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Abstract. We prove a general theorem on semigroup functions that implies char-

acterizations of graph partition functions in terms of the positive semidefiniteness

(‘reflection positivity’) and rank of certain derived matrices. The theorem applies

to undirected and directed graphs and to hypergraphs.

1. Introduction

Let G be the collection of all undirected graphs. (In this paper, (undirected
or directed) graphs may have multiple edges, but no loops. Simple graphs
have no multiple edges.) A graph parameter f : G → R is called a partition

function (or a graph homomorphism function) if there exists a k ∈ Z+, a
vector α ∈ Rk

+, and a symmetric matrix β ∈ Rk×k such that for each G ∈ G:

(1) f(G) = fα,β(G) :=
∑

φ :V G→[k]

(
∏

v∈V G

αφ(v))(
∏

uv∈EG

βφ(u),φ(v)).

Here, as usual,

(2) [k] := {1, . . . , k}

for any integer k.
Partition functions arise in statistical mechanics. Here [k] is considered

as a set of states, and any function φ : V G→ [k] as a configuration that G
may adopt. Then lnαi can be considered as the external energy if a vertex
is in state i. If

∑
i αi = 1, αi can alternatively be seen as the probability

that a vertex is in state i. Moreover, lnβi,j may represent the contribution
of two adjacent vertices in states i and j to the energy. Then fα,β(G) is the
partition function of the model.
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If αi = 1 for each i and β is the adjacency matrix of a graph H, then
fα,β(G) is equal to the number of homomorphisms G → H. If we take
for H the complete graph on k vertices, fα,β(G) is the number of proper
k-colourings of the vertices of G.

Freedman, Lovász, and Schrijver [4] characterized partition functions,
among all graph parameters, by the ‘reflection positivity’ and ‘rank connec-
tivity’ of f (see Corollary 1). The use of such a theorem is that it may
reveal a hidden structure of a graph parameter (say, hidden dimensions in
statistical mechanics).

The proof technique of [4] can be extended to include related structures
like directed graphs and hypergraphs. It amounts to a general theorem on
semigroup functions, which is the content of this paper. In Section 11 we
describe applications to graphs and hypergraphs.

Our theorem relates to results of Lindahl and Maserick [5], Berg, Chris-
tensen, and Ressel [1], and Berg and Maserick [3] (cf. the book of Berg, Chris-
tensen, and Ressel [2]) characterizing ‘positive definite’ semigroup functions.

2. Positive semidefinite ∗-semigroup functions

A natural general setting for our results is functions on ∗-semigroups. A ∗-
semigroup is a semigroup S with a ‘conjugation’ s 7→ s∗ such that (s∗)∗ = s
and (st)∗ = t∗s∗ for all s, t ∈ S. Note that each commutative semigroup S
can be turned into a ∗-semigroup by defining s∗ := s for each s ∈ S (we
say in this case that ∗ is trivial). A ∗-automorphism is an automorphism
ρ : S → S such that ρ(s∗) = ρ(s)∗ for all s ∈ S.

A ∗-semicharacter is a function h : S → C such that f(s∗) = f(s) and
f(st) = f(s)f(t). The set of all ∗-semicharacters is denoted by S∗. We can
equip S∗ with the topology of pointwise convergence.

Let f be any function f : S → C such that f(s∗) = f(s) for each s ∈ S.
We define the S × S matrix M(f) by

(3) M(f)s,t := f(s∗t)

for s, t ∈ S. Clearly this matrix is Hermitian. The function f : S → C is
called ∗-definite if M(f) is positive semidefinite.

It can be checked easily that each ∗-semicharacter is positive definite.
Under certain conditions, all positive definite functions on S can be obtained
from ∗-semicharacters as follows ([5], [1], and [3] (cf. [2])). Let f : S → C.
Then there exists a Radon measure µ on S∗ with compact support such that
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(4) f =

∫

S∗

χdµ(χ)

if and only if f is ∗-definite and is exponentially bounded — this means that
there exists a function |.| : S → R+ satisfying |1| = 1, |st| ≤ |s||t|, |s∗| = |s|,
and |f(s)| ≤ |s| for all s, t ∈ S.

Our results can be considered as refining this representation (in many
cases, giving such a representation with a finite description), at the cost of
introducing additional structure of the semigroup.

3. Carriers

Let Z be a countable set and let F denote the ∗-semigroup of finite subsets
of F with the operation of union and trivial ∗.

A commutative ∗-semigroup S is called a ∗-semigroup with carrier if F
is a homomorphism retract of S, and every automorphism of F lifts to an
automorphism of S. So F is a subsemigroup of S and there is a surjective
homomorphism C : S → F such that C |F= idF . We call C a carrier for S.

In more direct terms, a carrier for S is a function C : S → F such that

(5) (i) C(s∗) = C(s) for each s ∈ S,
(ii) C(st) = C(s) ∪ C(t) for all s, t ∈ S.

