Razmyslov and quivers

Notes for our seminar

Lex Schrijver

1. Razmyslov

(Razmyslov [3], cf. Procesi [2].)
If A, B, C, D are 2×2 matrices, then

$$
\begin{align*}
& 2 \operatorname{tr}(A B C D)=+(\operatorname{tr}(A B) \operatorname{tr}(C D)+\operatorname{tr}(B C) \operatorname{tr}(D A)) \tag{1}\\
& -(\operatorname{tr}(A B) \operatorname{tr}(C) \operatorname{tr}(D)+\operatorname{tr}(B C) \operatorname{tr}(A) \operatorname{tr}(D)+\operatorname{tr}(C D) \operatorname{tr}(A) \operatorname{tr}(B)+\operatorname{tr}(D A) \operatorname{tr}(B) \operatorname{tr}(C)) \\
& +(\operatorname{tr}(A B C) \operatorname{tr}(D)+\operatorname{tr}(B C D) \operatorname{tr}(A)+\operatorname{tr}(C D A) \operatorname{tr}(B)+\operatorname{tr}(D A B) \operatorname{tr}(C)) \\
& -\operatorname{tr}(A C) \operatorname{tr}(B D) \\
& +\operatorname{tr}(A) \operatorname{tr}(B) \operatorname{tr}(C) \operatorname{tr}(D) .
\end{align*}
$$

On the other hand, if $A=E_{1,1}-E_{2,2}, B=E_{1,2}, C=E_{2,1}$, then $\operatorname{tr}(A B C)=1$, while $\operatorname{tr}(A)=\operatorname{tr}(B)=\operatorname{tr}(C)=0$. So $\operatorname{tr}(A B C)$ is not in the algebra generated by smaller traces (in fact, over any characteristic).

Let $n, m \in \mathbb{N}$. Consider the polynomial $\operatorname{tr}\left(X_{1} \cdots X_{m}\right)$ on $\bigoplus_{i=1}^{m} \mathbb{R}^{n \times n}$, where $X_{1}, \ldots, X_{m} \in$ $\mathbb{R}^{n \times n}$. Let m_{n} be the largest m for which $\operatorname{tr}\left(X_{1} \ldots X_{m}\right)$ is not in the algebra generated by traces of products of less than m different X_{i} (over characteristic 0).

Question: What is m_{n} ?
Theorem 1 (Razmyslov). $m_{n} \leq n^{2}$.
Known: $m_{n} \geq\binom{ n+1}{2}$, with equality if $n \leq 3$.
For $m \in \mathbb{N}$, let S_{m}^{\prime} be the set of permutations in S_{m} with at least two orbits. For any $\pi \in S_{m}$, let Ω_{π} be the set of orbits of π. For any $\omega \in \Omega_{\pi}$, let i_{ω} be the smallest element of ω.

Proposition 1. $m>m_{n}$ if and only if there exists $\lambda: S_{m}^{\prime} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{tr}\left(X_{1} \cdots X_{m}\right)=\sum_{\pi \in S_{m}^{\prime}} \lambda_{\pi} \prod_{\omega \in \Omega_{\pi}} \operatorname{tr}\left(\prod_{j=1}^{|\omega|} X_{\pi^{j}\left(i_{\omega}\right)}\right) . \tag{2}
\end{equation*}
$$

Proof. In writing $\operatorname{tr}\left(X_{1} \cdots X_{m}\right)$ as a linear combination of products of $\operatorname{tr}\left(X_{i_{1}} \cdots X_{i_{k}}\right)$ with $k<m$ and $i_{1}, \ldots, i_{k} \in[m]$, we can restrict these products to those in which each X_{i} occurs exactly once (by homogeneity). That is, the summands can be described as the terms in the right hand side of (2).

Let $A_{n, m}$ be the $S_{m} \times\left([n]^{m}\right)^{2}$ matrix with

$$
\begin{equation*}
\left(A_{n, m}\right)_{\pi,(f, g)}=\delta_{g, f \pi}, \tag{3}
\end{equation*}
$$

for $\pi \in S_{m}$ and $f, g \in[n]^{m}$. Let $A_{n, m}^{\prime}$ be the $S_{m}^{\prime} \times\left([n]^{m}\right)^{2}$ submatrix of $A_{n, m}$.
Proposition 2. $m>m_{n}$ if and only if $\operatorname{rank}\left(A_{n, m}^{\prime}\right)=\operatorname{rank}\left(A_{n, m}\right)$.
Proof. Necessity. Suppose $m>m_{n}$, and let $\lambda: S_{m}^{\prime} \rightarrow \mathbb{R}$ satisfy (2). By symmetry, it suffices to show that $\lambda A_{n, m}^{\prime}$ is equal to row γ of $A_{n, m}$, where $\gamma(\mathrm{i})=i+1$ for $i=1, \ldots, m$ $(\bmod m)$.

