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Abstract

The following problem arose in the planning of optical communications networks which
use bidirectional SONET rings. Traffic demands di,j are given for each pair of nodes in an
n-node ring; each demand must be routed one of the two possible ways around the ring.
The object is to minimize the maximum load on the cycle, where the load of an edge is
the sum of the demands routed through that edge.

We provide a fast, simple algorithm which achieves a load that is guaranteed to exceed
the optimum by at most 3/2 times the maximum demand, and performs even better in
practice. En route we prove the following curious lemma: for any x1, . . . , xn ∈ [0, 1] there
exist y1, . . . , yn such that for each k, |yk| = xk and
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1 Introduction

Billions of dollars are being spent around the world by telephone operating companies to

replace copper circuits by optical fiber, thus vastly increasing potential bandwidth and opening

the network to multiple data-types including video. The dominant technological standard in

the U.S. is the Synchronous Optical NETwork, abbreviated SONET [1]. In one very popular

configuration, called a SONET ring, nodes (typically telephone central offices) are connected

by a ring of fiber, each node sending, receiving and relaying messages by means of a device

called an add-drop multiplexer (“ADM”).

SONET rings enjoy several advantages over other network configurations. The vertex-

symmetry of the ring ensures that each node plays the same role and is therefore equipped

the same as any other, and the connectivity of the cycle protects against failure of either a

link (that is, an edge) or a node. Thus, a major task of network-planning software, including

Bellcore’s SONET ToolkitTM [2], is to identify groups of nodes which can be turned into

SONET rings in such a way as to satisfy traffic demands in a cost-efficient manner.

The capacity of a SONET ring varies from ring to ring but is the same for each link of

a ring, and the cost of a ring (all other factors being equal) is an increasing function of its
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capacity. It is not the fiber itself but the ADM’s which limit bandwidth, but the effect is the

same: for each SONET ring there is a capacity C such that no link of the ring may carry more

than C units of traffic.

In some SONET rings all traffic is routed clockwise (unless a fault has occurred) and the

capacity is selected so as to handle the sum of all the point-to-point demands between nodes

of the ring. Such “unidirectional” SONET rings will not concern us here.

In bidirectional rings, however, a routing is chosen independently for each pair of nodes and

all traffic between those nodes (in either direction) is sent by that route. Clearly bidirectional

rings are much more bandwidth-efficient; for example, when demands are uniform they can

carry four times the traffic of a unidirectional ring having the same capacity.

In order to compute the capacity required for a proposed bidirectional SONET ring the

planning software must route the projected traffic demands in such a way as to minimize, or

at least approximately minimize, the maximum load on any link. The problem is described

formally below. We remark that the actual capacity selected for a proposed ring is further

adjusted to allow for failures and abnormal demands, and that there is a discrete set of standard

capacities from which to choose; but these considerations do not change the objective.

2 Notation and Terminology

The problem is formally stated as follows.

RING LOADING

instance: Ring size n and non-negative integers di,j , 1 ≤ i < j ≤ n.

question: Find a map φ : {(i, j) : 1 ≤ i < j ≤ n} −→ {0, 1} which minimizes L =

max1≤k≤n Lk, where

Lk =
∑

{di,j : φ(i, j) = 1 and k ∈ [i, j)} +
∑

{di,j : φ(i, j) = 0 and k 6∈ [i, j)} .

To make ring loading a decision problem, as in [7], we append a target value T to the

instance and ask whether there is a φ for which L ≤ T .
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Each di,j is called a demand and the map φ is called a routing. Setting φ(i, j) = 0 amounts

to routing the traffic between nodes i and j the “back” way, that is, through the link {n, 1};
when φ(i, j) = 1 we say that the (i, j)th demand has been routed through the “front.”

The routing induces a load Li on each link {i, i+1}, namely the sum of the demands routed

through that link. The largest load is the ringload L, the quantity to be minimized.

3 Theory and Reality

The decision form of ring loading is clearly in the class NP since the routing provides a

witness which is only
(n
2

)

bits long. Technically, the input size for an instance of ring loading

is slightly more than

dlog ne + dlog T e +
∑

1≤i<j≤n

dlog dke

relative to which ring loading is NP-complete. A simple reduction is available from the

partition problem ([7], p. 223), in which positive integers a1, . . . , am are given and the ques-

tion is whether one can divide them into two groups of equal sum. Put n = m+3, di,m+2 = ai

for 1 ≤ i ≤ m, and dm+1,m+2 = dm+2,m+3 =
∑

ai/2. Set all other demands equal to zero and

let T =
∑

ai. Then a good routing must send dm+1,m+2 and dm+2,m+3 the short way (front)

and must partition the other demands so that Lm+1 = Lm+2 = T . This solves partition,

and conversely.

