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Abstract We characterize the virtual link invariants that can be described as partition func-
tion of a real-valued R-matrix, by being weakly reflection positive. Weak reflection positivity
is defined in terms of joining virtual link diagrams, which is a specialization of joining
virtual link diagram tangles. Basic techniques are the first fundamental theorem of invari-
ant theory, the Hanlon–Wales theorem on the decomposition of Brauer algebras, and the
Procesi–Schwarz theorem on inequalities for closed orbits.

1 Introduction

This paper is inspired by some recent results in the range of characterizing combinatorial
parameters using invariant theory, in particular by Szegedy [12] and Freedman et al. [1].
We here consider the application to virtual links, which requires some new techniques from
the representation theory of the symmetric group. The concepts of virtual link diagram and
virtual link were introduced by Kauffman [5]; see Manturov and Ilyutko [7] and Kauffman
[6] for more background.

A virtual link diagram is an undirected 4-regular graph G such that at each vertex v a
cyclic order of the edges incident with v is specified, together with one pair of edges opposite
at v that is labeled as ‘overcrossing’. The standard way of indicating this is as

(1)
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Vertices of a virtual link diagram are called crossings. Loops and multiple edges are allowed.
Moreover, the ‘unknot’ is allowed, that is, the loop © without a crossing. Let G denote the
collection of virtual link diagrams, two of them being the same if they are isomorphic.

In the usual way, Reidemeister moves yield an equivalence relation on virtual link dia-
grams. A virtual link is an equivalence class of virtual link diagrams. A virtual link invariant
is a function defined on G that is invariant under Reidemeister moves. (So in fact it is a
function on virtual links, but the definition as given turns out to be more convenient.)

A virtual link diagram can be seen as the projection of a link in M × R on M , where M
is some oriented surface. Since this connection however is not stable under all Reidemeister
moves (e.g., one may need to create a handle to allow a type II Reidemeister move), we will
view virtual link diagrams just abstractly as given above.

In this paper, Z+ = {0, 1, 2, . . .} and for any n ∈ Z+:

[n] := {1, . . . , n}. (2)

Choose n ∈ Z+. Let the symmetric group S2 act on (Rn)⊗4 so that the nonidentity element
of S2 brings x1 ⊗ x2 ⊗ x3 ⊗ x4 to x3 ⊗ x4 ⊗ x1 ⊗ x2. Define

Rn := ((Rn)⊗4)S2 , (3)

which is the linear space of S2-invariant elements of (Rn)⊗4. Note thatRn can be identified
with the collection of symmetric matrices in (Rn×n)⊗2.

Following de la Harpe and Jones [4], we call any element R ofRn a vertex model (‘edge-
coloring model’ in [12]). For any R ∈ Rn , let fR be the partition function of R; that is, fR

is the function fR : G → R defined by

fR(G) =
∑

φ:E(G)→[n]

∏

v∈V (G)

Rφ(δ(v)). (4)

Here we put
φ(δ(v)) := (φ(e1), φ(e2), φ(e3), φ(e4)), (5)

where e1, e2, e3, e4 are the edges incident with v, in clockwise order, and where e1, e3 form
the overcrossing pair. Since R is S2-invariant, Rφ(δ(v)) is well-defined. Note that fR(©) = n.

The well-known sufficient conditions on R for fR to be a virtual link invariant are:

(i)
∑

a

Riaaj = δi j for all i, j,

(ii)
∑

a,b

Ri jab Ralkb = δikδ jl for all i, j, k, l,

(iii)
∑

a,b,c

Riabh R jkca Rbclm =
∑

a,b,c

Ri jbc Rbkla Rcamh for all i, j, k, l, m, h, (6)

where R is expressed in the standard basis of (Rn)⊗4, where all indices run from 1 to n, and
where δi j is the Kronecker delta. Condition (iii) is the Yang–Baxter equation. In the real case,
the conditions (6) are also necessary conditions for fR to be a virtual link invariant. Elements
R of Rn satisfying (6) are called R-matrices. (Often condition (i) is deleted, to obtain an
invariant for ‘ribbon links’.)

