
SHORTEST DISJOINT PATHS

Notes for our seminar
Lex Schrijver

1. The shortest disjoint paths problem

We show that the shortest disjoint paths problem:

(1) given: a directed graph D = (V,A), vertices s1, t1, . . . , sk, tk ∈ V , and a ‘length’
function ` : A→ Z+,
find: disjoint directed paths P1, . . . , Pk, where Pi runs from si to ti (for i =
1, . . . , k), with `(P1) + · · · `(Pk) minimum,

is solvable in polynomial time if D is planar and there exist faces S and T such that each
si is incident with S and each ti is incident with T ([1]).

2. We may assume

We may assume that:

(2) (i) T is the unbounded face,
(ii) t1, . . . , tk are distinct and occur clockwise around the boundary of T ,
(iii) s1, . . . , sk are distinct and occur clockwise around the boundary of S,
(iv) each si and ti has total degree 1, and each other vertex of D has total degree 3,
(v) there is an undirected S − T path Q in the dual graph D∗ such that there exist

disjoint curves K1, . . . ,Kk in R2 \ (S ∪ T ∪ Q), where Ki runs from si to ti
(i = 1, . . . , k).

Let q : A→ {−1, 0, 1} be defined by, for a ∈ A,

(3) q(a) =


1 if a crosses Q from left to right,

−1 if a crosses Q from right to left,

0 otherwise.

For x ∈ ZA, we call qTx the winding number of x and `Tx the length of x.

3. Flows

A flow is a function f : A→ {0, 1} such that for each v ∈ V :

(4) f(δin(v))− f(δout(v)) =


−1 if v = si for some i,

1 if v = ti for some i,

0 otherwise.
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We say that f is a w-flow if qTf = w. Then, taking indices mod k:

Proposition 1. A function f : A→ Z is a w-flow if and only if there exist directed paths
P1, . . . , Pk and directed circuits C1, . . . , Cm such that P1, . . . , Pk, C1, . . . , Cm are pairwise
disjoint, such that Pi runs from si to ti+w (for i = 1, . . . , k), and such that

(5) f = χP1 + · · ·+ χPk + χC1 + · · ·+ χCm .

It follows that a flow that is shortest among all flows with winding number being a
multiple of k, yields a solution to (1).

4. Circulations

A circulation is a function c : A → Z such that c(δout(v)) = c(δin(v)) for each v ∈ V . A
w-circulation is a circulation with winding number w. Note that if f and g are flows with
winding numbers v and w, then g − f is a (w − v)-circulation. This gives:

Proposition 2. Let f be a v-flow and let g be a w-flow. Then g is a shortest w-flow if and
only if g − f is shortest among all (w − v)-circulations c satisfying 0 ≤ f + c ≤ 1.

Let F be the collection of faces of D. Let N be the A× F matrix with, for any a ∈ A
and F ∈ F :

(6) Na,F :=


1 if F is the face at the left-hand side of a,

−1 if F is the face at the right-hand side of a,

0 otherwise.

Then:

Proposition 3. A function c : A→ Z is a w-circulation if and only if there exists a y ∈ ZF
with c = Ny, yS = 0, and yT = w.

5. Convexity

For each w ∈ Z, let λw be the minimum length of a w-flow.

Proposition 4. Let w′ ≤ w ≤ w′′ ∈ Z with λw′ and λw′′ finite, and w = αw′ + (1− α)w′′

for 0 ≤ α ≤ 1. Then

(7) λw ≤ αλw′ + (1− α)λw′′ .

Proof. We can assume that w = w′+1. Let r := w′′−w′. Let f and g be a shortest w′-flow
and a shortest w′′-flow, respectively. Then c := g − f is a circulation with winding number
v := w′′−w′. As each vertex of D has total degree 3 and as c has values in {−1, 0, 1}, there
exist pairwise disjoint undirected circuits C1, . . . , Cm such that

(8) c = χC1 + · · ·+ χCm .
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(For an undirected circuit C, χC(a) = 1 if a is traversed in forward direction, χC(a) = −1
if a is traversed in backward direction, and χC(a) = 0 otherwise.) Each χCj has winding
number in {−1, 0, 1}, adding up to v.

This implies (by appropriately combining the Cj) that c can be decomposed as c =
c1 + · · · + cv, where each ci is a circulation with winding number 1. Then for each i =
1, . . . , v, f + ci is a w-flow. (It is a 0, 1 function since if f(a) = 0, then c(a) = g(a),
so 0 ≤ c(a) ≤ 1, hence 0 ≤ ci(a) ≤ 1, implying 0 ≤ f(a) + ci(a) ≤ 1. Similarly, if
f(a) = 1, then c(a) = g(a) − 1, so −1 ≤ c(a) ≤ 0, hence −1 ≤ ci(a) ≤ 0, implying again
0 ≤ f(a) + ci(a) ≤ 1.)

So λw ≤ `Tf + `Tci. Hence

(9) vλw ≤
v∑

i=1

(`Tf + `Tci) = v`Tf +
v∑

i=1

`Tci = (v − 1)`Tf + (`Tf +
v∑

i=1

`Tci) =

(v − 1)`Tf + `Tg = (v − 1)λw′ + λw′′ .

6. Shortest flow

Let f be a flow of minimum length (over all winding numbers), which is a solution of the
LP problem

(10) min{`Tf | 0 ≤ f ≤ 1,Mf =
k∑

i=1

(eti − esi)},

where M is the V × A incidence matrix of D (with Mv,a = 1 if a enters v, Mv,a = −1 if a
leaves v, and Mv,a = 0 otherwise). Note that M is totally unimodular, so that (10) has an
integer optimum solution.

7. Shortest W -flow

Let f have winding number v. Given w ∈ Z, we can derive from f a shortest w-flow, by
finding a shortest (w− v)-circulation c such that f + c is a 0, 1 function (by Proposition 2).

By Proposition 3, such a circulation is equal to Ny, where y is an optimum solution of
the LP problem

(11) min{`TNy | −f ≤ Ny ≤ 1− f, yS = 0, yT = w − v}.

Note that again N is totally unimodular, so that (11) has an integer optimum solution.

8. Solving (1)

Let w′ := kbv/kc and w′′ := w′ + k. By (7), a shortest flow of winding number w′ or w′′

gives a solution of problem (1). By Section 7, we can find such a flow in polynomial time.
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