An even easier reduction—with just 2 nodes—was given by Cosares and Saniee [3], made

possible by their slightly more general ring loading formalization in which more than one

demand per node pair is allowed. (The positive results to follow are also easily extended

to cover the more general formulation; we prefer the more restrictive version for notational

reasons.)

However, the reduction from partition says nothing about the tractability of ring load-

ing in practice, because partition is solvable in time polynomial in m · max ai and actual

demand sizes for ring loading are not large numbers. In fact, traffic demands are estimates

to begin with, and the range 0 to 100 units is typically adequate. Thus, we may even take the

maximum demand D to be bounded by a reasonable constant. The size n of a SONET ring

is currently restricted to about 20. With these parameters, an instance of partition can be

solved using dynamic programming by hand!
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Modest as the parameters are, however, they do not permit exhaustive search of the 2(n

2)

possible routings; and the partition-to-ring loading reduction does not appear to permit

reversal. As far as we know, any of the following three statements may be true:

• ring loading (like partition) can be solved in time polynomial in n and D.

• ring loading (like clique) can be be solved in time polynomial in n but only if a

bound on the maximum demand D is fixed.

• ring loading (like chromatic number) is NP-complete even for (some) fixed D.

Mercifully, the D = 1 case is solvable in time polynomial in n. The proof is due to Frank

[5] and is explained nicely in [6]; it relies on a theorem of Okamura and Seymour [9]. This

case is important because in some cases demands can be split, but only at integral values, and

can thus be regarded as a multiplicity of unit demands. In fact, as we shall demonstrate, our

approximation algorithm for ring loading actually solves this case exactly.

We do not have a fast exact algorithm, either in theory or in practice, for the ring loading

problem with D > 1. In practice, fortunately, a reasonable approximate solution to ring

loading was acceptable. There was no room for compromise on the issue of computation

time: the ring loading problem had to be solved in a matter of seconds at most, because

it was part of a frequently-called subroutine tasked with determining the cost of proposed

SONET rings. The full program considers enormous numbers of potential SONET rings and

is supposed to work on run-of-the-mill serial computers.

To be precise, we sought an algorithm A with the following three properties, listed in order

of importance:

1. A must be fast.

2. A should provide a solution to ring loading which exceeds the optimum load by no

more than about 5% in most cases.

3. A should, if possible, come with a performance guarantee for both (1) and (2).

As it turns out, these properties were obtainable with a fairly simple algorithm whose efficiency

does not much depend on D (the demands can be treated as real numbers).
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4 Linear Relaxation

The “relaxed” version of ring loading, in which demands may be split (that is, sent partly

around the front, partly around the back), is formulated as follows:

RELAXED RING LOADING

instance: Ring size n and non-negative integers di,j , 1 ≤ i < j ≤ n.

question: Find a map φ∗ : {(i, j) : 1 ≤ i < j ≤ n} −→ [0, 1] which minimizes L∗ =

max1≤k≤n L∗
k, where

L∗
k =

∑

{φ∗(i, j)di,j : k ∈ [i, j)} +
∑

{(1 − φ∗(i, j))di,j : k 6∈ [i, j)} .

Since this is now a linear programming problem, it is solvable in polynomial time [8]. In

fact, we shall see that a solution to relaxed ring loading can be obtained in a very fast

greedy fashion, even if we demand the additional property described in Proposition 1 below.

It is handy to think of demands as geometrically, as weighted chords in a circle representing

the SONET ring. Two demands dg,h and di,j , with g < h and i < j, are said to cross if the

indices are all distinct and exactly one of i and j lies in (g, h), otherwise they are said to be

parallel. In particular, demands such as di,j and di,k which share a node are parallel.

A link which lies between two chords representing parallel demands is said to be “between”

the demands. Finally, a routing φ∗ for the relaxed ring loading problem is said to split a

demand di,j if 0 < φ∗(i, j) < 1.