In this paper, we characterize which real-valued functions f on the collection G are equal
to fR for some R-matrix R. To this end, we introduce the concept of a k-join of virtual
link diagrams (for any k ∈ Z+). To define it, we consider the linear space RG of all formal
R-linear combinations of elements of G. Any function on G to a linear space can be extended
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On the existence of real R-matrices for virtual link invariants 437

uniquely to a linear function on RG. The elements of RG are called quantum virtual link
diagrams.

The k-join of virtual link diagrams G and H is an element of RG. It is obtained
from the disjoint union of G and H , by taking the sum over all quantum virtual link dia-
grams obtained as follows: choose distinct crossings u1, . . . , uk of G and distinct crossings
v1, . . . , vk of H , and for each i = 1, . . . , k

(7)

As usual, a circle around a crossing in these pictures means that the crossing does not
correspond to a crossing of the virtual link diagram, but is an artefact of the planarity of
the drawing. Note that in (7), the new connections conform to the cyclic orders and the
overcrossings at ui and vi .

The k-join can be described in terms of joining two virtual link diagram tangles (i.e., virtual
link diagrams inwhich labeled vertices of degree 1 are allowed) by identifying equally labeled
vertices (cf. Szegedy [12]). Then the k-join is obtained by ‘opening’ G and H at the crossings
u1, . . . , uk, v1, . . . , vk (that is, deleting these vertices topologically, thus leaving, for each
deleted vertex, four open end segments). Choosing appropriate labelings at the ends and
joining the tangles along equally labeled ends, yields the k-join. The k-join is therefore a
more restricted operation, which will yield therefore a stronger characterization.

We call f weakly reflection positive if for each k ∈ Z+, the G × G matrix

(8)

is positive semidefinite. Moreover, f : G → R is called multiplicative if f (∅) = 1 (where ∅
is the virtual link diagram with no crossings and edges) and f (G � H) = f (G) f (H) for all
virtual link diagrams G, H , where � denotes disjoint union.

Theorem Let f : G → R. Then there exists an R-matrix R with f = fR if and only if
f (©) ≥ 0 and f is multiplicative and weakly reflection positive and satisfies

(9)

Our proof of the theorem follows the line of proof layed down in [9] for ‘3-graphs’ and
cyclic cubic graphs. The main addition of the present study is the application to virtual link
diagrams, which requires a different combinatorial proof for the integrality of f (©). An
interesting feature for virtual link diagrams is that the multiplicativity and weak reflection
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positivity of f imply that f (©) is an integer butmight be negative. In fact, if f (©) is negative
it is even—see the lemma below. This raises the question to classify those multiplicative and
weakly reflection positive virtual link invariants f with f (©) < 0.

It can also be shown, with the Stone-Weierstrass theorem as in [9], that the R-matrix R
in the theorem is unique, up to the natural action of the real orthogonal group O(n) on R
(which action leaves fR invariant).

Multiplicativeweakly reflection positive functions f : G → Rwith f (©) = −2k do exist
for any k ∈ Z+. Indeed, define f (G) = 0 if G has at least one crossing, and f (G) = (−2k)t

if G is the disjoint union of t copies of ©. Then f trivially is multiplicative, and it is weakly
reflection positive, as can be derived again from the results of Hanlon andWales [3] displayed
below.

The remainder of this paper is devoted to proving the theorem.

2 The algebra homomorphism pn : RG → O(Rn)

We make some preparations to the proof of the theorem. The space RG of formal linear
combinations of elements of G, is in fact an algebra, by taking the disjoint union G � H of
two virtual link diagrams G and H as multiplication G H . Choose n ∈ Z+ and recall that
Rn denotes the linear space

Rn := ((Rn)⊗4)S2 . (10)

As usual, O(Rn) denotes the algebra of polynomials on Rn . Define an algebra homomor-
phism pn : RG → O(Rn) by

pn(G)(R) := fR(G) (11)

for G ∈ G and R ∈ Rn . So the element R in the theorem can be described as a common zero
of the polynomials pn(G) − f (G) for all G ∈ G.

