A proof of Razmyslov's theorem

Notes for our seminar

Lex Schrijver

Let $d, n \in \mathbb{N}$. Let ρ be the representation $S_n \to \operatorname{End}(\mathbb{C}^d)^{\otimes n}$ given by

(1)
$$\rho(\pi)(x_1 \otimes \cdots \otimes x_n) = x_{\pi(1)} \otimes \cdots \otimes x_{\pi(n)}$$

for $\pi \in S_n$ and $x_1, \ldots, x_n \in \mathbb{C}^d$. Note that

(2)
$$\operatorname{tr}(\rho(\pi)(X_1 \otimes \ldots \otimes X_n)) = \prod_{\omega \in \Omega_{\pi}} \operatorname{tr}(\prod_{i=1}^{|\omega|} X_{\pi^i(m_{\omega})})$$

for $\pi \in S_n$ and $X_1, \ldots, X_n \in \text{End}(\mathbb{C}^d)$, where Ω_{π} is the set of orbits of π and where for any $\omega \in \Omega_{\pi}$, m_{ω} is the smallest (equivalently: an arbitrary) element of ω .

For each $\lambda \vdash n$, let K_{λ} be the isotypical component of $\mathbb{C}S_n$ corresponding to the irreducible representation r_{λ} . Define

(3)
$$L_{\leq d} := \bigoplus_{\substack{\lambda \vdash n \\ \text{height}(\lambda) \leq d}} K_{\lambda} \quad \text{and} \quad L_{>d} := \bigoplus_{\substack{\lambda \vdash n \\ \text{height}(\lambda) > d}} K_{\lambda}.$$

Then (cf., e.g., [1]):

(4)
$$\operatorname{Ker}(\rho) = L_{>d}$$
.

This implies for any two subspaces U, V of $\mathbb{C}S_n$:

(5)
$$\rho(U) \subseteq \rho(V)$$
 if and only if $L_{>d} + U \subseteq L_{>d} + V$.

Let A_n be the alternating subgroup of S_n , and let $A_n^c := S_n \setminus A_n$. Consider the linear function $\varphi : \mathbb{C}S_n \to \mathbb{C}S_n$ determined by

(6)
$$\varphi(\pi) := \operatorname{sgn}(\pi)\pi$$

for $\pi \in S_n$. So $\varphi^2 = id$.

Lemma 1. For each $\lambda \vdash n : \varphi(K_{\lambda}) = K_{\lambda^*}$.

Proof. Let Y and Y^* be the Young shapes corresponding to λ and λ^* , respectively, let $T:Y\to Y^*$ be defined by T(i,j)=(j,i) for $(i,j)\in Y$, let $\tilde{\varphi}:S_Y\to S_Y$ be defined by $\tilde{\varphi}(\pi)=\operatorname{sgn}(\pi)\pi$ for $\pi\in S_Y$, let H_Y and V_Y be the subgroups of S_Y of row-stable and column-stable permutations of Y, respectively, and let $h_Y:=\sum_{h\in H_Y}h$ and $v_Y:=\sum_{v\in V_Y}\operatorname{sgn}(v)v$. Then

(7)
$$\tilde{\varphi}(v_Y h_Y) = \sum_{v \in V_Y} \sum_{h \in H_Y} \operatorname{sgn}(v) \tilde{\varphi}(vh) = \sum_{v \in V_Y} \sum_{h \in H_Y} \operatorname{sgn}(v) \operatorname{sgn}(vh) vh = \sum_{v \in V_Y} \sum_{h \in H_Y} \operatorname{sgn}(h) vh = \sum_{h \in H_{Y^*}} \sum_{v \in V_{Y^*}} \operatorname{sgn}(v) T^{-1} h v T = T^{-1} h_{Y^*} v_{Y^*} T.$$

Hence for $y, z : [n] \to Y$, one has

(8)
$$\varphi(y^{-1}v_Yh_Yz) = \operatorname{sgn}(y^{-1}z)y^{-1}\varphi(v_Yh_Y)z = \operatorname{sgn}(y^{-1}z)y^{-1}T^{-1}h_{Y^*}v_{Y^*}Tz \in K_{\lambda^*}.$$

As K_{λ} is spanned by all $y^{-1}v_Yh_Yz$ with bijections $y, z:[n] \to Y$, we have the lemma.

Lemma 2. For each subspace U of $\mathbb{C}S_n$: $U \cap \varphi(U) = (U \cap \mathbb{C}A_n) + (U \cap \mathbb{C}A_n^c)$.

Proof. If $x \in U \cap \varphi(U)$, then $\varphi(x) \in U$, hence $x = \frac{1}{2}(x + \varphi(x)) + \frac{1}{2}(x - \varphi(x)) \in (U \cap \mathbb{C}A_n) + (U \cap \mathbb{C}A_n^c)$.

Conversely, if $x \in U \cap \mathbb{C}A_n$ then $x = \varphi(x)$, hence $x \in U \cap \varphi(U)$. Similarly, if $x \in U \cap \mathbb{C}A_n^c$ then $x = -\varphi(x)$, hence $x \in U \cap \varphi(U)$.

Theorem 1. $\rho(\mathbb{C}A_n) = \rho(\mathbb{C}S_n) = \rho(\mathbb{C}A_n^c)$ if and only if $n > d^2$.

Proof.
$$\rho(\mathbb{C}A_n) = \rho(\mathbb{C}S_n) = \rho(\mathbb{C}A_n^c) \iff L_{>d} + \mathbb{C}A_n = \mathbb{C}S_n = L_{>d} + \mathbb{C}A_n^c \iff L_{\leq d} \cap \mathbb{C}A_n^c = \{0\} = L_{\leq d} \cap \mathbb{C}A_n \iff^2 L_{\leq d} \cap \varphi(L_{\leq d}) = \{0\} \iff^1 \text{ no } \lambda \vdash n \text{ satisfies height}(\lambda) \leq d \text{ and height}(\lambda^*) \leq d \iff n > d^2.$$

This implies the result of Razmyslov [2]:

Corollary 1a. If $n > d^2$, then $\operatorname{tr}(X_1 \cdots X_n)$ is a linear combination of products of traces of products of fewer than n of the X_i , where X_1, \ldots, X_n are variable $d \times d$ matrices.

Note that in fact if $n > d^2$, then $\operatorname{tr}(X_1 \cdots X_n)$ is a linear combination of products of an even number of traces of products of the X_i .

By the above, the conclusion of Corollary 1a holds for some fixed n and d if and only if $L_{>d} + U = \mathbb{C}S_n$, where U is the subspace of $\mathbb{C}S_n$ spanned by the permutations with at least two orbits. Note that $L_{>d} + U = \mathbb{C}S_n$ is equivalent to $L_{\leq d} \cap V = \{0\}$, where V is the subspace of $\mathbb{C}S_n$ spanned by the permutations with only one orbit.

References

- [1] P. Cvitanović, *Group Theory: Birdtracks, Lie's, and Exceptional Groups*, Princeton University Press, Princeton, 2008.
- [2] Ju.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero [in Russian], *Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya* 38 (1974) 723–756 [English translation: *Mathematics of the USSR. Izvestija* 8 (1974) 727–760].