Furthermore,

(6) for each U ∈ F there exists an element eU ∈ S such that C(eU ) =
U and eUs = s for each s ∈ S with U ⊆ C(s).

In particular, e∅ is a unit of S. Note that eU is unique, that eUeW = eU∪W ,
and that e∗U = eU for all U,W ∈ F . (By condition (7), it suffices to require
(6) for U = ∅ and U = {1} only.)

For each bijection π : Z → Z there exists a ∗-automorphism π̃ : S → S
such that

(7) (i) C(π̃(s)) = π(C(s)) for each s ∈ S,

(ii) π̃ ◦ π′ = π̃ ◦ π̃′ for all bijections π, π′ : Z → Z.
(iii) ĩdZ = idS.

We call the automorphisms π̃ relabelings.
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Condition (7) says that the sets C(s) by themselves are not essential, but
rather serve as a ‘carrier’ carrying the ‘structure’ s (like the set of vertices
carrying a graph).

4. Examples

We give some examples that will serve as illustration and motivation for our
results.

Example 1. Let G be the collection of all finite undirected graphs G with
V G ⊆ Z. For G,G′ ∈ G, define GG′ := (V G ∪ V G′, EG ∪ EG′), where
EG ∪ EG′ takes multiplicities into account. Let G∗ := G and C(G) := V G
for each G ∈ G. Then G is a ∗-semigroup with carrier. We obtain another
example if we restrict G to simple graphs, and we do not take multiplicities
into account when forming the union of EG and EG′.

Example 2. Let G be the collection of all finite directed graphs G with
V G ⊆ Z. For G,G′ ∈ G, define GG′ := (V G ∪ V G′, EG ∪ EG′), where
EG ∪ EG′ takes multiplicities into account. Let G∗ := G and C(G) := V G
for each G ∈ G. With these operations, G is a ∗-semigroup with carrier as
above.

Example 3. Let G be the collection of all finite directed graphs G with
V G ⊆ Z. For G,G′ ∈ G, define GG′ := (V G ∪ V G′, EG ∪ EG′), where
EG ∪ EG′ takes multiplicities into account. Let G∗ := G−1 (the directed
graph obtained by reversing all arc directions) and C(G) := V G for each
G ∈ G. With these operations, G is a ∗-semigroup with carrier, and with a
nontrivial ∗-operation.

Example 4. Let H be the collection of all finite m-uniform hypergraphs H
with V H ⊆ Z (for some fixed natural number m). For H,H ′ ∈ H, define
HH ′ := (V H ∪V H ′, EH ∪EH ′), where EH ∪EH ′ takes multiplicities into
account. Let H∗ := H and C(H) := V H for each H ∈ H. Then H is a
∗-semigroup with carrier.

Example 5. Let H be the collection of all finite hypergraphs H with
V H ⊆ Z. For H,H ′ ∈ H, define HH ′ := (V H ∪ V H ′, EH ∪ EH ′), where
EH∪EH ′ takes multiplicities into account. Let H∗ := H and C(H) := V H
for each H ∈ H. Then H is a ∗-semigroup with carrier.

Example 6. In the previous examples, the carrier C meant the “underlying
set” of the structures; let us describe an example where it does not. In
[4] partially labeled graphs were considered: graphs where a subset of the
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nodes are labeled by distinct integers, while the rest of the nodes were left
unlabeled. The product of two partially labeled graphs is obtained by taking
the disjoint union and then identifying nodes with the same label. Let C(G)
denote the set of labels occurring in the partially labeled graph G. Then
partially labeled graphs form a ∗-semigroup with carrier.

5. Unlabeling

Example 6 above motivates the following additional structure. Consider a ∗-
semigroup S with a carrier function C. For each U ∈ F , the elements s ∈ S
with C(s) = U form a subsemigroup with identity, which we denote by SU ;
similarly, the elements s with C(s) ⊆ U and C(s) ⊇ U form subsemigroups
S−
U and S+

U , respectively.
An unlabeling operator is a family of maps λU : S → S (U ∈ F ), such

that for all s ∈ S the following relations hold:

(8) (i) C(λU (s)) = U ∩ C(s);
(ii) λU (s∗) = (λU (s))∗;
(iii) λC(s)(s) = s.
(iv) λU (λV (s)) = λU∩V (s).
(v) If C(s) ∩ C(t) ⊆ U , then λU (st) = λU (s)λU (t).
(vi) If π is any permutation of Z, then π̃(λU (s)) = λπ(U)(π̃(s)).

(All these properties are trivial if S is the ∗-semigroup of partially labeled
graphs (digraphs, hypergraphs etc.), and λU is the operation of deleting the
labels outside U .)