We mention a connection of the k-join of virtual link diagrams to k-th derivatives of pn ,
which is similar to a lemma proved in [9] for cubic cyclic graphs, and can be proved by a
word for word translation of the method.

For any q ∈ O(Rn), let dq be its derivative, being an element of O(Rn) ⊗ R∗
n . So

dkq ∈ O(Rn) ⊗ (R∗
n)⊗k . Note that the standard inner product on R

n induces an inner
product on (Rn)⊗4, hence onRn andR∗

n , and therefore it induces a product 〈., .〉 : (O(Rn)⊗
(R∗

n)⊗k) × (O(Rn) ⊗ (R∗
n)⊗k) → O(Rn). Then, for all G, H ∈ G and all k, n ∈ Z+:

(12)

This connection between k-joins and k-th derivatives will be used a number of times in our
proof of the theorem.

As in [12] (cf. [2,11]), the first fundamental theorem of invariant theory for the real
orthogonal group O(n) implies

pn(RG) = O(Rn)O(n), (13)

the latter denoting the space of O(n)-invariant elements of O(Rn).
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3 The value of f on ©
The following lemma on f (©) carries the most combinatorial part of the proof. It is based
on basic results of Hanlon andWales [3] on the representation theory of the symmetric group
(cf. Sagan [10]).

Lemma If f : G → R is multiplicative and weakly reflection positive, then f (©) belongs
to {. . . ,−6,−4,−2, 0, 1, 2, 3, . . .}.
Proof I. We first describe some tools, using results of [3]. Consider any k ∈ Z+. For any
matching M on [8k] and any π ∈ S8k , let π · M be the matching {π(e) | e ∈ M}. Define
M to be the set of perfect matchings on [8k]. So the group S8k acts onM, which induces an
action of S8k on R

M.
To each M ∈ M we can associate a virtual link diagram G M on [2k] by identifying, for

each j ∈ [2k], the vertices 4 j − 3, 4 j − 2, 4 j − 1, 4 j of M to one crossing called j as in

(14)

To describe for M, N ∈ M, we define the following subgroups of S8k . For
j ∈ [2k], let B j be the group consisting of the identity id and of (4 j −3, 4 j −1)(4 j −2, 4 j).
Define B := B1B2 · · · B2k . Let D be the group of permutations d ∈ S8k for which there exists
π ∈ S2k such that d(4 j − i) = 4π( j) − i for each j = 1, . . . , 2k and i = 0, . . . , 3. Set
Q := B D, which is a group.

For M, N ∈ M, let c(M, N ) denote the number of connected components of the graph

([8k], M ∪ N ). Then, by definition of the operation , we have

(15)

For π ∈ S8k , let Pπ be theM×M permutation matrix corresponding to π ; then Pπw =
π ·w for eachw ∈ R

M. For any x ∈ R, let A(x) and AQ(x) be theM×Mmatrices defined
by

(A(x))M,N := xc(M,N ) and AQ(x) :=
∑

s∈Q

A(x)Ps, (16)

for M, N ∈ M. So, by the weak reflection positivity of f , (15) implies that AQ( f (©)) is
positive semidefinite. Note that each Pπ commutes with A(x), as for all M, N ∈ M one has
c(π · M, π · N ) = c(M, N ), implying A(x) = PT

π A(x)Pπ = P−1
π A(x)Pπ .

Hanlon and Wales [3] showed that the eigenvalues and eigenvectors of A(x) can be
described as follows. Consider any partition λ = (t1, . . . , tm) of 8k, with all ti even. Then
A(x) has an eigenvalue

μλ(x) :=
m∏

a=1

1
2 ta∏

b=1

(x − a + 2b − 1). (17)

To describe a corresponding eigenvector, make a Young tableau T associated to λ such that
each row of T has the form

i1 i1 i2 i2 · · · it it (18)
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for some i1, . . . , it ∈ [4k], where i := 4k + i for each i ∈ [4k]. For i = 1, . . . , t1, let Ki

denote the set of numbers in column i of T and let Ci be the subgroup of S8k that permutes
the elements of Ki . ThenC := C1 · · · Ct1 . Similarly, for i = 1, . . . , m, let Ri be the subgroup
of S8k that permutes the numbers in row i of T , and R := R1 . . . Rm .

