Graph parameters and semigroup
functions
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Abstract. We prove a general theorem on semigroup functions that implies char-
acterizations of graph partition functions in terms of the positive semidefiniteness
(‘reflection positivity’) and rank of certain derived matrices. The theorem applies
to undirected and directed graphs and to hypergraphs.

1. Introduction

Let G be the collection of all undirected graphs. (In this paper, (undirected
or directed) graphs may have multiple edges, but no loops. Simple graphs
have no multiple edges.) A graph parameter f : G — R is called a partition
function (or a graph homomorphism function) if there exists a k € Z4, a
vector a € R¥ | and a symmetric matrix 5 € R*¥** such that for each G € G:

(1) H&) =fap(@ = > (] @) I Botwsw)-

¢ VG—[k] veVG weEG

Here, as usual,

2) k] = {1,....k}

for any integer k.

Partition functions arise in statistical mechanics. Here [k] is considered
as a set of states, and any function ¢ : VG — [k] as a configuration that G
may adopt. Then In «; can be considered as the external energy if a vertex
is in state 4. If >, a; = 1, o can alternatively be seen as the probability
that a vertex is in state 7. Moreover, In 3; ; may represent the contribution
of two adjacent vertices in states ¢ and j to the energy. Then f, 3(G) is the
partition function of the model.
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If a; = 1 for each ¢ and 3 is the adjacency matrix of a graph H, then
fa,8(G) is equal to the number of homomorphisms G — H. If we take
for H the complete graph on k vertices, f, 3(G) is the number of proper
k-colourings of the vertices of G.

Freedman, Lovéasz, and Schrijver [4] characterized partition functions,
among all graph parameters, by the ‘reflection positivity’ and ‘rank con-
nectivity’ of f (see Corollary 1). In that same paper examples of graph
parameters are mentioned where these conditions were first observed and
this lead to a representation as a partition function (an example is the
number of nowhere-zero k-flows). So such a theorem may reveal a ‘hidden
structure’ behind a graph parameter (or of a physical quantity in statistical
mechanics).

The proof technique of [4] can be extended to include related structures
like directed graphs and hypergraphs. It amounts to a general theorem on
semigroup functions, which is the content of this paper. In Section 11 we
describe applications to graphs and hypergraphs.

Our theorem relates to results of Lindahl and Maserick [5], Berg, Chris-
tensen, and Ressel [1], and Berg and Maserick [3] (cf. the book of Berg, Chris-
tensen, and Ressel [2]) characterizing ‘positive definite’ semigroup functions.
We describe this relation in Section 2.

2. Positive semidefinite *-semigroup functions

A natural general setting for our results is functions on *-semigroups. A -
semigroup is a semigroup S with a ‘conjugation’ s +— s* such that (s*)* = s
and (st)* = t*s* for all s,t € S. Note that each commutative semigroup S
can be turned into a *-semigroup by defining s* := s for each s € S (we
say in this case that * is trivial). A *x-automorphism is an automorphism
p: S — S such that p(s*) = p(s)* for all s € S.

A x-semicharacter is a function h : S — C such that f(s*) = f(s) and
f(st) = f(s)f(t). The set of all x-semicharacters is denoted by S*. We can
equip S* with the topology of pointwise convergence.

Let f be any function f: S — C such that f(s*) = f(s) for each s € S.
We define the S x S matrix M(f) by

(3) M(f)ss = f(s™)

for s,t € S. Clearly this matrix is Hermitian. The function f: S — C is
called x-definite if M (f) is positive semidefinite.



It can be checked easily that each x-semicharacter is positive definite.
Under certain conditions, all positive definite functions on S can be obtained
from *-semicharacters as follows ([5], [1], and [3] (cf. [2])).

(4) Let f: S — C. Then there exists a Radon measure p on S* with
compact support such that

f= /S xdp(x)

if and only if f is *-definite and is exponentially bounded — this
means that there exists a function |.| : S — Ry satisfying [1| =1,
|st] < |s||t], |s*| = |s|, and |f(s)] < |s| for all s,t € S.

It is also known [1] that
(5) (6)  If My has finite rank k, then y is a sum of k£ Dirac measures.

Our results can be considered as refining this representation (in many
cases, giving such a representation with a finite description), at the cost
of introducing additional structure of the semigroup. We’'ll also show in
Section 2 that (6) follows from our results.

3. Carriers

Let Z be a countable set and let F' denote the x-semigroup of finite subsets
of F' with the operation of union and trivial *.

A commutative x-semigroup S is called a x-semigroup with carrier if F
is a homomorphism retract of S, and every automorphism of F' lifts to an
automorphism of S. In this case, F' is a subsemigroup of S and there is a
surjective homomorphism C' : S — F such that C' |p= idp. We call C' a
carrier for S.