Proposition 1 Let φ∗ be a routing for an instance of relaxed ring loading which achieves

the optimal load L∗ and is also minimal, in the sense that no other routing has Li ≤ L∗
i for

every i and Lj < L∗
j for some j. Then no link which lies between two parallel demands will

carry traffic from both demands.

Proof. Assume otherwise, letting link {k, k+1} carry a quantity a of traffic from demand dg,h

and b ≥ a from di,j . After rerouting a quantity a of traffic from each demand so as to no longer

pass through the kth link, no link suffers an increased load; this contradicts the minimality of

φ∗. 2
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Proposition 1 fails for ring loading as can be seen from the example in Fig. 1, where

n = 8 and the non-zero demands are d2,3 = d1,4 = 1 and d6,7 = d5,8 = 2. The optimal

{0, 1}-assignment sends both d1,4 and d5,8 the long way around the ring, achieving L = 3; no

other assignment can do better than L = 4. Significantly, however, the proposition does hold

in the case of {0, 1} demands.

We can turn relaxed ring loading into a decision problem in a more general way than

before: we append to the instance a capacity Ci for each link {i, i+1}, and ask whether there

is a routing φ∗ for which Li ≤ Ci for each i. In the sequel it will be useful to regard node

labels as integers modulo n, so that for example the link {n, 1} is also written {n, n+n}, and

the half-open interval (g, h] is to be interpreted as {h, h+1, . . . , n−1, n, 1, 2, . . . , g−1} if h < g.

Each pair of links {g, g+1}, {h, h+1}, with g < h, constitutes a cut of capacity Cg + Ch in

the network. We may think of a cut as a chord connecting the midpoints of the links {g, g+1}
and {h, h+1}; if a demand di,j crosses this chord, any routing will contribute load di,j to the

cut’s two links. Thus, if the instance is solvable, then Dg,h ≤ Cg + Ch where

Dg,h :=
∑

{di,j : i ≤ g and j ∈ (g, h], or i ∈ (g, h] and j > h}

is the total traffic demand across the cut. Conversely,

Proposition 2 If Dg,h ≤ Cg + Ch holds for each cut then there is a solution to relaxed

ring loading satisfying the capacity constraints.

Proof. It will be useful in what follows to allow “cuts” of the form {g, g}, with capacity 2Cg

and demand Dg,g = 0. The cut constraint for these cuts is thus equivalent to non-negativity

of the link capacities.

Assume the theorem fails and fix a counterexample with n minimal, and, subject to the

minimality of n, having the least possible number of non-zero demands.

Choose any non-zero demand, say di,j with i < j, and let {g, h} minimize M = Dg,h −
Cg +Ch subject to i ≤ g < h < j; thus, {g, h} is the tightest cut in the front route for di,j . (A

cut {g, h} is said to be “tight” if Dg,h = Cg + Ch.)

We propose to send M/2 of the demand di,j around the front and the remaining di,j −M/2

around the back. When the capacities have been decremented accordingly, we will have a new

ring loading instance with one less non-zero demand. If the new instance still satisfies the

cut constraints, it will contradict minimality of the counterexample, proving the theorem.
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Suppose that in the new instance some cut is violated. That cut must lie on the back

route for di,j , since this demand has already been accounted for in cuts which it crosses, and

cuts on the front route have sufficient slack by choice of M . Then we have a cut {g ′, h′} with

[g′, h′) ∩ [i, j) = ∅ such that

Dg′,h′ + 2(di,j − M/2) > Cg′ + Ch′

where all quantities are computed in the original instance.

Call the {g, h} cut and the {g′, h′} cut “straight” and consider also the “diagonal” cuts

{g, g′} and {h, h′}. Every demand must cross as many of the two diagonal cuts as the two

straight cuts, while di,j crosses both diagonal cuts and neither straight cut. Hence,

Dg,g′ + Dh,h′

≥ Dg,h + Dg′,h′ + 2di,j

> Cg + Ch − 2(M/2) + Cg′ + Ch′ − 2(di,j − M/2) + 2di,j

= Cg + Cg′ + Ch + Ch′

so that one of the diagonal cuts must have violated the cut constraint to begin with.