Let F be the perfect matching on [8k] with edges {i, i} for i ∈ [4k]. Then
v :=

∑

c∈C,r∈R

sgn(c)cr · F (19)

is an eigenvector of A(x) belonging to μλ(x). Then for u := ∑
q∈Q q · v one has

AQ(x)u =
∑

q ′,q∈Q

A(x)Pq ′ Pqv =
∑

q ′,q∈Q

Pq ′ Pq A(x)v = μλ(x)
∑

q ′,q∈Q

Pq ′ Pqv = |Q|μλ(x)u.

(20)
So u is an eigenvector of AQ(x) belonging to |Q|μλ(x), provided that u is nonzero. For this
it suffices that the coefficient uF of u in F is nonzero. Note that

uF =
∑

q∈Q

(q · v)F =
∑

q∈Q

∑

c∈C,r∈R

sgn(c)(qcr · F)F =
∑

q∈Q,c∈C,r∈R
qcr ·F=F

sgn(c). (21)

So u �= 0 if for any q ∈ Q, c ∈ C , and r ∈ R, if qcr · F = F then sgn(c) = 1; that is (as Q
is a group), if for any q ∈ Q, c ∈ C , r ∈ R:

i f q · F = cr · F, then sgn(c) = 1. (22)

II. We first apply part I to the case where f (©) ≥ 0. Let k := � f (©)� + 1, and consider
the partition λ := (8, 8, . . . , 8) of 8k. Then, by (17),

μλ(x) =
k−1∏

i=0

(x − i)(x − i + 2)(x − i + 4)(x − i + 6). (23)

We give a Young tableau associated to λ that will yield (22). This implies that |Q|μλ(x) is an
eigenvalue of AQ(x). So μλ( f (©)) ≥ 0. Hence, as the polynomial μλ(x) has largest zero
k − 1, with multiplicity 1, and as k − 1 = � f (©)�, we know f (©) = k − 1.

Consider the following Young tableau associated to λ:

T :=

1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8
...

...
...

...
...

...
...

...

4k−3 4k−3 4k−2 4k−2 4k−1 4k−1 4k 4k

. (24)

To prove (22), choose q ∈ Q, c ∈ C , and r ∈ R with q · F = cr · F . Let c = c1 · · · c8
with ci ∈ Ci (i = 1, . . . , 8) and define M := q · F . Since F has no edges between
X := K1 ∪ K2 ∪ K5 ∪ K6 (the set of odd numbers in T ) and Y := K3 ∪ K4 ∪ K7 ∪ K8

(the set of even numbers in T ) and since Q · X = X and Q · Y = Y , we know that M has
no edges between X and Y . For any N ∈ M and Z ⊆ [8k], let NZ be the set of edges of N
contained in Z .

Let z ∈ S8k be defined by z(i) := i +1 if 4 does not divide i and z(i) := i −3 if 4 divides
i . So z4 = id , z(X) = Y , and z · F = F . Moreover, zq = qz (since zb = bz and zd = dz
for all b ∈ B and d ∈ D). So z · M = M . Hence z · MX = MY .
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Let N := r · F . So M = c · N . As no edge of M connects X and Y , also no edge in N
connects X and Y . Moreover, as z · MX = MY , for each two columns Ki and K j in X , we
have |MKi ∪K j | = |MKi+2∪K j+2 |, and hence |NKi ∪K j | = |NKi+2∪K j+2 |. Moreover, if an edge
e ∈ N connects Ki and K j , then N has an edge in the same row as e connecting the other
two columns in X ; similarly for Y .

This implies that there exists a permutation c′ ∈ C1C2C5C6 that permutes complete rows
in X in such a way that c′ · NX is a shift of NY ; that is, zc′ · NX = NY . As c′ maintains rows in
X , there exists r ′ ∈ R with c′ · N = r ′ · F ; so c(c′)−1r ′ · F = cr · F . Moreover, sgn(c′) = 1,
and, setting N ′ := r ′ · F we have z · N ′

X = z ·(r ′ · F)X = z ·(c′ · N )X = zc′ · NX = NY = N ′
Y .

