RAINBOW PATHS IN EDGE-COLOURED REGULAR GRAPHS

Notes for our seminar - Lex Schrijver

Abstract

We show that if $k \leq 10$, then each properly k-edge-coloured k-regular simple graph contains a rainbow path of length $k-1$. The proof requires a computer search.

In this note, all graphs are simple and all edge-colourings are proper. A path is rainbow if all its edges have different colours.

For any k-edge-coloured graph G, let $p(G)$ denote the length of the longest rainbow path in G. For $k \in \mathbb{N}$, let $p(k)$ be the minimum of $p(G)$ taken over all k-regular k-edge-coloured graphs G.

Trivially, $p(k) \leq k$ and $p(k)=k$ for $k \leq 2$. A theorem of Babu, Sunil Chandran, and Rajendraprasad [1] implies $p(k) \geq \frac{2}{3} k$ for all k (short proof in [2]). For $k \geq 3$ one has $p(k) \leq k-1,1$ We show that $p(k)=k-1$ if $3 \leq k \leq 10$.

Call a (not necessarily regular) graph H a rainbow-bar if H is $(|V(H)|+1)$-edge-coloured and contains a rainbow Hamilton path, and if for each rainbow Hamilton path P in H, for each color c missing on P and for each end vertex v of P, there is an edge of color c incident with v.

Theorem 1. No rainbow-bar H with $|V(H)|<10$ exists.
Proof. This follows from a computer search.

Theorem 2. Let G be a k-regular k-edge-coloured graph with $p(G)=k-2$. Then G contains a rainbow-bar H with $|V(H)|=k-1$ as induced subgraph.

Proof. Let P be a rainbow path of length $k-2$. Let H be the subgraph of G induced by $V(P)$. Then H is a rainbow-bar. Indeed, since P is a rainbow path of length $k-2$ it is a Hamilton path in H. Moreover, consider any Hamilton path Q in H. So Q is a rainbow path of length $k-2$. Consider any color c not occurring on Q and any end v of Q. As Q is a longest rainbow path, the c-colored edge of G incident with v must have its end other than v on $V(P)$, hence it is an edge of H.

Corollary 2a. If $k \leq 10$, then each k-regular k-edge-coloured graph G contains a rainbow path of length $k-1$.

Proof. Suppose not. Inductively (by deleting the edges of some color) we know $p(G)=k-2$. This contradicts Theorems 1 and 2 .

Corollary 2b. If $3 \leq k \leq 10$, then $p(k)=k-1$.

[^0]Proof. Directly from Corollary 2a,

Question. Do rainbow-bars exist?
As above, a negative answer implies $p(k)=k-1$ for all $k \geq 3$.
With a similar method one may prove, for $k \leq 8$, that each k-regular k-edge-colored graph has a rainbow path or a rainbow cycle of length k.

References

[1] J. Babu, L. Sunil Chandran, D. Rajendraprasad, Heterochromatic paths in edge colored graphs without small cycles and heterochromatic-triangle-free graphs, European Journal of Combinatorics 48 (2015) 110-126.
[2] D. Johnston, C. Palmer, A. Sarkar, Rainbow Turán problems for paths and forests of stars, Electronic Journal of Combinatorics 24 (2017), no. 1, Paper 1.34, 15 pp.

[^0]: ${ }^{1}$ If $k \geq 3$, there exist distinct nonzero vectors a_{1}, \ldots, a_{k} in $\operatorname{GF}(2)^{k}$ with $\sum_{i} a_{i}=0$. (For instance, take the incidence vectors of the edges of a cycle on $\{1, \ldots, k\}$.) Let G be the graph with vertex set $\operatorname{GF}(2)^{k}$, and an edge of colour $i \in\{1, \ldots, k\}$ between vertices u and v if $u+v=a_{i}$. There are no other edges. So G is k-regular and k-edge-coloured. Then any walk on which all colours occur exactly once must be a closed walk, as $\sum_{i} a_{i}=0$. Hence no rainbow path of length k exists.