Note that non-violation of cuts of the form {g, g} assures us that the given routing of di,j

is actually possible, i.e. that no link capacity will become negative afterward. 2

Given a set of demands, we now wish to find an assignment φ∗ which minimizes L∗ and

satisfies the conclusion of Proposition 1. This can be done quickly by putting each link in a

tight cut, as follows.

First we compute the
(n
2

)

values Dg,h, 1 ≤ g < h ≤ n; let the largest of these be M . Then

L∗ ≥ M/2, but the ring with all capacities set to M/2 satisfies the cut constraint, so in fact

L∗ = M/2. We now take the links in any order (say, {1, 2} through {n, 1}) and lower their

capacities as much as possible; that is, define capacities {Ci} recursively by

Cg = min

(

min
h<g

(Dg,h − Ch),min
h>g

(Dg,h − M/2)

)

.

No realizable set {C ′
i} of capacities can have C ′

i ≤ Ci for every i and C ′
j < Cj for some j,

since then the least such j would be part of a bad cut. Hence any feasible assignment φ∗ for

these capacities is a minimal solution of the original relaxed ring loading instance and
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Proposition 1 applies. In particular, if S = {{i, j} : di,j is split by φ∗} then every pair of

chords in S crosses, and therefore |S| ≤ n/2.

In fact, after reducing the capacities as above we can solve relaxed ring loading in

such a way as to route each demand all front or all back until only mutually pairwise crossing

demands remain. To see this, assume there is still a parallel pair of unrouted demands and

choose a link between them; fix a tight cut containing that link. At most one of the two

parallel demands crosses the cut; the other can, and indeed must, be routed so as to miss the

cut entirely.

In any case, our solution to relaxed ring loading ends with at most only n/2 of the

demands split. It therefore seems natural to compute φ∗ and then “unsplit” the demands in

S as gently as possible, in order to get a near-optimal {0, 1} assignment for ring loading.

This is exactly what we do.

5 Unsplitting

Henceforth φ∗ will be a fixed, minimal solution to relaxed ring loading with set of split

demands S as above. We seek a solution φ to ring loading which agrees with φ∗ when

φ∗(i, j) ∈ {0, 1} and for which L − L∗ is as small as possible, where L is the ringload of φ.

If node i is not an endpoint of a split demand, then the difference between the loads on

links {i−1, i} and {i, i+1} will not change as we pass from φ∗ to φ. Hence, for the purpose

of determining φ, we may as well delete vertex i and combine the two former links to form a

single link whose load under the relaxed assignment is taken to be max(L∗
i−1, L

∗
i ). Proceeding

in this fashion for each vertex not involved in a split demand, we are reduced to the case where

n is even and S = {{i, i+m} : 1 ≤ i ≤ m} with m = n/2.

Let us define ui to be the amount of demand di,i+m sent by the front route, and vi by the

back, so that ui, vi > 0 and ui + vi = di,i+m. If φ routes di,i+m by the front then each link

{j, j+1} with j ∈ [i, i+m) has its load incremented by vi (the amount formerly sent around the

back) relative to the relaxed assignment φ∗, while the rest of the link loads are decremented

by ui. Similarly, if demand di,i+m is sent by the back route, the load of each link in [i, i+m] is

decremented by ui while the rest are incremented by vi.
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Hence if we set zi = vi when φ(i, i+m) = 1 and zi = −ui otherwise, we have

Lj = L∗
j +

∑

i ∈ [1,m]
j ∈ [i, i+m)

zi −
∑

i ∈ [1,m]
j ∈ [i+m, i)

zi .

Notice that Lj +Lj+m = L∗
j +L∗

j+m for all j. Thus L ≤ 2L∗ for all choices of φ, duplicating the

performance ratio claimed by Cosares and Saniee [3], but we will do much better by choosing

φ judiciously.

The optimal φ can be found by dynamic programming, but in practice, we try every

φ and choose the best one! There are at most 2n/2 choices for φ, easily exhausted for all

currently contemplated SONET ring sizes. In effect, for our values of n (up to 32, possibly)

the line between tractability and intractability lies not between polynomial and exponential,

but between exponential in n and exponential in n2.

Our embarrassment, as theorists, is assuaged somewhat by the fact that there is a poly-

nomial algorithm for finding an assignment φ which achieves the performance guaranteed by

the following theorem.

Theorem 1 Let φ∗ be a minimal solution, with ringload L∗, to the relaxed version of an

instance of ring loading. Let D be the maximum magnitude of the demands split by φ∗.