6. State models

Let S be a ∗-semigroup with carrier C : S → F . Let k ∈ Z+. A state model

with k states is a pair (α, β), where α : [k] → R+ and β : S × [k]Z → C

such that

(9) (i) β(., φ) is a ∗-semicharacter for every φ ∈ [k]Z,
(ii) if φ|C(s) = ψ|C(s), then β(s, φ) = β(s, ψ) (in other words, β(s, φ)

is determined by the restriction of φ to C(s)),
(iii) β(π̃(s), φ) = β(s, φ ◦ π) for each s ∈ S, bijection π : Z → Z, and

φ : Z → [k] (in other words, β(s, φ) only depends on the states
of the elements in C(s), not on their names).
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These conditions imply that a state model is fully determined by α and
by the β(s, .) for any set of semigroup elements s that generate S, taking
relabeling and conjugation into account. Furthermore, for every s we only
need to specify a finite number of values to specify the function β(s, .);
therefore, we may also denote β(s, φ) by β(s, ψ), where ψ = φ|C(s).

With any state model (α, β) we associate the following function fα,β : S →
C, which we call the value of the state model (α, β):

(10) fα,β(s) =
∑

φ: C(s)→[k]

(
∏

v∈C(s)

αφ(v))β(s, φ)

for s ∈ S. We could rewrite this as

(11) fα,β(s) =

∫

φ: Z→[k]
β(s, φ) dαZ ,

where αZ is the measure on the Borel sets in [k]Z defined by α.
For instance, in Examples 1–3 above, any state model is determined by

α and by β(K2, .) for the two-vertex graph K2 with one edge. Note that in
that case β(K2, .) is essentially a matrix. (All other graphs can be obtained
from K2 by relabeling and multiplication in the semigroup.)

Similarly, in Example 4, any state model is determined by α and by βH
for the m-vertex hypergraph Hm with one edge of size m. In Example 5, we
need to specify βHm for each m.

Example 6 is much worse: since to generate S we need to use all con-
nected partially labeled graphs in which the labeled nodes do not form a
cutset, we need to specify the values β(s, φ) for all these graphs. But we
can use the unlabeling to make the definition more restrictive.

Suppose that our ∗-semigroup with carrier admits unlabeling too. Let
s ∈ S, x ∈ C(s), and φ : C(s) \ x → [k]. Let φi denote the extension of φ
to C(s) that maps x to i ∈ [k]. Then we require

(12) β(λC(s)\x(s), φ) =
∑

i∈[k]

α(i)β(s, φi).

For such a state model, the value of the model can be computed easily, using
(12), by

(13) f(s) = β(λ∅(s), ∅)
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(where ∅ is considered as the unique map of ∅ into [k]). So in this case, β
can be considered as an extension of f .

We may interpret state models and their values as follows. We can con-
sider the elements of S as ‘systems’, where C(s) is the set of ‘particles’. The
set [k] is a set of possible states of a particle, and any function φ : C(s) → [k]
is a configuration that the system s may adopt. The value lnβ(s, φ) might
represent the energy when system s is in configuration φ. The logarithms
of the αi may represent the external energy of a particle when it is in state
i. Then f(s) is the partition function. If the αi add up to 1, they can al-
ternatively be considered as probabilities, and then

∏
v∈C(s) αφ(v) gives the

probability that the system is in configuration φ.

7. Characterization of functions with a state model

Let S be a ∗-semigroup with carrier C. We want to characterize which
functions f are values of a state model with k states, in terms of the positive
semidefiniteness and rank of certain submatrices Mn of M(f).

We say that a function f : S → C is invariant under relabeling if it
satisfies

(14) f(π̃(s)) = f(s)

for each bijection π : Z → Z and each s ∈ S. We say that it is ∗-covariant,
if

(15) f(s∗) = f(s)

for each s ∈ S.
Suppose that f is invariant under relabeling. For n ∈ N, fix an n-element

subset Zn. For notational convenience, set Sn := S+
Zn

. LetMn be the Sn×Sn
matrix defined as follows. For s, t ∈ Sn, consider a bijection π : Z → Z
such that

(16) (i) π(i) = i for i ∈ Zn,
(ii) π(C(s)) ∩ C(t) = Zn.

Then define

(17) Mn(s, t) := f(π̃(s)∗t).
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Note that since f is invariant under relabeling, Mn(s, t) is independent of
the choice of π.

Theorem 1. Let S be a ∗-semigroup with carrier C, let f : S → C, and

k ∈ Z+. Then f = fα,β for some state model (α, β) with k states if and only

if f ≡ 0 or f(e∅) = 1, f is ∗-covariant, invariant under relabeling, and for

each n, Mn is positive semidefinite and has rank at most kn.
We’ll derive Theorem 1 from the following, which characterizes state

models in the presence of unlabeling. This is best formulated for normalized

state models, which are state models (α, β) with
∑

i αi = 1. If S is a ∗-
semigroup with carrier C and unlabeling operator λ, we say that a function
f : S → C is invariant under unlabeling if f(λUs) = f(s) for each s ∈ S
and U ∈ F .

