A proof of Razmyslov's theorem

Notes for our seminar
Lex Schrijver
Let $d, n \in \mathbb{N}$. Let ρ be the representation $S_{n} \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)^{\otimes n}$ given by

$$
\begin{equation*}
\rho(\pi)\left(x_{1} \otimes \cdots \otimes x_{n}\right)=x_{\pi(1)} \otimes \cdots \otimes x_{\pi(n)} \tag{1}
\end{equation*}
$$

for $\pi \in S_{n}$ and $x_{1}, \ldots, x_{n} \in \mathbb{C}^{d}$. Note that

$$
\begin{equation*}
\operatorname{tr}\left(\rho(\pi)\left(X_{1} \otimes \ldots \otimes X_{n}\right)\right)=\prod_{\omega \in \Omega_{\pi}} \operatorname{tr}\left(\prod_{i=1}^{|\omega|} X_{\pi^{i}\left(m_{\omega}\right)}\right) \tag{2}
\end{equation*}
$$

for $\pi \in S_{n}$ and $X_{1}, \ldots, X_{n} \in \operatorname{End}\left(\mathbb{C}^{d}\right)$, where Ω_{π} is the set of orbits of π and where for any $\omega \in \Omega_{\pi}, m_{\omega}$ is the smallest (equivalently: an arbitrary) element of ω.

For each $\lambda \vdash n$, let K_{λ} be the isotypical component of $\mathbb{C} S_{n}$ corresponding to the irreducible representation r_{λ}. Define

$$
\begin{equation*}
L_{\leq d}:=\bigoplus_{\substack{\lambda \vdash n \\ \text { height }(\lambda) \leq d}} K_{\lambda} \quad \text { and } \quad L_{>d}:=\bigoplus_{\substack{\lambda \vdash n \\ \operatorname{height}(\lambda)>d}} K_{\lambda} . \tag{3}
\end{equation*}
$$

Then (cf., e.g., [1]):

$$
\begin{equation*}
\operatorname{Ker}(\rho)=L_{>d} . \tag{4}
\end{equation*}
$$

This implies for any two subspaces U, V of $\mathbb{C} S_{n}$:

$$
\begin{equation*}
\rho(U) \subseteq \rho(V) \text { if and only if } L_{>d}+U \subseteq L_{>d}+V \tag{5}
\end{equation*}
$$

Let A_{n} be the alternating subgroup of S_{n}, and let $A_{n}^{c}:=S_{n} \backslash A_{n}$. Consider the linear function $\varphi: \mathbb{C} S_{n} \rightarrow \mathbb{C} S_{n}$ determined by

$$
\begin{equation*}
\varphi(\pi):=\operatorname{sgn}(\pi) \pi \tag{6}
\end{equation*}
$$

for $\pi \in S_{n}$. So $\varphi^{2}=\mathrm{id}$.
Lemma 1. For each $\lambda \vdash n: \varphi\left(K_{\lambda}\right)=K_{\lambda^{*}}$.
Proof. Let Y and Y^{*} be the Young shapes corresponding to λ and λ^{*}, respectively, let $T: Y \rightarrow Y^{*}$ be defined by $T(i, j)=(j, i)$ for $(i, j) \in Y$, let $\tilde{\varphi}: S_{Y} \rightarrow S_{Y}$ be defined by $\tilde{\varphi}(\pi)=\operatorname{sgn}(\pi) \pi$ for $\pi \in S_{Y}$, let H_{Y} and V_{Y} be the subgroups of S_{Y} of row-stable and columnstable permutations of Y, respectively, and let $h_{Y}:=\sum_{h \in H_{Y}} h$ and $v_{Y}:=\sum_{v \in V_{Y}} \operatorname{sgn}(v) v$. Then

$$
\begin{gather*}
\tilde{\varphi}\left(v_{Y} h_{Y}\right)=\sum_{v \in V_{Y}} \sum_{h \in H_{Y}} \operatorname{sgn}(v) \tilde{\varphi}(v h)=\sum_{v \in V_{Y}} \sum_{h \in H_{Y}} \operatorname{sgn}(v) \operatorname{sgn}(v h) v h= \tag{7}\\
\sum_{v \in V_{Y}} \sum_{h \in H_{Y}} \operatorname{sgn}(h) v h=\sum_{h \in H_{Y^{*}}} \sum_{v \in V_{Y^{*}}} \operatorname{sgn}(v) T^{-1} h v T=T^{-1} h_{Y^{*} v_{Y} * T .}
\end{gather*}
$$