In more direct terms, a carrier for S is a function C': S — F such that

(7) (i) C(s*) = C(s) for each s € S,
(ii) C(st) = C(s) UC(t) for all s,t € S.

Furthermore,



(8) for each U € F there exists an element ey € S such that C'(ey) =
U and eys = s for each s € S with U C C(s).

In particular, ey is a unit of S. Note that ey is unique, that eyew = epuw,
and that ef; = ey for all U, W € F. (By condition (9), it suffices to require
(8) for U = ) and U = {1} only.)

For each bijection 7 : Z — Z there exists a x-automorphism 7: S — S
such that

(9) (i) C(7(s)) = w(C(s)) for each s € S,
(ii) 7 o’ = 7 o @’ for all bijections m,7": Z — Z.

(iii) idy = idg.

We call the automorphisms 7 relabelings.

Condition (9) says that the sets C'(s) by themselves are not essential, but
rather serve as a ‘carrier’ carrying the ‘structure’ s (like the set of vertices
carrying a graph).

4. Examples

We give some examples that will serve as illustration and motivation for our
results.

Example 1. Let G be the collection of all finite undirected graphs G with
VG C Z. For G,G' € G, define GG' := (VG U VG, EG U EG’), where
EG U EG' takes multiplicities into account. Let G* := G and C(G) := VG
for each G € G. Then G is a *-semigroup with carrier. We obtain another
example if we restrict G to simple graphs, and we do not take multiplicities
into account when forming the union of EG and EG'.

Example 2. Let G be the collection of all finite directed graphs G with
VG C Z. For G,G" € G, define GG' := (VGU VG, EG U EG'"), where
EG U EG' takes multiplicities into account. Let G* := G and C(G) := VG
for each G € G. With these operations, G is a *-semigroup with carrier as
above.

Example 3. Let G be the collection of all finite directed graphs G with
VG C Z. For G,G" € G, define GG' := (VGU VG, EG U EG'), where
EG U EG' takes multiplicities into account. Let G* := G~! (the directed
graph obtained by reversing all arc directions) and C(G) := VG for each



G € G. With these operations, G is a *-semigroup with carrier, and with a
nontrivial x-operation.

Example 4. Let ‘H be the collection of all finite m-uniform hypergraphs H
with VH C Z (for some fixed natural number m). For H, H' € H, define
HH':=(VHUVH'EHUEH'), where EH U EH' takes multiplicities into
account. Let H* := H and C(H) := VH for each H € H. Then H is a
x-semigroup with carrier.

Example 5. Let H be the collection of all finite hypergraphs H with
VH C Z. For H/H' € H, define HH' := (VHUVH',EH U EH'), where
EHUEFEH' takes multiplicities into account. Let H* := H and C(H) := VH
for each H € H. Then H is a *-semigroup with carrier.

Example 6. In the previous examples, the carrier C' meant the “underlying
set” of the structures; let us describe an example where it does not. In
[4] partially labeled graphs were considered: graphs where a subset of the
nodes are labeled by distinct integers, while the rest of the nodes were left
unlabeled. The product of two partially labeled graphs is obtained by taking
the disjoint union and then identifying nodes with the same label. Let C(G)
denote the set of labels occurring in the partially labeled graph G. Then
partially labeled graphs form a x-semigroup with carrier.

5. Unlabeling

Example 6 above motivates the following additional structure. Consider a *-
semigroup S with a carrier function C. For each U € F, the elements s € S
with C(s) = U form a subsemigroup with identity, which we denote by Si;
similarly, the elements s with C'(s) C U and C(s) D U form subsemigroups
Sy and Sl';, respectively.

An unlabeling operator is a family of maps Ay : S — § (U € F), such
that for all s € S the following relations hold:

(10)

i Avnv (s).
(v) If C(s) N C(t) C U, then \y(st) = Ay(s)Au(t).
(vi) If 7 is any permutation of Z, then w(Ay(s)) = Az 1) (7(s))-

(All these properties are trivial if S is the x-semigroup of partially labeled



graphs (digraphs, hypergraphs etc.), and Ay is the operation of deleting the
labels outside U.)

6. State models

Let S be a x-semigroup with carrier C': S — F. Let k € Z,. A state model
with k states is a pair (o, 3), where o : [k] — Ry and B: S x [k]? — C
such that

(11) (i) B(., ®) is a *-semicharacter for every ¢ € [k]%,
(i) if @lc(s) = Ylo(s), then 5(s,¢) = B(s,¢) (in other words, (s, ¢)

is determined by the restriction of ¢ to C(s)),
(iii) B(7(s), ) = B(s,pom) for each s € S, bijection 7: Z — Z, and
¢ Z — [k] (in other words, (s, ¢) only depends on the states

of the elements in C(s), not on their names).