Consider a column index $(f, g) \in\left([n]^{m}\right)^{2}$. Define $U_{k}:=E_{f(k), g(k)}$ for $k=1, \ldots, m$. (Here $E_{i, j}$ is the $n \times n$ matrix with 1 in position i, j and 0 elsewhere.) Then

$$
\begin{align*}
& \left(A_{n, m}\right)_{\gamma,(f, g)}=\delta_{g, f \gamma}=\operatorname{tr}\left(U_{1} \cdots U_{m}\right)=\sum_{\pi \in S_{m}^{\prime}} \lambda_{\pi} \prod_{\omega \in \Omega_{\pi}} \operatorname{tr}\left(\prod_{j=1}^{|\omega|} U_{\pi^{j}\left(i_{\omega}\right)}\right)= \tag{4}\\
& \sum_{\pi \in S_{m}^{\prime}} \lambda_{\pi} \delta_{g, f \pi}=\sum_{\pi \in S_{m}^{\prime}} \lambda_{\pi}\left(A_{n, m}\right)_{f, g} .
\end{align*}
$$

This proves necessity.
Sufficiency. Reverse the above argumentation. Note that in proving (2) we can assume that each X_{k} is equal to $E_{i, j}$ for some i, j.

Let $M_{n, m}$ be the $S_{m} \times S_{m}$ matrix with

$$
\begin{equation*}
\left(M_{n, m}\right)_{\pi, \rho}:=n^{o\left(\pi \rho^{-1}\right)}, \tag{5}
\end{equation*}
$$

for $\pi, \rho \in S_{m}$ (where $\left.o\left(\pi \rho^{-1}\right)=\left|\Omega_{\pi \rho^{-1}}\right|\right)$. Let $M_{n, m}^{\prime}$ be the $S_{m}^{\prime} \times S_{m}^{\prime}$ submatrix of $M_{n, m}$.
Proposition 3. $m>m_{n}$ if and only if $\operatorname{rank}\left(M_{n, m}^{\prime}\right)=\operatorname{rank}\left(M_{n, m}\right)$.
Proof. $M_{n, m}=A_{n, m} A_{n, m}^{\top}$. Indeed, $\left(A_{n, m} A_{n, m}^{\top}\right)_{\pi, \rho}$ is equal to the number of $(f, g) \in\left([n]^{m}\right)^{2}$ satisfying $g=f \pi$ and $g=f \rho$. Hence it is equal to the number of $f \in[n]^{m}$ satisfying $f \pi=f \rho$, i.e., $f \pi \rho^{-1}=f$. This number is equal to $n^{o\left(\pi \rho^{-1}\right)}$.

Note: $\operatorname{rank}\left(A_{n, m}\right)=\operatorname{rank}\left(M_{n, m}\right)=\sum_{\substack{\lambda+m \\
\text { height }(\lambda) \leq n}}\left(f^{\lambda}\right)^{2} \quad$ (cf. [4]).

n	1	2	3	4	5
$\operatorname{rank}\left(M_{n, m}\right)$	1	14	2761	19318688	8636422912277

2. Quivers

A quiver is a directed graph $D=(V, A)$. For each v, let L_{v} be a linear space, and for each $a=(u, v) \in A$, let $M_{a}:=\operatorname{Hom}\left(L_{u}, L_{v}\right) \cong L_{u}^{*} \otimes L_{v}$. Define

$$
\begin{equation*}
\mathcal{R}:=\bigoplus_{a=(u, v) \in A} M_{a} \quad \text { and } \quad G:=\prod_{v \in V} \operatorname{GL}\left(L_{v}\right) . \tag{6}
\end{equation*}
$$

Any element of \mathcal{R} is called a representation of D. (The representations are in one-to-one relation with the $\mathbb{F} Q$-modules, where $\mathbb{F} Q$ is the path algebra of Q, which is spanned by all walks $W=\left(v_{0}, a_{1}, v_{1}, a_{2}, \ldots, v_{t}\right)$ in Q, with concatenation $W_{1} W_{2}$ as product if the end
vertex of W_{1} equals the start vertex of W_{2}, and product $=0$ otherwise. Note that $\sum_{v \in V}(v)$ is the unit of this algebra.)

