_{n,m}) = \sum_{\substack{\lambda \vdash m \\ \operatorname{height}(\lambda) \le n}} (f^{\lambda})^2 \quad (\text{cf. [4]}).$$

$$\frac{n \mid 1 \mid 2 \mid 3 \mid 4 \mid 5}{\operatorname{rank}(M_{n,m}) \mid 1 \mid 14 \mid 2761 \mid 19318688 \mid 8636422912277}, \text{ where } m = \binom{n+1}{2} + 1.$$

2. Quivers

A quiver is a directed graph D = (V, A). For each v, let L_v be a linear space, and for each $a = (u, v) \in A$, let $M_a := \text{Hom}(L_u, L_v) \cong L_u^* \otimes L_v$. Define

(6)
$$\mathcal{R} := \bigoplus_{a=(u,v)\in A} M_a \text{ and } G := \prod_{v\in V} \operatorname{GL}(L_v).$$

Any element of \mathcal{R} is called a *representation* of D. (The representations are in one-to-one relation with the $\mathbb{F}Q$ -modules, where $\mathbb{F}Q$ is the *path algebra* of Q, which is spanned by all walks $W = (v_0, a_1, v_1, a_2, \ldots, v_t)$ in Q, with concatenation W_1W_2 as product if the end

vertex of W_1 equals the start vertex of W_2 , and product = 0 otherwise. Note that $\sum_{v \in V} (v)$ is the unit of this algebra.)

The group G acts on \mathcal{R} by

(7)
$$\sum_{a=(u,v)\in A} R_a \mapsto \sum_{a=(u,v)\in A} g_u R_a g_v^{-1}$$

for $R = \sum_{a \in A} R_a \in \mathcal{R}, R_a \in M_a \ (a \in A)$, and $g \in G$. Le Bruyn and Procesi [1]:

Theorem 2. $\mathcal{O}(\mathcal{R})^G$ is generated by the polynomials

(8)
$$\operatorname{tr}(\prod_{j=1}^{k} R_{a_j})$$

where a_1, \ldots, a_k are the consecutive edges of a closed walk in D traversing each vertex v at most $m_{\dim(L_v)}$ times.

Proof. Choose

(9)
$$p \in \mathcal{O}(\mathcal{R})^G = \mathcal{O}(\bigoplus_{a \in A} M_a)^G = \left(\prod_{a \in A} \mathcal{O}(M_a)\right)^G = \left(\prod_{a \in A} \bigoplus_{d \in \mathbb{N}} \mathcal{O}(M_a)_d\right)^G = \left(\bigoplus_{d:A \to \mathbb{N}} \prod_{a \in A} \mathcal{O}(M_a)_{d_a}\right)^G = \bigoplus_{d:A \to \mathbb{N}} \left(\prod_{a \in A} \mathcal{O}(M_a)_{d_a}\right)^G.$$

So we can assume that there exists $d: A \to \mathbb{N}$ with

(10)
$$p \in \prod_{a \in A} \mathcal{O}(M_a)_{d_a}.$$

I. We can assume that $d_a = 1$ for each $a \in A$. For let D' = (V, A') be obtained from D by replacing each edge a by d_a parallel edges. Indeed, p is a linear combination of polynomials $\prod_{a \in A} p_a$, with $p_a \in \mathcal{O}(M_a)_{d_a} = (M_a^*)^{d_a}$. So

(11)
$$p = \sum_{j=1}^{K} \prod_{a \in A} \prod_{i=1}^{d_a} f_{a,i}^{(j)},$$

for some $K \in \mathbb{N}$ and some $f_{a,i}^{(j)} \in M_a^*$ (for all $j = 1, \dots, K, a \in A, i = 1, \dots, d_a$). Let

(12)
$$\mathcal{R}' := \bigoplus_{a'=(u,v)\in A'} L_u^* \otimes L_v.$$

Let $p' \in \mathcal{O}(\mathcal{R}')$ be defined by

(13)
$$p'(R') = \sum_{j=1}^{K} \prod_{a \in A} \prod_{i=1}^{d_a} f_{a,i}^{(j)}(R'_{a_i}),$$

for $R' \in \mathcal{R}'$, where a_i denotes the *i*-th parallel edge of *a*.