We occasionnally write G4(¢) for 5(s, ¢).

The conditions (11) imply that a state model is fully determined by «
and by the G5 for any set of semigroup elements s that generate 5, taking
relabeling and conjugation into account. Furthermore, for every s we only
need to specify a finite number of values to specify the function 3; therefore,
we may also denote 3(s, @) by 8(s, 1), where 1 = ¢ ().

With any state model («, 3) we associate the following function fo 5 : S —
C, which we call the value of the state model (o, 3):

(12) fap(s) = > (Il sw)B(s.9)

¢: C(s)—k] vel(s)

for s € S. We could rewrite this as
13 fasl)= [ Bls.0)de”,
¢ Z—k]

where aZ is the measure on the Borel sets in [k]? defined by a.

For instance, in Examples 1-3 above, any state model is determined by
a and by ((K3,.) for the two-vertex graph K with one edge. Note that in
that case B(K3,.) is essentially a matrix. (All other graphs can be obtained
from K by relabeling and multiplication in the semigroup.)



Similarly, in Example 4, any state model is determined by a and by G
for the m-vertex hypergraph H,, with one edge of size m. In Example 5, we
need to specify Gg,, for each m.

Example 6 is much worse: since to generate S we need to use all con-
nected partially labeled graphs in which the labeled nodes do not form a
cutset, we need to specify the values (s, @) for all these graphs. But we
can use the unlabeling to make the definition more restrictive.

Suppose that our *-semigroup with carrier admits unlabeling too. Let
s€ S, xeC(s),and ¢ : C(s)\z — [k]. Let ¢; denote the extension of ¢
to C(s) that maps = to i € [k]. Then we require

1€[k]

For such a state model, the value of the model can be computed easily, using
(14), by

(15) f(s) = B(Xo(s),0)

(where () is considered as the unique map of () into [k]). So in this case,
can be considered as an extension of f.

We may interpret state models and their values as follows. We can con-
sider the elements of S as ‘systems’, where C'(s) is the set of ‘particles’. The
set [k] is a set of possible states of a particle, and any function ¢ : C(s) — [k]
is a configuration that the system s may adopt. The value In (s, ¢) might
represent the energy when system s is in configuration ¢. The logarithms
of the a; may represent the external energy of a particle when it is in state
i. Then f(s) is the partition function. If the o; add up to 1, they can al-
ternatively be considered as probabilities, and then Hve(]( 5) Qg(v) gives the
probability that the system is in configuration ¢.

7. Characterization of functions with a state model

Let S be a #-semigroup with carrier C. We want to characterize which
functions f are values of a state model with k states, in terms of the positive
semidefiniteness and rank of certain submatrices M,, of M(f).

We say that a function f : S — C is invariant under relabeling if it
satisfies



(16) f(@(s)) = f(s)

for each bijection m: Z — Z and each s € S. We say that it is *-covariant,
if

(17) f(s%) = f(s)

for each s € S.

Suppose that f is invariant under relabeling. For n € N, fix an n-element
subset Z,,. For notational convenience, set .S,, := S}n. Let M, be the S, x .S,
matrix defined as follows. For s,t € S,,, consider a bijection 7 : Z — Z
such that

(18) (i) (i) =i for i € Z,,
(if) 7(C(s)) N C(t) = Zp.

Then define

(19) Mn(s,t) := f(7(s)").

Note that since f is invariant under relabeling, M,(s,t) is independent of
the choice of 7.

Theorem 1. Let S be a x-semigroup with carrier C, let f : S — C, and
k€ Zy. Then f = fopg for some state model (o, 3) with k states if and only
if f=0or f(eg) =1, f is x-covariant, invariant under relabeling, and for
each n, M, is positive semidefinite and has rank at most k™.

We’ll derive Theorem 1 from the following, which characterizes state
models in the presence of unlabeling. This is best formulated for normalized
state models, which are state models (o, 3) with Y oy = 1. If S is a »
semigroup with carrier C' and unlabeling operator A\, we say that a function
f: S — Cis invariant under unlabeling if f(Ays) = f(s) for each s € §
and U € F.

Theorem 2. Let S be a x-semigroup with carrier C' and unlabeling operator
Adlet f: S —C, andlet k € Zy. Then f = fop for some normalized
state model (o, ) with k states satisfying (14) if and only either f =0, or
flev) =1 (U € F), f is *-covariant and invariant under relabeling and
under unlabeling, M (f) is positive semidefinite, and the rank of M (f|Sv) is
at most kYl for every U € F.