Therefore, by replacing r by r ′ and c by c(c′)−1 we can assume that z · NX = NY .
Next consider any two columns Ki and K j in X . Let X ′ := Ki ∪ K j and Y ′ := Ki+2 ∪

K j+2. So Y ′ = z(X ′) and z · NX ′ = NY ′ . Then e �→ z−1c−1zc(e) is a permutation σ of
the edges e in NX ′ , since e ∈ NX ′ ⇒ c(e) ∈ MX ′ ⇒ zc(e) ∈ MY ′ ⇒ c−1zc(e) ∈ NY ′ ⇒
z−1c−1zc(e) ∈ z−1 · NY ′ = NX ′ . As σ permutes edges in X ′, there exists a permutation
c′ ∈ Ci C j such that c′(e) = z−1c−1zc(e) for all e ∈ NX ′ and such that c′ only permutes
elements covered by NX ′ . Then sgn(c′) = 1. By replacing c by c(c′)−1 we attain that
e = z−1c−1zc(e) for all edges e ∈ NX ′ . So cz(e) = zc(e) for all e ∈ NX ′ .

Doing this for all Ki and K j in X , we finally achieve that cz(e) = zc(e) for all e ∈ NX .
As NX is a perfect matching on X , this implies cz(i) = zc(i) for all i ∈ X . Equivalently,
c3c4c7c8z(i) = zc1c2c5c6(i) for all i ∈ X . Hence sgn(c3c4c7c8) = sgn(c1c2c5c6), implying
sgn(c) = 1.
III. Next we apply part I of this proof to the case where f (©) ≤ 0. Choose k ∈ Z+, and
consider the partition λ := (8k) of 8k and the following Young tableau

T := 1 1 2 2 · · · 4k−1 4k−1 4k 4k . (25)

Then by (17),

μλ(x) =
4k∏

b=1

(x − 2 + 2b). (26)

Moreover, (22) trivially holds, as C only consists of the identity. The zeros of μλ are −8k +
2,−8k + 4,−8k + 6, . . . ,−2, 0, all with multiplicity 1, so that μλ( f (©)) ≥ 0 implies that
f (©) does not belong to any interval (−4t − 2,−4t) for any t ∈ Z+ with t < 2k. As k can
be chosen arbitrarily large, we know that f (©) /∈ (−4t − 2,−4t) for all t ∈ Z+.

To exclude the intervals (−4t − 4,−4t − 2), consider the partition λ := (8k − 2, 2) of
8k and the Young tableau

T := 1 1 3 3 4 4 · · · 4k−1 4k−1 4k 4k

2 2
. (27)

In this case, by (17),

μλ(x) = (x − 1)
4k−1∏

b=1

(x − 2 + 2b). (28)

To show (22), let c = c1c2 with c1 ∈ C1, c2 ∈ C2. Observe that M := q · F contains no
edges connecting an odd number with an even number (as F does not, and as Q maintains
the sets of odd and even numbers).

If {2, 2} belongs to M , then either c1 and c2 both are the identity permutation, or c1 and
c2 both are transpositions. In either case, sgn(c) = 1 follows.
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If {2, 2} does not belong to M , then 2 and 2 are matched in M to even numbers in the first
row of T . In this case, both c1 and c2 are transpositions, and again sgn(c) = 1 follows. This
proves (22).