Then there is a {0, 1} assignment φ with ringload L, which agrees with φ∗ except on split

demands and which satisfies L − L∗ ≤ 3
2
D.

Proof. We define zi (hence φ) inductively, insuring that
∑k

i=1 zi ∈ [−D/2,D/2] for all k,

1 ≤ k ≤ m. This is always possible since once z1, . . . , zk−1 are defined and the partial sum

s =
∑k−1

i=1 zi lies in the required interval, the two possible values of
∑k

i=1 zi lie on both sides

of s and differ by only uk + vk ≤ D.

Put

Mk :=
k
∑

i=1

zi −
m
∑

i=k+1

zi = 2
k
∑

i=1

zi −
m
∑

i=1

zi ∈ [
3

2
D,

3

2
D]

and

M := max
1≤k≤m

|Mk|

then

L − L∗ ≤ max
j

(Lj − L∗) = M ≤ 3

2
D .
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The greedy unsplitting given in the proof of Theorem 1, when appended to our solution to

relaxed ring loading, gives the polynomial-time approximation algorithm which we call

“Algorithm A.”

Of course, the true optimum Lopt for the original ring loading problem is at least equal

to L∗, so the theorem guarantees an additive error of at most a constant (3/2) times the

maximum original demand irrespective of the value of n.

How good is this performance guarantee? This method can never achieve a multiplicative

performance bound better than 2 relative to L∗, since the “square example” with n = 4,

d1,3 = d2,4 = 1 and other demands 0 gives L∗ = 1, Lopt = 2. Nor can we hope to get a factor

better than 4/3 relative to Lopt on account of the example of Fig. 1.

However, for larger n, if demands average D/2 in size then the typical demand adds

n/4 · D/2 to the total load when routed the short way; thus we expect the sum of the loads

of all the links to be around
(n
2

) · n/4 · D/2 ≈ (D/16)n3, giving L∗ ≥ (D/16)n2. Next to

an optimum of order n2, an additive error which does not depend on n at all looks pretty

good; but again we must remember that n is never very large. For n = 16 this analysis

allows a relative error of ( 3
2
D)/(16D) ≈ 9%, not so impressive. Of course this is pessimistic;

the Cosares-Saniee algorithm allows 100% error in theory but does far better in practice. In

any case it would clearly be worth some effort to determine whether the constant 3/2 is best

possible, and we tackle this problem in the last section.

First, however, we return to the {0, 1} demands case.

6 {0,1} Demands

In this section it will not complicate notation to allow many demands between two nodes of

the ring, each of magnitude 1; we also allow capacities Ci for the links, not necessarily equal.

A cut {g, h} is said to be even if Cg + Ch − Dg,h ≡ 0 (mod 2). In [6] feasibility is shown to

be equivalent to the cut condition together with the following

Parity Condition: For every pair of links g, h, if g and h are each in a tight cut, then the

cut {g, h} is even.
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Theorem 2 In the {0, 1} case, if we put Ci = L for each link i, then ring loading is feasible

with ringload ≤ L if and only if the cut and parity constraints are satisfied. If only the cut

constraint is satisfied then the optimal ringload is L+1. In any case the algorithm A described

above finds an optimal assignment.

Proof. It is straightforward to verify that if a demand is assigned (all front or all back)

without violating the cut condition then the truth value of the parity condition is preserved.

Since the parity condition is met when all demands are assigned, necessity is clear.

On the other hand, suppose that demands are assigned in accordance with Algorithm A

until all remaining demands require splitting. Suppose there is at least one left, say di,j ; then

there must be parallel cuts {g, h} and {g′, h′} on each side of di,j with Cg + Ch − Dg,h =

Cg′ + Ch′ − Dg′,h′ = 1. Since the diagonal cuts must be tight, the parity condition is (twice)

violated.

It remains only to observe that if the cut constraint is satisfied when Ci = L then at

Ci = L + 1 we also satisfy the parity constraint since then all the cuts have slack. 2

7 The Constant

Let β be the infimum of all reals α such that the following combinatorial statement holds:

“For all positive integers m and non-negative reals u1, . . . , um and v1, . . . , vm with ui +vi ≤
1, there exist z1, . . . , zm such that for every k, zk ∈ {vk,−uk} and

|
k
∑

i=1

zi −
m
∑

i=k+1

zi| ≤ α .”