Theorem 2. Let S be a ∗-semigroup with carrier C and unlabeling operator

λ, let f : S → C, and let k ∈ Z+. Then f = fα,β for some normalized

state model (α, β) with k states satisfying (12) if and only either f ≡ 0, or

f(eU ) = 1 (U ∈ F ), f is ∗-covariant and invariant under relabeling and

under unlabeling, M(f) is positive semidefinite, and the rank of M(f |SU ) is

at most k|U | for every U ∈ F .

8. Proof of necessity in Theorems 1 and 2

Let f be the value function of a state model (α, β) on a ∗-semigroup with
carrier. Assume f 6≡ 0. So β(s, .) 6≡ 0 for some s. Hence β(se∅, .) 6≡ 0,
and therefore β(e∅, .) 6≡ 0. That is (as C(e∅) = ∅), β(e∅, φ) 6= 0, where φ is
the (unique) function on the empty set. By (9)(ii), β(e∅, φ) = β(e∅, φ)2, so
β(e∅, φ) = 1. Hence f(e∅) = 1.

Consider any V ∈ F . Choose s, t ∈ Sn, and choose a bijection π : Z → Z
satisfying (16). Let s′ := π̃(s∗). Then

(18) Mn(s, t) = f(s′t) =
∑

φ:C(s′t)→[k]

(
∏

v∈C(s′t)

αφ(v))β(s′t, φ) =

∑

φ:C(s′t)→[k]

(
∏

v∈C(s′t)

αφ(v))β(s′, φ|C(s′))β(t, φ|C(t)) =

∑

ψ: V→[k]

(
∏

v∈V

αψ(v))
∑

φ′:C(s′)→[k]

φ′|V=ψ

(
∏

v∈C(s′)\V

αφ′(v))β(s′, φ′)·
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·
∑

φ′′:C(t)→[k]

φ′′|V=ψ

(
∏

v∈C(t)\V

αφ′′(v))β(t, φ′′) =

∑

ψ:V→[k]

(
∏

v∈V

αψ(v))
∑

φ′:C(s′)→[k]

φ′|V=ψ

(
∏

v∈C(s′)\V

αφ′(v))β(s′, φ′)·

·
∑

φ′′:C(t)→[k]

φ′′|V=ψ

(
∏

v∈C(t)\V

αφ′′(v))β(t, φ′′) =

∑

ψ:V→[k]

(
∏

v∈V

αψ(v))
∑

φ′:C(s)→[k]

φ′|V=ψ

(
∏

v∈C(s)\V

αφ′(v))β(s∗, φ′)·

·
∑

φ′′:C(t)→[k]

φ′′|V=ψ

(
∏

v∈C(t)\V

αφ′′(v))β(t, φ′′) =

∑

ψ:V→[k]

(
∏

v∈V

αψ(v))
∑

φ′:C(s)→[k]

φ′|V=ψ

(
∏

v∈C(s)\V

αφ′(v))β(s, φ′)·

·
∑

φ′′:C(t)→[k]

φ′′|V=ψ

(
∏

v∈C(t)\V

αφ′′(v))β(t, φ′′).

Since the third sum is the complex conjugate of the second, this proves
that Mn is positive semidefinite and has rank at most k|V |.

The necessity part of Theorem 2 follows similarly; the only argument to
add is that f is invariant under unlabeling, which is straightforward.

9. Reduction of Theorem 1 to Theorem 2

We may assume that f 6≡ 0. Consider the matrix M0. By assumption M0

has rank at most k0 = 1. Since f(e∅) = 1, we know that (M0)1,1 = 1. So M0

has rank 1. As f(s) := (M0)1,s for each s ∈ S0, we know (by the symmetry)
that, for all s, t ∈ S,

(19) f(st) = f(s)f(t) if C(s) ∩ C(t) = ∅

(since f(st) = f((s∗)∗t) = (M0)s∗,t = (M0)s∗,1(M0)1,t = (M0)1,s∗(M0)1,t =

f(s∗)f(t) = f(s)f(t)).
Since M1 is positive semidefinite, we know that for any z ∈ Z, f(e{z}) =

f(e2{z}) ≥ 0. Suppose f(e{z}) = 0. Then f(s) = 0 for each s with C(s) 6=

∅. Indeed, we can assume that z ∈ C(s), by relabeling. By the positive
semidefiniteness of M1, we know that f(e2{z}) = 0 implies f(se{z}) = 0,
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hence f(s) = 0. Taking αi = 0 for all i ∈ [k], and βs(φ) = f(s) for each
s ∈ S and each φ : C(s) → [k] gives the required state model. So we can
assume that f(e{z}) = c > 0 for each z ∈ Z (this value is independent of z
by relabeling invariance). Then we can reset each f(s) to

(20) f(s) := f(s)/c|C(s)|.

(This affects neither the condition nor the conclusion of the theorem.) In
particular, we may assume that

(21) f(e{z}) = 1

for each z ∈ Z, and this implies by (19) that for each U ∈ F :

(22) f(eU ) = 1.

Moreover, for each s ∈ S and U ∈ F :

(23) f(eUs) = f(s),

since, setting U ′ := U \ C(s) and U ′′ := U ∩ C(s), we have f(eUs) =
f(eU ′eU ′′s) = f(eU ′s) = f(eU ′)f(s) = f(s), using (19).