8. Proof of necessity in Theorems 1 and 2

Let f be the value function of a state model (o, 3) on a *-semigroup with
carrier. Assume f # 0. So f(s,.) # 0 for some s. Hence ((sey,.) # 0,
and therefore 3(ey,.) Z 0. That is (as C(ep) = 0), B(eg, @) # 0, where ¢ is
the (unique) function on the empty set. By (11)(i), B(eg, ¢) = B(ep, ¢)?, so
B(eg, ») = 1. Hence f(ep) = 1.

Consider any V' € F'. Choose s,t € Sy, and choose a bijection7 : Z — Z
satisfying (18). Let s’ := 7(s*). Then

My (s,t) = f(slt) = Z ( H aqﬁ(v))ﬁ(slta ?)

¢:C(s't)—[k] veC(s't)

= Y (TI cwwm)BselCEatolCw)

¢:C(s't)—[k] UGC( 't)

Y. (Tewe) > € I ewwB ¢)

P Vok] veV ¢/:c/<‘s'>ﬂ[k] veC(s)\V
M| V=1

Y. (I aww)ste”

o c<t>~[k] veC(H)\V

%
2 H%w > I aww)ss o)
P:V—[k] veEV ¢’:§;§;')_Z[k] veC(s)\V

> (I eww)ste”)

#CW—k vEC(\V

o'V
> H%(v)) S Il avw)ssté)
$:V—[k] vEV ¢/ff|(s)j[k] veC(s)\V

(I ewwste”)

#1CW I vEC(H\V

s
Z H%(v)) Z ( H Qg (v)) (8, 9')
P:V—[k] veEV ¢’;C/'|(S)7ﬂ[k] veC(s)\V

> (I eww)Bteé").

@ O veC(t)\V
$ |V

Since the third sum is the complex conjugate of the second, this proves
that M, is positive semidefinite and has rank at most k1.



The necessity part of Theorem 2 follows similarly; the only argument to
add is that f is invariant under unlabeling, which is straightforward.

9. Reduction of Theorem 1 to Theorem 2

We may assume that f # 0. Consider the matrix My. By assumption M
has rank at most k° = 1. Since f(ey) = 1, we know that (My)1,1 = 1. So My
has rank 1. As f(s) := (My)1 s for each s € Sy, we know (by the symmetry)
that, for all s,t € S,

(20)  flst) = F(9)1(8) it C(s) N C(t) = 0
(since f(st) = f((s*)*t) = (Mo)s ¢ = (Mo)s+1(Mo)1,t = (Mo)1,6+(Mo)1,t =
FA(E) = 1(3)(1))-

Since M; is positive semidefinite, we know that for any 2 € Z, f(eq,y) =
f(e%z}) > 0. Suppose f(e;3) = 0. Then f(s) = 0 for each s with C(s) #
(). Indeed, we can assume that z € C(s), by relabeling. By the positive
semidefiniteness of M, we know that f(e%z}) = 0 implies f(sey;)) = 0,
hence f(s) = 0. Taking a; = 0 for all ¢ € [k], and Bs(¢) = f(s) for each
s € S and each ¢ : C(s) — [k] gives the required state model. So we can
assume that f(e,)) = ¢ > 0 for each z € Z (this value is independent of 2
by relabeling invariance). Then we can reset each f(s) to

(21) f(s) = f(s) /9O,

(This affects neither the condition nor the conclusion of the theorem.) In
particular, we may assume that

(22) flegy) =1

for each z € Z, and this implies by (20) that for each U € F

(23) flev) = 1.

Moreover, for each s € S and U € F"

(24) flevs) = f(s),

10



since, setting U’ := U \ C(s) and U” := U N C(s), we have f(eys) =
flevreyns) = flevrs) = flev)f(s) = f(s), using (20).

Next we show that
(25) M (f) is positive semidefinite.

Indeed, choose p € C° with finite support. Choose a U € F such that
U D C(s) for each s € S with ps # 0. Then

(26) (") ™Mp =Y Dpef(s't) = Y Bapef ((evs) (eut)) = 0,

s,tesS s,tesS

since the matrix My is positive semidefinite.

After these preparations, we can extend the semigroup with new elements
so that the unlabeling operator can be defined on the new semigroup.

Let S be the collection of all pairs (s, X) with s € S and X C C(s).
Define an equivalence relation ~ on S by

(27) (s,X) ~ (s, X') < X = X’ and thereis a bijection7: Z — Z
stabilizing all elements of X such that s’ = 7(s).