Now the zeros of μλ are −8k + 4,−8k + 6, . . . ,−2, 0, 1, all with multiplicity 1, so that,
like above, f (©) /∈ (−4t − 4,−4t − 2) for all t ∈ Z+. ��

4 Proof of the theorem

To see necessity in the theorem, let R be an R-matrix, say R ∈ Rn . Then fR is trivially
multiplicative. Positive semidefiniteness of M fR ,k follows from

(29)

using (12).
To prove sufficiency, let f satisfy the conditions of the theorem. As f (©) ≥ 0 by

assumption, the lemma implies that n := f (©) is a nonnegative integer. Then

there exists an algebra homomorphism F : pn(RG) → R such that f = F ◦ pn . (30)

Otherwise, as f and pn are algebra homomorphisms, there exists a quantum virtual link
diagram γ with pn(γ ) = 0 and f (γ ) �= 0. We can assume that pn(γ ) is homogeneous, that

is, all virtual link diagrams in γ have the same number of crossings, k say. So has
no crossings, that is, it is a polynomial in ©. As moreover f (©) = n = pn(©), we have

, the latter equality because of (12). Similarly to Lemma 1 of

[9], γ belongs to the ideal in RG generated by (i = 0, . . . , k), where β is the virtual
link diagram

(31)

(Note that for each virtual link diagram G.) As

implies that for each i (by the weak reflection positivity of f ), we know
f (γ ) = 0, proving (30).
Now, by (13), pn(RG) = O(Rn)O(n). Basic invariant theory then gives the existence of

an R in the complex extension of Rn such that F(q) = q(R) for each q ∈ O(Rn)O(n) (cf.
[9]). To prove that we can take R real, we apply the Procesi–Schwarz theorem [8].

For all G, H ∈ G, using (12):

(32)

Since M f,1 is positive semidefinite, (32) implies F(〈dq, dq〉) ≥ 0 for each q ∈ pn(RG) =
O(Rn)O(n). Then by [8] there exists a (real) R ∈ Rn such that F(q) = q(R) for each
q ∈ O(Rn)O(n) = pn(RG). Then f = fR , as f (G) = F(pn(G)) = pn(G)(R) = fR(G)

for each G ∈ G.
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One may finally check that substituting f := fR in (9), condition (9) (i) is equivalent to

∑

i, j

(
∑

a

Riaaj − δi j

)2

= 0, (33)

and hence to (6) (i); condition (9) (ii) is equivalent to

∑

i, j,k,l

⎛

⎝
∑

a,b

Ri jab Ralkb − δikδ jl

⎞

⎠
2

= 0, (34)

and hence to (6) (ii); and condition (9) (iii) is equivalent to

∑

i, j,k,l,m,h

⎛

⎝
∑

a,b,c

Riabh R jkca Rbclm −
∑

a,b,c

Ri jbc Rbkla Rcamh

⎞

⎠
2

= 0, (35)

and hence to (6) (iii). So R is an R-matrix, as required. ��

References

1. Freedman, M.H., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphisms
of graphs. J. Am. Math. Soc. 20, 37–51 (2007)

2. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Springer, Dordrecht (2009)
3. Hanlon, P., Wales, D.: On the decomposition of Brauer’s centralizer algebras. J. Algebra 121, 409–445

(1989)
4. de la Harpe, P., Jones, V.F.R.: Graph invariants related to statistical mechanical models: examples and

problems. J. Comb. Theory Ser. B 57, 207–227 (1993)
5. Kauffman, L.H.: Virtual knot theory. Eur. J. Comb. 20, 663–690 (1999)
6. Kauffman, L.H.: Introduction to virtual knot theory. J. Knot Theory Ramif. 21, 1240007 (2012)
7. Manturov, V.O., Ilyutko, D.P.: Virtual Knots—The State of the Art. World Scientific, River Edge (2013)
8. Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math. 81, 539–554 (1985)
9. Regts, G., Schrijver, A., Sevenster, B.: On partition functions for 3-graphs. J. Combin. Theory Ser. B.

121, 421–431 (2016)
10. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Func-

tions. Graduate Texts in Mathematics, vol. 203. Springer, New York (2001)
11. Schrijver, A.: On virtual link invariants (2012). arXiv:1211.3572
12. Szegedy, B.: Edge coloring models and reflection positivity. J. Am. Math. Soc. 20, 969–988 (2007)

123

http://arxiv.org/abs/1211.3572

	On the existence of real R-matrices for virtual link invariants
	Abstract
	1 Introduction
	2 The algebra homomorphism pn:mathbbRcalGtocalO(calRn)
	3 The value of f on 
	4 Proof of the theorem
	References