Consider $\tilde{p} := \rho_G(p')$, where ρ_G is the Reynolds operator. If we know the theorem for \tilde{p} , we know it for p: let $\varphi : \mathcal{R} \to \mathcal{R}'$ be defined by $\varphi(R)_{a_i} = R_a$ for each $a \in A$ and $i = 1, \ldots, d_a$. Then $p = p'\varphi$, hence, as φ is *G*-equivariant, $\tilde{p}\varphi = \rho_G(p')\varphi = \rho_G(p'\varphi) = \rho_G(p) = p$.

II. Since $d_a = 1$ for all $a \in A$, there exists $P \in \bigotimes_{a \in A} M_a$ such that for all $R \in \mathcal{R}$:

(14)
$$p(R) = \langle P, \bigotimes_{a \in A} R_a \rangle$$

As p is G-invariant, we can assume that P is G-invariant. Hence

$$(15) \qquad P \in \left(\bigotimes_{a \in A} M_{a}\right)^{G} = \left(\bigotimes_{a=(u,v) \in A} (L_{u}^{*} \otimes L_{v})\right)^{G} \cong \left(\bigotimes_{v \in V} \left(\bigotimes_{a \in \delta^{\operatorname{out}}(v)} L_{v}^{*} \otimes \bigotimes_{a \in \delta^{\operatorname{in}}(v)} L_{v}\right)\right)^{G} \\ = \bigotimes_{v \in V} \left(\bigotimes_{a \in \delta^{\operatorname{out}}(v)} L_{v}^{*} \otimes \bigotimes_{a \in \delta^{\operatorname{in}}(v)} L_{v}\right)^{\operatorname{GL}(L_{v})} \stackrel{\operatorname{FFT}}{=} \bigotimes_{v \in V} \langle t_{L_{v},\pi_{v}} \mid \pi_{v} : \delta^{\operatorname{in}}(v) \leftrightarrow \delta^{\operatorname{out}}(v) \rangle.$$

Here t_{L_v,π_v} is the element of $L_v^{*\otimes\delta^{\text{out}}(v)} \otimes L_v^{\otimes\delta^{\text{in}}(v)} = \text{Hom}(L_v^{\otimes\delta^{\text{out}}(v)}, L_v^{\otimes\delta^{\text{in}}(v)})$ with

(16)
$$t_{L_v,\pi_v}: \bigotimes_{a \in \delta^{\text{out}}(v)} x_a \quad \mapsto \quad \bigotimes_{a \in \delta^{\text{in}}(v)} x_{\pi_v(a)},$$

for any $x : \delta^{\text{out}}(v) \to L_v$.

The last expression in (15) implies that P is a linear combination of tensors $\bigotimes_{v \in V} t_{L_v,\pi_v}$ that are obtained by choosing for each $v \in V$ a bijection $\pi_v : \delta^{\text{in}}(v) \to \delta^{\text{out}}(v)$. For each such choice, there exist closed walks W_1, \ldots, W_l partitioning A such that for each $a = (u, v) \in A$, the edges a and $\pi_v(a)$ occur consecutively in some walk W_i (circularly). Hence the term is equal to the product over $i = 1, \ldots, l$ of $\operatorname{tr}(R_{a_1} \cdots R_{a_k})$ where $a_1 \ldots a_k$ are the consecutive edges in walk W_i .

Now consider any closed walk W traversing some vertex v m times with $m > m_{\dim(L_v)}$. Split W into v - v walks W_1, \ldots, W_m . Let $Y_i := \prod_{a \in W_i} R_a$, for $i = 1, \ldots, m$. So $Y_i \in \text{End}(L_v)$. By definition of $m_{\dim(L_v)}$, $\operatorname{tr}(Y_1 \cdots Y_m)$ is in the algebra generated by traces of less than m products of different Y_i . Each corresponds to a walk of length less than m.

References

- L. Le Bruyn, C. Procesi, Semisimple representations of quivers, Transactions of the American Mathematical Society 317 (1990) 585–598.
- [2] C. Procesi, The invariant theory of $n \times n$ matrices, Advances in Mathematics 19 (1976) 306–381.
- Ju.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero [in Russian], Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 38 (1974) 723-756 [English translation: Mathematics of the USSR. Izvestija 8 (1974) 727-760].
- [4] A. Schrijver, Characterizing partition functions of the edge-coloring model by rank growth, Journal of Combinatorial Theory, Series A 136 (2015) 164–173.