Let Sy be the set of equivalence classes, and [(s, X)] denote the equivalence
class containing (s, X). Define multiplication and conjugation on Sy by

(28) [(s, X)N[(r, Y)] := [(sm, X UY], [, X]" := [s7, X],

where we have chosen (s, X) and (r,Y) in their class in such a way that
C(s)NC(r) = XNY. This turns Sy into a *-semigroup, which still contains
the s-semigroup F' in the obvious way. Defining C([s, X]) = X we get a
carrier. Identifying any s € S with the class [(s,C(s))] (which only consists
of (s,C(s))) embeds S into Sp. Defining A7 ([s, X]) = [(s,U N X)] gives an
unlabeling operator.

Define fo([(s, X)]) := f(s) for each [s, X] € Sp; then fy is a function on
So invariant under unlabeling and satisfies the other conditions in Theorem
2. So we can represent fy as an unlabeling-conform state model with k
states. Restricting this to S, we get a representation of f.

11



10. Sufficiency in Theorem 2

Let R be the semigroup algebra of S. That is, R is the space of formal sums

(29) Zpss

sES

with ps € C for s € S and only finitely many nonzero, and with multi-
plication induced by the semigroup multiplication. We can turn R into a
x-algebra by defining

(30) (Z pss> = 21_755*-

SES seS

We will identify vectors (ps | s € S) with formal sums ) g pss. Extend f
and the Ay linearly to R.

Let M = M(f), and define
(31) N:={zeR|Mx=0}={xeR| f(xs) =0 for each s € S}.
Since M is positive semidefinite, we have that

(32) N is a x-ideal in R.

Indeed, if p € R and ¢ € N, then ((pq)*)"M(pq) = (p*p*q*)TMq = 0, so
pq € N. Moreover, if ¢ € N, then ¢* € N, since

(33) g€ N*" = f(gs) =0 for each s € S = f(¢*s) = 0 for each
s€S = q*€N.

So the quotient space A := R/N is a *-algebra with inner product
(34) (2,y) = (@) My = f(z"y).

We encode the elements of A just by elements of R, but write z = y if and
only if # —y € N. Then

(35) ey = ey

12



for each U € F, since f(eys) = f(s) = f(eps) for each s € S.
Since f(x) = f(y) if z —y € N, the function f is well defined on A. For
each p € A we have

(36) f(p) = (p,eq)-

Recall that Sy = {s € S | C(s) = V}, and let Ay be the subalgebra
of A generated by the elements of Sy . Since (by assumption) the Sy x Sy
submatrix of M has rank at most kVl, Ay has dimension at most &!V1.

The unlabeling operator can also be defined in A. For this, we have to
show that if z = y, then A\yx = Ayy. Since the operator Ay is linear, it
suffices to prove that if x = 0, then Ayx = 0. Indeed, for every t € S, using

(10)(v),

(Av(),t) = f(Au(@)t) = f(Av(Av(@)))
fQu(@)Au(t)) = f(Au(zAu(t))) = flzAu(t)) = 0.
0.

This proves that Ay (x)

Claim 1. Ay has a basis By consisting of self-adjoint idempotents with
pq = 0 for distinct p,q € By . This basis is unique.

Proof. For each ¢ € Ay define ¢, : Ay — Ay by ¢y(p) := ¢p for p € Ay.
Then the 1, are linear, and they commute. Moreover, for each g, g is
equal to the conjugate transformation of ¢, (that is, (¢4(p),r) = (p, g (7))
for all p, q,r).

Moreover, if 14 = 0, then ¢ = 0. Indeed, if 14 = 0, then gey € N, hence
(since gey =¢q) ¢ € N.

So the 1, form a space of commuting linear transformations, closed under
conjugation. Hence the v, have a common orthogonal basis of eigenvectors
D1, .,Dn, with n = dim(Ay). Then p;p; is a multiple of both p; and pj,
hence if i # j it is 0. Moreover, p? is nonzero, since otherwise 1, = 0. So
we can normalize the p; such that pf = p;. This makes the set

(37) By :={pi|i=1,...,n}
unique.
Also, p* = p for each p € By, since for each ¢ € By with ¢ # p one

has (g, p*) = (gp,ev) = 0 = (q,p). Hence p* = Ap for some nonzero A € C.
Taking squares at both sides, we see A> = A, hence A = 1. O

13



It follows that

(38) ev=>yp

pPEBy

since both terms are the unit of Ay .
So for p € By we have f(p) > 0, since

(39) fp) = {p,1) = (*,1) = (p,p) > 0.
(35) implies

(40) if V. CT then Ay C Ar.