Next we show that

(24) M(f) is positive semidefinite.

Indeed, choose p ∈ CS with finite support. Choose a U ∈ F such that
U ⊇ C(s) for each s ∈ S with ps 6= 0. Then

(25) (p∗)TMp =
∑

s,t∈S

psptf(s∗t) =
∑

s,t∈S

psptf((eUs)
∗(eU t)) ≥ 0,

since the matrix M|U | is positive semidefinite.
After these preparations, we can extend the semigroup with new elements

so that the unlabeling operator can be defined on the new semigroup.
Let S be the collection of all pairs (s,X) with s ∈ S and X ⊆ C(s).

Define an equivalence relation ∼ on S by

(26) (s,X) ∼ (s′,X ′) ⇐⇒ X = X ′ and there is a bijection π : Z → Z
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stabilizing all elements of X such that s′ = π̃(s).

Let S0 be the set of equivalence classes, and [(s,X)] denote the equivalence
class containing (s,X). Define multiplication and conjugation on S0 by

(27) [(s,X)][(r, Y )] := [(sr,X ∪ Y )], [s,X]∗ := [s∗,X],

where we have chosen (s,X) and (r, Y ) in their class in such a way that
C(s)∩C(r) = X ∩Y . This turns S0 into a ∗-semigroup, which still contains
the ∗-semigroup F in the obvious way. Defining C([s,X]) = X we get a
carrier. Identifying any s ∈ S with the class [(s, C(s))] (which only consists
of (s, C(s))) embeds S into S0. Defining λU ([s,X]) = [(s, U ∩X)] gives an
unlabeling operator.

Define f0([(s,X)]) := f(s) for each [s,X] ∈ S0; then f0 is a function on
S0 invariant under unlabeling and satisfies the other conditions in Theorem
1. So we can represent f0 as an unlabeling-conform state model with k
states. Restricting this to S, we get a representation of f .

10. Sufficiency in Theorem 2

Let R be the semigroup algebra of S. That is, R is the space of formal sums

(28)
∑

s∈S

pss

with ps ∈ C for s ∈ S and only finitely many nonzero, and with multi-
plication induced by the semigroup multiplication. We can turn R into a
∗-algebra by defining

(29)

(
∑

s∈S

pss

)∗

:=
∑

s∈S

pss
∗.

We will identify vectors (ps | s ∈ S) with formal sums
∑

s∈S pss. Extend f
linearly to R.

Let M = M(f), and define

(30) N := {x ∈ R |Mx = 0} = {x ∈ R | f(xs) = 0 for each s ∈ S}.
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Since M is positive semidefinite, we have that

(31) N is a ∗-ideal in R.

Indeed, if p ∈ R and q ∈ N , then ((pq)∗)TM(pq) = (p∗p∗q∗)TMq = 0, so
pq ∈ N . Moreover, if q ∈ N , then q∗ ∈ N , since

(32) q ∈ N∗ =⇒ f(qs) = 0 for each s ∈ S =⇒ f(q∗s) = 0 for each
s ∈ S =⇒ q∗ ∈ N.

So the quotient space A := R/N is a ∗-algebra with inner product

(33) 〈x, y〉 := (x)TMy = f(x∗y).

We encode the elements of A just by elements of R, but write x ≡ y if and
only if x− y ∈ N . Then

(34) eU ≡ e∅

for each U ∈ F , since f(eUs) = f(s) = f(e∅s) for each s ∈ S.
Since f(p) = 0 if p ∈ N , the function f can be extended linearly to A.

For each p ∈ A we have

(35) f(p) = 〈p, e∅〉.

Recall that SV = {s ∈ S | C(s) = V }, and let AV be the subalgebra
of A generated by the elements of SV . Since (by assumption) the SV × SV
submatrix of M has rank at most k|V |, AV has dimension at most k|V |.

The unlabeling operator is also well defined in A. Indeed, we know that
s ≡ seU , and so if

∑

s

αss ≡ 0,

then for every t ∈ SU
∑

s

αsseU t ≡ 0,

and hence
(∑

s

αsseU

)
t =≡ 0
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Claim 1. AV has a basis BV consisting of self-adjoint idempotents with

pq = 0 for distinct p, q ∈ BV . This basis is unique.

Proof. For each q ∈ AV define ψq : AV → AV by ψq(p) := qp for p ∈ AV .
Then the ψq are linear, and they commute. Moreover, for each q, ψq∗ is
equal to the conjugate transformation of ψq (that is, 〈ψq(p), r〉 = 〈p, ψq∗(r)〉
for all p, q, r).

Moreover, if ψq ≡ 0, then q = 0. Indeed, if ψq ≡ 0, then qeV ∈ N , hence
(since qeV ≡ q) q ∈ N .