Then β is the “right” constant for Theorem 1, i.e., L − L∗ ≤ βD for some choice of φ.

Note that any choice of rational values for the ui’s and vi’s can actually occur (up to constant

factor) from an instance of ring loading, since we can construct one as follows. Let Mj be

the load actually incurred by link {j, j+1} when the demands di,i+m = ui + vi are split ui

front and vi back. Let M be huge, and postulate additional “short” demands dj,j+1 = M −Mj

for each j, 1 ≤ j ≤ 2m. Then any optimal relaxed ring loading solution will send all

the short demands by the one-link route; however, the sum of the link loads due to the other

demands is constant since each has two routes of the same length. Thus splitting the other

demands as given, so as to obtain the same load M on every link, is optimal; and it is easy to

see that no other splitting can achieve uniform load.
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We already know β ≤ 3/2 and the square example, where m = 2 and u1 = v1 = u2 = v2 =

1/2, shows that β ≥ 1. (In fact, ui’s and vi’s chosen uniformly at random subject to the given

constraints also force β ≥ 1.)

The special case where ui = vi for each i is interesting for several reasons. This means that

φ∗ is sending exactly half of each demand di,i+m each way around the ring, giving us no clue as

to how to unsplit them. Further, this is the case which arises when (as in the square example)

all of the non-zero demands in the original ring loading instance are mutually crossing.

The case ui = vi thus gives rise to a new ring loading problem as well as a new constant:

CROSSED RING LOADING

instance: Ring size 2m and non-negative reals di, 1 ≤ i ≤ m.

question: Find a map φ : {1, 2, . . . ,m} −→ {0, 1} which minimizes L = max1≤k≤2m Lk,

where

Lk =
∑

{φ(i)di : k ∈ [i, i+m)} +
∑

{(1 − φ(i)di : k 6∈ [i, i+m)} .

Note that we have allowed real demands here (rationals would be fine, too) in order to

handle non-integral splits produced by a previous linear programming phase.

We define γ be the infimum of all reals α such that the following combinatorial statement

holds:

“For all positive integers m and x1, . . . , xm ∈ [0, 1] there exist y1, . . . , ym such that for

every k, |yk| = xk and

|
k
∑

i=1

yi −
m
∑

i=k+1

yi| ≤ 2α .”

(Note that we have rescaled the combinatorial statement so that the xi’s lie in the unit interval

instead of [0, 1/2].)

We have 1 ≤ γ ≤ β ≤ 3/2. For lack of a counterexample, the authors were moved to

conjecture publicly that both constants are equal to 1. After an embarrassingly long interval

we found a simple proof, given below, that γ = 1; thus,

Theorem 3 Let K the sum of the demands of an instance of crossed ring loading. Then

there is an assignment φ (which can be found in time polynomial in m and the length of the

demand descriptions) whose ringload L satisfies L − K/m ≤ D.
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Proof. We must show that given x1, . . . , xm ∈ [0, 1] there are y1, . . . , ym such that for every

k, |yk| = xk and

|
k
∑

i=1

yi −
m
∑

i=k+1

yi| ≤ 2 .

As in the asymmetric case, we can get a bound of 3 instead of 2 by greedy assignment; in

this case that amounts to putting yk = xk when
∑k−1

i=1 yi ≤ 0 and yk = −xk otherwise. We

generalize this algorithm by choosing a real w instead of 0 as the “empty sum.”

Specifically, for fixed w ∈ [−1, 1], define yk inductively by yk = xk when w +
∑k−1

i=1 yi ≤ 0

and yk = −xk otherwise. Then w +
∑k

i=1 yi ∈ [−1, 1] for all k; let f(w) := w +
∑m

i=1 yi.

Suppose that f(w) = −w; then

k
∑

i=1

yi −
m
∑

i=k+1

yi

= 2
k
∑

i=1

yi −
m
∑

i=1

yi

= 2

(

w +
k
∑

i=1

yi

)

−
(

w +
m
∑

i=1

yi

)

− w

∈ [−2, 2]

as desired.

Since f(1)− 1 ≤ 0 ≤ f(−1)− (−1) the existence of a w for which f(w) = −w would follow

from the intermediated value theorem, if f were continuous. Of course this is not the case;

whenever a partial sum hits 0 some yi’s change sign and f(w) may jump. (Since we have

chosen yi positive when the partial sum is 0, f will be continuous from the left.) However, it

turns out that the absolute value of f is continuous.