Indeed, for each s € Sy we have s = ers € Ap.

Ay C Arp.
Define for any p:

(41) Br, ={q € Br|pq=q}.

Then for each p € By with V' C T one has

(42) p= Y, ¢

9€Br,p

So Sy C Ap, hence

Indeed, as p is in Ap, it is a linear combination of the elements of Bp, and
as it is an idempotent, it is a sum of some of the elements in B, hence of

those ¢ € By with pq = q.

For distinct p,p’ € By, one has pp’ = 0, hence Brj, N By = 0. Since
>genr 4 =1=72>,cp, p, the collection {Brj | p € By} is a partition of

Br.

Claim 2. Let T,U € F, and let V := T NU. Then for any p € By,

q € Bry, andr € Ay:

@)y,
(43) flgr) = f(p)f(p )-

14



Proof. To prove this, we may assume that r € Sy. Let m denote the orthog-
onal projection of A onto Ay. Then

(44) flar) = f(m(q)r).

To see this, observe that for each s € Sp, m(s) = Ay(s). This follows from:

(45) (s,t) = f(s"t) = f((Av(s"))t) = (Av(s),1)

for each t € Sy. So 7(s) = Ay (s), and hence, by (10), f(sr) = f(n(s)r). (In-
deed, £(sr) = FOui(s7)) = FOw(s)u(r) = FOu(s)r) = FOu(r(s)r) =
fQunr(s)r) = f(Av(s)r).) As this holds for each s € Sy, and as g € Ap
we have (44).

Moreover,

(46) m(q) = F<p-

This follows from the facts that if p’ € By with p’ # p, then <fgq§p py=0=

(q,p'), and that ( E gp, p) = f(q) = (¢,p). This proves (46), which together

with (44) gives the claim. O

For any V € F and any p € By, denote deg(p) = |Br,|, where T' is any
subset of Z with V C T and |T'\ V| = 1. Note that (by the symmetry) the
definition of deg(p) is independent of the choice of T

Claim 3. If ¢ € By, then deg(q) > deg(p).

Proof. Consider a set W O T with [W \T| = 1. Let T = V U {t} and
W = T U {u}. Define U := V U {u}. Then for each r € By, qr is
an idempotent in Ay, and it is the sum of the elements of By, N By,
Moreover, gr # 0, since (using Claim 2)

(47) flar) =

So Bw,gq N Bw, # 0 for each r € By,. Since these sets are disjoint (for
distinct r € Br)), we have
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(48) deg(q) = [Bw,q| = [Buyp| = deg(p),

proving the claim. O

This implies that deg(p) < k for each V' and p € By, since
(49) deg(p) "V < |Bry| < |Br| = dim(Ar) < k7!

foreach T D V.
So we can choose a set V € F and p € By with deg(p) maximal, and we
can assume that deg(p) = k (as the conclusion of the theorem is maintained

if we increase k). For the remainder of this proof we fix V' and p.
Let W := Z\V and, for each v € W, let

(50) BVU{U},p = {qv,la ce 7qv,k}7

choosing indices such that ¢, ; arises from ¢, ; by mapping u to v, leaving V'
invariant. For ¢ € [k], define (choosing an arbitrary v € W)

(51) Q=

This is independent of the choice of v € W. Since f(gy;) > 0 and f(p) > 0
we have o; > 0.
For any finite subset U of W and any ¢ : U — [k], consider

(52) Tg =D H Qv,¢(v)-
velU

(The factor p is superfluous if U # ().) Since rfb =rg and pry = ry, we know
that rg = qu% q for some subset Ly of Byyy,yp. Also, ry # 0, since (using
Claim 2 repeatedly)

(53) f(T¢) = f(p H QU,¢(11)) = (H ad)(v))f(p) 7£ 0.

velU velU

So 14 # 0, implying Ly # 0.
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Moreover, if ¢ # ¢, then rgrgy = 0 (since if ¢(v) # ¢'(v), then g, ¢(v)dv,¢/(v) =
0). So if ¢ # ¢/, then Ly N Ly = 0. Hence, since |Byyy,| = kY (by Claim
3), we know that |Ly| =1 for each ¢ : U — [k]. Therefore,

(54) Byuup ={re | ¢: U — [k]}.

Now, for any s € S with C(s) C W, we can express ps in the elements
of BVUC(S),]):

(55) ps= Y. Buo)re

¢:C(s)—[k]

This is possible, since for any r € Byyc(s) with 7 € Byyc(s), one has
rps = 0, since rp = 0.

By the symmetry, this definition of s extends to all s € S. We show
that the (5 satisfy (11).