So the ψq form a space of commuting linear transformations, closed under
conjugation. Hence the ψq have a common orthogonal basis of eigenvectors
p1, . . . , pn, with n = dim(AV ). Then pipj is a multiple of both pi and pj ,
hence if i 6= j it is 0. Moreover, p2

i is nonzero, since otherwise ψpi ≡ 0. So
we can normalize the pi such that p2

i = pi. This makes the set

(36) BV := {pi | i = 1, . . . , n}

unique.
Also, p∗ = p for each p ∈ BV , since for each q ∈ BV with q 6= p one

has 〈q, p∗〉 = 〈qp, eV 〉 = 0 = 〈q, p〉. Hence p∗ = λp for some nonzero λ ∈ C.
Taking squares at both sides, we see λ2 = λ, hence λ = 1. �

It follows that

(37) eV =
∑

p∈BV

p,

since both terms are the unit of AV .
So for p ∈ BV we have f(p) > 0, since

(38) f(p) = 〈p, 1〉 = 〈p2, 1〉 = 〈p, p〉 > 0.

(34) implies

(39) if V ⊆ T then AV ⊆ AT .

Indeed, for each s ∈ SV we have s = eT s ∈ AT . So SV ⊆ AT , hence
AV ⊆ AT .

Define for any p:
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(40) BT,p = {q ∈ BT | pq = q}.

Then for each p ∈ BV with V ⊆ T one has

(41) p =
∑

q∈BT,p

q.

Indeed, as p is in AT , it is a linear combination of the elements of BT , and
as it is an idempotent, it is a sum of some of the elements in BT , hence of
those q ∈ BT with pq = q.

For distinct p, p′ ∈ BV , one has pp′ = 0, hence BT,p ∩ BT,p′ = ∅. Since∑
q∈BT

q = 1 =
∑

p∈BV
p, the collection {BT,p | p ∈ BV } is a partition of

BT .

Claim 2. Let T,U ∈ F , and let V := T ∩ U . Then for any p ∈ BV ,

q ∈ BT,p, and r ∈ AU :

(42) f(qr) =
f(q)

f(p)
f(pr).

Proof. To prove this, we may assume that r ∈ SU . Let π denote the orthog-
onal projection of A onto AV . Then

(43) f(qr) = f(π(q)r).

To see this, observe that for each s ∈ ST , π(s) = λV (s). This follows from:

(44) 〈s, t〉 = f(s∗t) = f((λV (s∗))t) = 〈λV (s), t〉

for each t ∈ SV . So π(s) = λV (s), and hence, by (8), f(sr) = f(π(s)r). (In-
deed, f(sr) = f(λU (sr)) = f(λU (s)λU (r)) = f(λU (s)r) = f(λU (λT (s))r) =
f(λU∩T (s)r) = f(λV (s)r).) As this holds for each s ∈ ST , and as q ∈ AT
we have (43).

Moreover,

(45) π(q) =
f(q)

f(p)
p.
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This follows from the facts that if p′ ∈ BV with p′ 6= p, then 〈 f(q)
f(p)p, p

′〉 = 0 =

〈q, p′〉, and that 〈 f(q)
f(p)p, p〉 = f(q) = 〈q, p〉. This proves (45), which together

with (43) gives the claim. �

For any V ∈ F and any p ∈ BV , denote deg(p) = |BT,p|, where T is any
subset of Z with V ⊆ T and |T \ V | = 1. Note that (by the symmetry) the
definition of deg(p) is independent of the choice of T .

Claim 3. If q ∈ BT,p, then deg(q) ≥ deg(p).

Proof. Consider a set W ⊃ T with |W \ T | = 1. Let T = V ∪ {t} and
W = T ∪ {u}. Define U := V ∪ {u}. Then for each r ∈ BU,p, qr is
an idempotent in AW , and it is the sum of the elements of BW,q ∩ BW,r.
Moreover, qr 6= 0, since (using Claim 2)

(46) f(qr) =
f(q)f(r)

f(p)
6= 0.

So BW,q ∩ BW,r 6= ∅ for each r ∈ BU,p. Since these sets are disjoint (for
distinct r ∈ BT,p), we have

(47) deg(q) = |BW,q| ≥ |BU,p| = deg(p),

proving the claim. �

This implies that deg(p) ≤ k for each V and p ∈ BV , since

(48) deg(p)|T\V | ≤ |BT,p| ≤ |BT | = dim(AT ) ≤ k|T |

for each T ⊇ V .
So we can choose a set V ∈ F and p ∈ BV with deg(p) maximal, and we

can assume that deg(p) = k (as the conclusion of the theorem is maintained
if we increase k). For the remainder of this proof we fix V and p.

Let W := Z \ V and, for each v ∈W , let

(49) BV ∪{v},p = {qv,1, . . . , qv,k},

15



choosing indices such that qv,i arises from qu,i by mapping u to v, leaving V
invariant. For i ∈ [k], define (choosing an arbitrary v ∈W )

(50) αi :=
f(qv,i)

f(p)
.