Hence for $y, z:[n] \rightarrow Y$, one has

$$
\begin{equation*}
\varphi\left(y^{-1} v_{Y} h_{Y} z\right)=\operatorname{sgn}\left(y^{-1} z\right) y^{-1} \varphi\left(v_{Y} h_{Y}\right) z=\operatorname{sgn}\left(y^{-1} z\right) y^{-1} T^{-1} h_{Y^{*}} v_{Y^{*}} T z \in K_{\lambda^{*}} \tag{8}
\end{equation*}
$$

As K_{λ} is spanned by all $y^{-1} v_{Y} h_{Y} z$ with bijections $y, z:[n] \rightarrow Y$, we have the lemma.

Lemma 2. For each subspace U of $\mathbb{C} S_{n}: U \cap \varphi(U)=\left(U \cap \mathbb{C} A_{n}\right)+\left(U \cap \mathbb{C} A_{n}^{c}\right)$.
Proof. If $x \in U \cap \varphi(U)$, then $\varphi(x) \in U$, hence $x=\frac{1}{2}(x+\varphi(x))+\frac{1}{2}(x-\varphi(x)) \in\left(U \cap \mathbb{C} A_{n}\right)+$ $\left(U \cap \mathbb{C} A_{n}^{c}\right)$.

Conversely, if $x \in U \cap \mathbb{C} A_{n}$ then $x=\varphi(x)$, hence $x \in U \cap \varphi(U)$. Similarly, if $x \in U \cap \mathbb{C} A_{n}^{c}$ then $x=-\varphi(x)$, hence $x \in U \cap \varphi(U)$.

Theorem 1. $\rho\left(\mathbb{C} A_{n}\right)=\rho\left(\mathbb{C} S_{n}\right)=\rho\left(\mathbb{C} A_{n}^{c}\right)$ if and only if $n>d^{2}$.
Proof. $\rho\left(\mathbb{C} A_{n}\right)=\rho\left(\mathbb{C} S_{n}\right)=\rho\left(\mathbb{C} A_{n}^{c}\right) \stackrel{(5)}{\Longleftrightarrow} L_{>d}+\mathbb{C} A_{n}=\mathbb{C} S_{n}=L_{>d}+\mathbb{C} A_{n}^{c} \Longleftrightarrow$ $L_{\leq d} \cap \mathbb{C} A_{n}^{c}=\{0\}=L_{\leq d} \cap \mathbb{C} A_{n} \stackrel{\text { Lemma }{ }^{2}}{\Longleftrightarrow} L_{\leq d} \cap \varphi\left(L_{\leq d}\right)=\{0\} \stackrel{\text { Lemma } 1}{\Longleftrightarrow}$ no $\lambda \vdash n$ satisfies $\operatorname{height}(\lambda) \leq d$ and $\operatorname{height}\left(\lambda^{*}\right) \leq d \Longleftrightarrow n>d^{2}$.

This implies the result of Razmyslov [2]:
Corollary 1a. If $n>d^{2}$, then $\operatorname{tr}\left(X_{1} \cdots X_{n}\right)$ is a linear combination of products of traces of products of fewer than n of the X_{i}, where X_{1}, \ldots, X_{n} are variable $d \times d$ matrices.

Note that in fact if $n>d^{2}$, then $\operatorname{tr}\left(X_{1} \cdots X_{n}\right)$ is a linear combination of products of an even number of traces of products of the X_{i}.

By the above, the conclusion of Corollary 1 a holds for some fixed n and d if and only if $L_{>d}+U=\mathbb{C} S_{n}$, where U is the subspace of $\mathbb{C} S_{n}$ spanned by the permutations with at least two orbits. Note that $L_{>d}+U=\mathbb{C} S_{n}$ is equivalent to $L_{\leq d} \cap V=\{0\}$, where V is the subspace of $\mathbb{C} S_{n}$ spanned by the permutations with only one orbit.

References

[1] P. Cvitanović, Group Theory: Birdtracks, Lie's, and Exceptional Groups, Princeton University Press, Princeton, 2008.
[2] Ju.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero [in Russian], Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 38 (1974) 723-756 [English translation: Mathematics of the USSR. Izvestija 8 (1974) 727-760].