To see (11)(i), we have

(56) F@F(s)=fps)=F( > Buld)ry) =

$:C(s)—[k]
S B o) = > Bld) ] cow)f®) =
$:C(s)—[k] $:C(s)—[k] veC(s)

Fo) >0 (] cww)Bs(@)

¢:C(s)—[k] veC(s)
(the first equality follows from (20), using the facts that p € Ay and that

VN C(s)=0). Since f(p) # 0, this gives (11)(i).
To see (11)(ii), first note that if ¢ : C(st) — [k], then

(57) To = To|C(s)T9|C(1)>

as follows from (52). Hence, for all s,¢ € S one has

(58) S BBICE)BIC)rs =
#:C(st)— K]

Y Bs(IC(s)BUSICE)) g0 o10) =

$:0(st)—K]
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(D Bl D Bul¢")ren) = (ps)(pt) = plst)

¢":C(s)—[K] @":C(t)— k]

(note that ryryn = 0 if ¢'|C(s) N C(t) # ¢"|C(s) N C(t)). Hence for each
¢ : C(st) — [k] one has

(59) Bst(¢) = Bs(¢1C(5))B:(4]C (1)),

which is (11)(ii). Condition (11)(iii) follows from the symmetry and unique-

ness of the O4(¢). Finally, we have s (¢) = Bs(¢) from (55), since p* = p
and T‘;; =74 |

11. Applications to graph and hypergraph param-
eters

We apply Theorem 1 to the Examples 1-5 mentioned above. First we derive
the theorem given in Freedman, Lovéasz, and Schrijver [4].

Let f be a real-valued function defined on the collection of undirected
graphs, invariant under isomorphisms. Define, for each natural number n,
the matrix My, as follows. Fix n > 0, and let G, be the set of all undirected
graphs G with VG N Z = Z,. Let My, be the G, x G,, matrix with entry
f(GUG") in position G,G’. Here, in making the union, we first make the
vertex sets of G and G’ disjoint outside Z,,.

For any integer k£ > 0, any vector a € ]R’j_, and any k X k real symmetric
matrix (3; ), define the undirected graph parameter f, g as in (1).

Corollary 1. Let f be a complex-valued undirected graph parameter and
k> 0. Then f = fop for some a € Rﬁ and some symmetric real-valued
k x k matriz (5; ;) if and only if f(Ko) =1 and, for each n, Mg, is positive
semidefinite and has rank at most k™.

Proof. Apply the theorem to the x-semigroup consisting of all undirected
graphs, with multiplication GG’ := G U G’ and conjugation G* := G.

Note that Ky and its images under automorphisms generate the x*-
semigroup, so the functions Bg are determined by the function fB,, which
can be described by a k x k matrix. The fact that (g, is real follows from
the fact that Ok, = Br; = BKz' |

The property that My, is positive semidefinite for each n is called re-
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flection positivity of f. Moreover, the property that there is an integer k
such that for each n, My, has rank at most k", is called rank connectivity
of f.

For simple graphs we obtain a similar characterization if we restrict 3 to
0,1 matrices. For a function f defined on the collection G of simple finite
undirected graphs, let (for n € N) M #n be the G x G matrix with entry
f(GUG) in position G,G’, where now wo do not take multiplicities into
account. Then we obtain:

Corollary 2. Let f be a complex-valued undirected simple graph parameter
and k > 0. Then f = fop for some a € Rﬁ and some syl?}metric kxk
0,1 matriz (8; ;) if and only if f(Ko) =1 and, for each n, My, is positive
semidefinite and has rank at most k™.

Proof. The proof is similar to that of Corollary 1. Now we have that the
graph K5 on vertices 1,2 (say) satisfies, for any ¢ : {1,2} — [k]:

(60) (BKQ (¢))2 = ﬁKz (¢)/8K2 (¢) = ﬁKzKQ (¢) = ﬁKz (¢)

Hence (g, (¢) € {0,1}. |

We next turn to directed graphs. Let f be a complex-valued function
defined on the collection of directed graphs, invariant under isomorphisms.
Define, for each natural number n, matrices My, and M fn 8S follows. Fix
n > 0, and let G, be the set of all directed graphs G with VG N Z = Z,.
For any directed graph G, let G~! be the directed graph obtained from G
by reversing all arcs. Let My, be the G, x G, matrix with entry f(GUG’)
in position G,G’. Let M}, be the G, x G,, matrix with entry f(Grua)
in position G, G’. Again, in making the union, we first make the vertex sets
of G and G disjoint outside Z,.