This is independent of the choice of v ∈ W . Since f(qv,i) > 0 and f(p) > 0
we have αi > 0.

For any finite subset U of W and any φ : U → [k], consider

(51) rφ := p
∏

v∈U

qv,φ(v).

(The factor p is superfluous if U 6= ∅.) Since r2
φ = rφ and prφ = rφ, we know

that rφ =
∑

q∈Lφ
q for some subset Lφ of BV ∪U,p. Also, rφ 6= 0, since (using

Claim 2 repeatedly)

(52) f(rφ) = f(p
∏

v∈U

qv,φ(v)) = (
∏

v∈U

αφ(v))f(p) 6= 0.

So rφ 6= 0, implying Lφ 6= ∅.
Moreover, if φ 6= φ′, then rφrφ′ = 0 (since if φ(v) 6= φ′(v), then qv,φ(v)qv,φ′(v) =

0). So if φ 6= φ′, then Lφ ∩ Lφ′ = ∅. Hence, since |BV ∪U,p| = k|U | (by Claim
3), we know that |Lφ| = 1 for each φ : U → [k]. Therefore,

(53) BV ∪U,p = {rφ | φ : U → [k]}.

Now, for any s ∈ S with C(s) ⊆ W , we can express ps in the elements
of BV ∪C(s),p:

(54) ps =
∑

φ:C(s)→[k]

βs(φ)rφ.

This is possible, since for any r ∈ BV ∪C(s) with r 6∈ BV ∪C(s),p one has
rps = 0, since rp = 0.

By the symmetry, this definition of βs extends to all s ∈ S. We show
that the βs satisfy (9).

To see (9)(i), we have
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(55) f(p)f(s) = f(ps) = f(
∑

φ:C(s)→[k]

βs(φ)rφ) =

∑

φ:C(s)→[k]

βs(φ)f(rφ) =
∑

φ:C(s)→[k]

βs(φ)(
∏

v∈C(s)

αφ(v))f(p) =

f(p)
∑

φ:C(s)→[k]

(
∏

v∈C(s)

αφ(v))βs(φ)

(the first equality follows from (19), using the facts that p ∈ AV and that
V ∩ C(s) = ∅). Since f(p) 6= 0, this gives (9)(i).

To see (9)(ii), first note that if φ : C(st) → [k], then

(56) rφ = rφ|C(s)rφ|C(t),

as follows from (51). Hence, for all s, t ∈ S one has

(57)
∑

φ:C(st)→[k]

βs(φ|C(s))βt(φ|C(t))rφ =

∑

φ:C(st)→[k]

βs(φ|C(s))βt(φ|C(t))rφ|C(s)rφ|C(t) =

(
∑

φ′:C(s)→[k]

βs(φ
′)rφ′)(

∑

φ′′:C(t)→[k]

βt(φ
′′)rφ′′) = (ps)(pt) = p(st)

(note that rφ′rφ′′ = 0 if φ′|C(s) ∩ C(t) 6= φ′′|C(s) ∩ C(t)). Hence for each
φ : C(st) → [k] one has

(58) βst(φ) = βs(φ|C(s))βt(φ|C(t)),

which is (9)(ii). Condition (9)(iii) follows from the symmetry and uniqueness
of the βs(φ). Finally, we have βs∗(φ) = βs(φ) from (54), since p∗ = p and
r∗φ = rφ.

11. Applications to graph and hypergraph param-

eters

We apply Theorem 1 to the Examples 1–5 mentioned above. First we derive
the theorem given in Freedman, Lovász, and Schrijver [4].

Let f be a real-valued function defined on the collection of undirected
graphs, invariant under isomorphisms. Define, for each natural number n,
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the matrix Mf,n as follows. Fix n ≥ 0, and let Gn be the set of all undirected
graphs G with V G ∩ Z = Zn. Let Mf,n be the Gn × Gn matrix with entry
f(G ∪ G′) in position G,G′. Here, in making the union, we first make the
vertex sets of G and G′ disjoint outside Zn.

For any integer k ≥ 0, any vector α ∈ Rk
+, and any k× k real symmetric

matrix (βi,j), define the undirected graph parameter fα,β as in (1).

Corollary 1. Let f be a complex-valued undirected graph parameter and

k ≥ 0. Then f = fα,β for some α ∈ Rk
+ and some symmetric real-valued

k×k matrix (βi,j) if and only if f(K0) = 1 and, for each n, Mf,n is positive

semidefinite and has rank at most kn.

Proof. Apply the theorem to the ∗-semigroup consisting of all undirected
graphs, with multiplication GG′ := G ∪G′ and conjugation G∗ := G.

Note that K2 and its images under automorphisms generate the ∗-
semigroup, so the functions βG are determined by the function βK2 , which
can be described by a k × k matrix. The fact that βK2 is real follows from
the fact that βK2 = βK∗

2
= βK2

.