The group G acts on \mathcal{R} by

$$
\begin{equation*}
\sum_{a=(u, v) \in A} R_{a} \mapsto \sum_{a=(u, v) \in A} g_{u} R_{a} g_{v}^{-1} \tag{7}
\end{equation*}
$$

for $R=\sum_{a \in A} R_{a} \in \mathcal{R}, R_{a} \in M_{a}(a \in A)$, and $g \in G$.
Le Bruyn and Procesi [1]:
Theorem 2. $\mathcal{O}(\mathcal{R})^{G}$ is generated by the polynomials

$$
\begin{equation*}
\operatorname{tr}\left(\prod_{j=1}^{k} R_{a_{j}}\right) \tag{8}
\end{equation*}
$$

where a_{1}, \ldots, a_{k} are the consecutive edges of a closed walk in D traversing each vertex v at most $m_{\operatorname{dim}\left(L_{v}\right)}$ times.

Proof. Choose

$$
\begin{align*}
& p \in \mathcal{O}(\mathcal{R})^{G}=\mathcal{O}\left(\bigoplus_{a \in A} M_{a}\right)^{G}=\left(\prod_{a \in A} \mathcal{O}\left(M_{a}\right)\right)^{G}=\left(\prod_{a \in A} \bigoplus_{d \in \mathbb{N}} \mathcal{O}\left(M_{a}\right)_{d}\right)^{G}= \tag{9}\\
& \left(\bigoplus_{d: A \rightarrow \mathbb{N}} \prod_{a \in A} \mathcal{O}\left(M_{a}\right)_{d_{a}}\right)^{G}=\bigoplus_{d: A \rightarrow \mathbb{N}}\left(\prod_{a \in A} \mathcal{O}\left(M_{a}\right)_{d_{a}}\right)^{G} .
\end{align*}
$$

So we can assume that there exists $d: A \rightarrow \mathbb{N}$ with

$$
\begin{equation*}
p \in \prod_{a \in A} \mathcal{O}\left(M_{a}\right)_{d_{a}} \tag{10}
\end{equation*}
$$

I. We can assume that $d_{a}=1$ for each $a \in A$. For let $D^{\prime}=\left(V, A^{\prime}\right)$ be obtained from D by replacing each edge a by d_{a} parallel edges. Indeed, p is a linear combination of polynomials $\prod_{a \in A} p_{a}$, with $p_{a} \in \mathcal{O}\left(M_{a}\right)_{d_{a}}=\left(M_{a}^{*}\right)^{d_{a}}$. So

$$
\begin{equation*}
p=\sum_{j=1}^{K} \prod_{a \in A} \prod_{i=1}^{d_{a}} f_{a, i}^{(j)} \tag{11}
\end{equation*}
$$

for some $K \in \mathbb{N}$ and some $f_{a, i}^{(j)} \in M_{a}^{*}$ (for all $j=1, \ldots, K, a \in A, i=1, \ldots, d_{a}$). Let

$$
\begin{equation*}
\mathcal{R}^{\prime}:=\bigoplus_{a^{\prime}=(u, v) \in A^{\prime}} L_{u}^{*} \otimes L_{v} \tag{12}
\end{equation*}
$$

Let $p^{\prime} \in \mathcal{O}\left(\mathcal{R}^{\prime}\right)$ be defined by

$$
\begin{equation*}
p^{\prime}\left(R^{\prime}\right)=\sum_{j=1}^{K} \prod_{a \in A} \prod_{i=1}^{d_{a}} f_{a, i}^{(j)}\left(R_{a_{i}}^{\prime}\right) \tag{13}
\end{equation*}
$$

for $R^{\prime} \in \mathcal{R}^{\prime}$, where a_{i} denotes the i-th parallel edge of a.