Note first that when no partial sum is at 0, the derivative f ′(w) is 1. On the other hand

suppose w = w0 is chosen such that exactly one of the partial sums, say w +
∑k

i=1 yi, is zero;

then for sufficiently small ε, the signs of yj and w +
∑j

i=1 yi, for j > k, flip as we move from

w = w0 to w = w0 + ε. Hence, taking j = m, we have that limw→w+

0

f(w) = −f(w0). (See

Fig. 2.)

If exactly p partial sums hit 0 at w = w0 then there will be p sign-flips and we will

have limw→w+

0

f(w) = (−1)pf(w0); in any case the function g given by g(w) = |f(w)| will

be continuous everywhere and differentiable except at the finitely many points where an odd

13



number of partial sums hit 0. Thus the graph of g is a zig-zag, with derivative 1 where

g(w) = f(w) and −1 where g(w) = −f(w). (See Fig. 3.)

Of course if we define h by h(w) = −w then the graph of h is a line of slope −1 from

(−1, 1) to (1,−1) which must intersect the graph of g. Moreover, it must either intersect at a

point where g′(w) = 1 or coincide with a segment of the graph of g of slope −1, in which case

the leftmost point of the segment lies also on the graph of f . Either way we have a point w

at which −w = g(w) = f(w).

To complete the proof we need to demonstrate a fast algorithm for finding this w. To do

this we set the yi’s one at a time while keeping a solution w in range. Specifically: at stage j

we have values y1, . . . , yj set and aj ≤ w ≤ bj , with g(aj) ≤ −aj and g(bj) ≥ −bj ; of course

this holds at stage 0 with a0 = −1, b0 = 1. At stage j + 1, if ai +
∑j

i=1 yi and bi +
∑j

i=1 yi are

both positive then perforce we set yj+1 = −xj+1; if both are ≤ 0 then we put yj+1 = xj+1. In

either of these cases we set aj+1 = aj and bj+1 = bj .

Otherwise s := −∑j
i=1 yi lies in the half-open interval [aj, bj). If g(s) ≤ −s we put

yj+1 = −xj+1 and set aj+1 = s and bj+1 = bj ; if g(s) ≥ −s put yj+1 = xj+1 and set aj+1 = aj

and bj+1 = s. In any case the inductive conditions are preserved and at stage m all the yi’s

are correctly set. 2

We have shown γ = 1, but the proof above will not work for β, as g = |f | is no longer

continuous in the asymmetric case. Even so, we may gain by replacing f by a multi-valued

function F , defined by allowing both zk = vk and zk = −uk when w +
∑

i = 1kzi remains

within bounds.

Then the graph of F will be a union of slope-1 line segments, each corresponding to an

assignment of zi’s. The sum of the lengths of these segments will be at least
√

2 since F (w)

always takes on at least one value, and in practice—and in virtually any random model—

the segments will practically always intersect the line from (−.5, .5) to (.5,−.5) at least once,

providing a solution to ring loading which is within D of L∗.

However, it is just barely possible to choose values ui and vi for which the diagonal line

sneaks through between the line segments of the graph of F . A set of such values, for m = 13, is

given in Fig. 2 along with the corresponding graph of F . On the graph each of the 213 routings

is represented by a diagonal line segment, often null, indicating the final sum w +
∑

i = 1mzi

as a function of w, for just those values of w for which all partial sums w +
∑

i = 1kzi lie
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between -.5 and .5 .

With this general definition of the multi-function F , a crossing of the diagonal is necessary

as well as sufficient to get a solution within 2 of L∗. Hence the example shows that β is at

least 1.01. This lower bound can certainly be raised somewhat but it is far from clear that the

true value of β is anywhere near 3/2.

8 Conclusions

Experimental results show that indeed our proposed algorithm is extremely fast, and even

when applied to random examples small enough to compute Lopt, produces a ringload within

5% of optimal. We have never managed to produce a random example with L > L∗ + D even

though our theorem only guarantees L ≤ L∗ + 3
2
D, and we doubt such an instance will ever

be seen in practice.

Hence, even though the mathematics refuses to cooperate, we guarantee L ≤ L∗ + D .
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