The property that Mf,n is positive semidefinite for each n is called re-

flection positivity of f . Moreover, the property that there is an integer k
such that for each n, Mf,n has rank at most kn, is called rank connectivity

of f .
For simple graphs we obtain a similar characterization if we restrict β to

0, 1 matrices. For a function f defined on the collection G̃ of simple finite
undirected graphs, let (for n ∈ N) M̃f,n be the G̃ × G̃ matrix with entry
f(G ∪ G′) in position G,G′, where now wo do not take multiplicities into
account. Then we obtain:

Corollary 2. Let f be a complex-valued undirected simple graph parameter

and k ≥ 0. Then f = fα,β for some α ∈ Rk
+ and some symmetric k × k

0, 1 matrix (βi,j) if and only if f(K0) = 1 and, for each n, M̃f,n is positive

semidefinite and has rank at most kn.

Proof. The proof is similar to that of Corollary 1. Now we have that the
graph K2 on vertices 1, 2 (say) satisfies, for any φ : {1, 2} → [k]:

(59) (βK2(φ))2 = βK2(φ)βK2(φ) = βK2K2(φ) = βK2(φ).

Hence βK2(φ) ∈ {0, 1}.

18



We next turn to directed graphs. Let f be a complex-valued function
defined on the collection of directed graphs, invariant under isomorphisms.
Define, for each natural number n, matrices Mf,n and M ′

f,n as follows. Fix
n ≥ 0, and let Gn be the set of all directed graphs G with V G ∩ Z = Zn.
For any directed graph G, let G−1 be the directed graph obtained from G
by reversing all arcs. Let Mf,n be the Gn × Gn matrix with entry f(G ∪G′)
in position G,G′. Let M ′

f,n be the Gn × Gn matrix with entry f(G−1 ∪ G′)
in position G,G′. Again, in making the union, we first make the vertex sets
of G and G′ disjoint outside Zn.

For any integer k ≥ 0, any vector α ∈ Ck, and any k×k complex matrix
(βi,j), define the directed graph function fα,β by:

(60) fα,β(G) =
∑

φ:V G→[k]

(
∏

v∈V G

αφ(v))(
∏

(u,v)∈EG

βφ(u),φ(v)).

Corollary 3. Let f be a directed graph parameter and k ≥ 0. Then f = fα,β
for some α ∈ Rk

+ and some real-valued k × k matrix (βi,j) if and only if

f(K0) = 1 and, for each n, Mf,n is positive semidefinite and has rank at

most kn.

Proof. Apply the theorem to the ∗-semigroup consisting of all directed
graphs, with multiplication GG′ := G ∪ G′ and conjugation G∗ := G. In
this case, βi,j is real, since β ~K2

= β ~K2
∗ = β ~K2

.

Corollary 4. Let f be a directed graph parameter and k ≥ 0. Then f = fα,β
for some α ∈ Rk

+ and some Hermitian k × k matrix (βi,j) if and only if

f(K0) = 1 and, for each n, M ′
f,n is positive semidefinite and has rank at

most kn.

Proof. Apply the theorem to the ∗-semigroup consisting of all directed
graphs, with multiplication GG′ := G ∪G′ and conjugation G∗ := G−1.

In this case we have βj,i = βi,j , since β ~K2
−1 = β ~K2

∗ = β ~K2
.

Finally we consider applying Theorem 1 to hypergraphs. Let H be the
collection of m-uniform hypergraphs and let f : H → C. Choose k ∈ Z+.
Let α : [k] → R+ and let β : [k]m → R be symmetric (that is, invariant
under permuting coordinates of [k]m). Define
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(61) fα,β(H) :=
∑

φ:V H→[k]

(
∏

v∈V H

αφ(v))(
∏

e∈EH

βφ(e))

where βφ({v1,...,vm}) := β(φ(v1), . . . , φ(vm)).
For any complex-valued hypergraph parameter f and any n ∈ Z+, let

Mf,n be the following matrix. Let Hn be the collection of hypergraphs H
with V H ∩ Z = Zn. For H,H ′ ∈ Hn let H ∪ H ′ be the union of H and
H ′, assuming that V H ∩ V H ′ = Zn and EH ∩ EH ′ = ∅. Let Mf,n be the
Hn ×Hn matrix with (Mf,n)H,H′ := f(H ∪H ′) for H,H ′ ∈ Hn.

Then (where H0 denotes the hypergraph with no vertices and edges):

Corollary 5. Let f be a complex-valued parameter on m-uniform hyper-

graphs and k ≥ 0. Then f = fα,β for some α : [k] → R+ and some

symmetric β : [k]m → R if and only if f(H0) = 1 and for each n, the

matrix Mf,n is positive semidefinite and has rank at most kn.

Proof. Apply the theorem to the ∗-semigroup consisting of all hypergraphs,
with multiplication HH ′ := H ∪H ′ and conjugation H∗ := H.

Now the βH are determined by βHm . Moreover, βHm is real-valued, since
βHm = βH∗

m
= βHm .

We leave it to the reader to formulate the application of Theorem 1 to
Example 5.
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