For any integer k > 0, any vector a € C*, and any k x k complex matrix
(Bi,j), define the directed graph function f, 3 by:

(61) fap@ = D (I ) TI Bow.ew)

¢:VG—[k] veV G (u,0)€EEG

Corollary 3. Let f be a directed graph parameter and k > 0. Then f = fo 3
for some a € Rﬁ and some real-valued k x k matriz (5;;) if and only if
f(Ko) = 1 and, for each n, My, is positive semidefinite and has rank at
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most k™.

Proof. Apply the theorem to the x-semigroup consisting of all directed
graphs, with multiplication GG’ := G U G’ and conjugation G* := G. In

this case, (3; ; is real, since ﬂsz = ﬁ@* = ﬁKB' |

Corollary 4. Let f be a directed graph parameter and k > 0. Then f = fo 3
for some a € ]R]fF and some Hermitian k x k matriz (8; ;) if and only if
f(Ko) = 1 and, for each n, M/, is positive semidefinite and has rank at
most k™.

s

Proof. Apply the theorem to the x-semigroup consisting of all directed
graphs, with multiplication GG’ := G U G’ and conjugation G* := G~ 1.

In this case we have 3;; = 3, ;, since ﬂK?Z_l = 5K~2* = ﬂ@. |

Finally we consider applying Theorem 1 to hypergraphs. Let H be the
collection of m-uniform hypergraphs and let f: H — C. Choose k € Z..
Let a: [k] — Ry and let 5 : [k]™ — R be symmetric (that is, invariant
under permuting coordinates of [k]™). Define

(62) fap(H) = > (II @) 1] Poe)

¢:VH—[k] veVH c€EH

where By (fv,,..om}) = B(@(v1), ..., d(vm)).
For any complex-valued hypergraph parameter f and any n € Z,, let

My, be the following matrix. Let H,, be the collection of hypergraphs H
with VHNZ = Z,. For H,H' € 'H,, let HU H’' be the union of H and H’,
assuming that VANV H' = Z,, and EHNEH' = () (that is, edges of H and
H' that span the same subset of VH NV H', are considered to be distinct
and give multiple edges in H U H'). Let M¢,, be the H,, x H, matrix with
(Mf,n)H,H’ = f(H U H/) for H, H' € H,.

Then (where Hp denotes the hypergraph with no vertices and edges):

Corollary 5. Let f be a complex-valued parameter on m-uniform hyper-
graphs and k > 0. Then f = fop for some o : [k] — Ry and some
symmetric § : [k]™ — R if and only if f(Ho) = 1 and for each n, the
matriz My, is positive semidefinite and has rank at most k™.

Proof. Apply the theorem to the *-semigroup consisting of all hypergraphs,
with multiplication HH' := H U H' and conjugation H* := H.
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Now the By are determined by Og,,. Moreover, Bx,. is real-valued, since

Bu,, = Bux, = By, |

We leave it to the reader to formulate the application of Theorem 1 to
Example 5.

12. Application to positive definite *-semigroup
functions

Let S be a commutative *-semigroup with unit 1. For any function f: S —
C, define the S x S matrix My by:

(63) (My)s := f(s7)

for s,t € S. The function f : S — C is called positive definite if My is
positive semidefinite. This implies that f(s*) = f(s) for each s € S, since
positive semidefiniteness of M implies that My is Hermitian.

It can be checked easily that each x-semicharacter is positive definite.
Under certain conditions, all positive definite functions on S can be obtained
from -semicharacters as follows ([5], [1], and [3] (cf. [2])).

We can equip S* with the topology of pointwise convergence. Let f :
S — C. Then there exists a Radon measure y on S* with compact support

such that
64 = xd
I

if and only if f is positive definite and is exponentially bounded — this means
that there exists a function |.| : S — R4 satisfying |1| = 1, |st| < |s||t],
|s*| = |s|, and |f(s)] < |s| for all s,t € S.

It can be shown moreover that if M; has finite rank k, then p is a sum
of k Dirac measures. This follows directly from our method of proof. But
it can also be derived from Theorem 1, as follows. Let S be a commutative
x-semigroup S with unit 1. Let

(65) S":={¢p|¢:V — S for someV € F}.

Let dom(¢) denote the domain of any function ¢. For ¢, € S, define ¢
be the function from dom(¢) Udom(y)) — S defined by ¢v(i) := ¢(i)y (i),
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taking ¢(i) or ¥(i) to be equal to 1 if it is undefined. Define a carrier
C: S5 — P(Z) by C(¢) := dom(¢) for ¢ € S’. For any function f: S — C
define f : 5" — C by f(#) := [Licdom(e) [(¢(¢)). Then My is positive
semidefinite and has rank at most k if and only if f satisfies the conditions
in Theorem 1. The conclusion then gives the characterization mentioned
above.
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