Consider $\tilde{p}:=\rho_{G}\left(p^{\prime}\right)$, where ρ_{G} is the Reynolds operator. If we know the theorem for \tilde{p}, we know it for p : let $\varphi: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ be defined by $\varphi(R)_{a_{i}}=R_{a}$ for each $a \in A$ and $i=1, \ldots, d_{a}$. Then $p=p^{\prime} \varphi$, hence, as φ is G-equivariant, $\tilde{p} \varphi=\rho_{G}\left(p^{\prime}\right) \varphi=\rho_{G}\left(p^{\prime} \varphi\right)=\rho_{G}(p)=p$.
II. Since $d_{a}=1$ for all $a \in A$, there exists $P \in \bigotimes_{a \in A} M_{a}$ such that for all $R \in \mathcal{R}$:

$$
\begin{equation*}
p(R)=\left\langle P, \bigotimes_{a \in A} R_{a}\right\rangle \tag{14}
\end{equation*}
$$

As p is G-invariant, we can assume that P is G-invariant. Hence

$$
\begin{align*}
& P \in\left(\bigotimes_{a \in A} M_{a}\right)^{G}=\left(\bigotimes_{a=(u, v) \in A}\left(L_{u}^{*} \otimes L_{v}\right)\right)^{G} \cong\left(\bigotimes_{v \in V}\left(\bigotimes_{a \in \delta^{\text {out }}(v)} L_{v}^{*} \otimes \bigotimes_{a \in \delta^{\mathrm{in}}(v)} L_{v}\right)\right)^{G} \tag{15}\\
& =\bigotimes_{v \in V}\left(\bigotimes_{a \in \delta^{\mathrm{out}}(v)} L_{v}^{*} \otimes \bigotimes_{a \in \delta^{\mathrm{in}}(v)} L_{v}\right)^{\mathrm{GL}\left(L_{v}\right)} \stackrel{\mathrm{FFT}}{=} \bigotimes_{v \in V}\left\langle t_{L_{v}, \pi_{v}} \mid \pi_{v}: \delta^{\mathrm{in}}(v) \leftrightarrow \delta^{\mathrm{out}}(v)\right\rangle .
\end{align*}
$$

Here $t_{L_{v}, \pi_{v}}$ is the element of $L_{v}^{* \otimes \delta \delta^{\text {out }}(v)} \otimes L_{v}^{\otimes \mathrm{S}^{\text {in }}(v)}=\operatorname{Hom}\left(L_{v}^{\otimes \delta \delta^{\text {out }}(v)}, L_{v}^{\otimes \delta^{\text {in }}(v)}\right)$ with

$$
\begin{equation*}
t_{L_{v}, \pi_{v}}: \bigotimes_{a \in \delta^{\text {out }}(v)} x_{a} \mapsto \bigotimes_{a \in \delta^{\text {in }}(v)} x_{\pi_{v}(a)} \tag{16}
\end{equation*}
$$

for any $x: \delta^{\text {out }}(v) \rightarrow L_{v}$.
The last expression in (15) implies that P is a linear combination of tensors $\otimes_{v \in V} t_{L_{v}, \pi_{v}}$ that are obtained by choosing for each $v \in V$ a bijection $\pi_{v}: \delta^{\text {in }}(v) \rightarrow \delta^{\text {out }}(v)$. For each such choice, there exist closed walks W_{1}, \ldots, W_{l} partitioning A such that for each $a=(u, v) \in A$, the edges a and $\pi_{v}(a)$ occur consecutively in some walk W_{i} (circularly). Hence the term is equal to the product over $i=1, \ldots, l$ of $\operatorname{tr}\left(R_{a_{1}} \cdots R_{a_{k}}\right)$ where $a_{1} \ldots a_{k}$ are the consecutive edges in walk W_{i}.

Now consider any closed walk W traversing some vertex $v m$ times with $m>m_{\operatorname{dim}\left(L_{v}\right)}$. Split W into $v-v$ walks W_{1}, \ldots, W_{m}. Let $Y_{i}:=\prod_{a \in W_{i}} R_{a}$, for $i=1, \ldots, m$. So $Y_{i} \in$ $\operatorname{End}\left(L_{v}\right)$. By definition of $m_{\operatorname{dim}\left(L_{v}\right)}, \operatorname{tr}\left(Y_{1} \cdots Y_{m}\right)$ is in the algebra generated by traces of less than m products of different Y_{i}. Each corresponds to a walk of length less than m.

References

[1] L. Le Bruyn, C. Procesi, Semisimple representations of quivers, Transactions of the American Mathematical Society 317 (1990) 585-598.
[2] C. Procesi, The invariant theory of $n \times n$ matrices, Advances in Mathematics 19 (1976) 306381.
[3] Ju.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero [in Russian], Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 38 (1974) 723-756 [English translation: Mathematics of the USSR. Izvestija 8 (1974) 727-760].
[4] A. Schrijver, Characterizing partition functions of the edge-coloring model by rank growth, Journal of Combinatorial Theory, Series A 136 (2015) 164-173.

