A PROOF OF STRASSEN'S SEMIRING THEOREM

Notes for our seminar - Lex Schrijver

Fix a commutative semiring $(S,+$,$) ; so (S,+)$ is an additive commutative semigroup with null 0 and (S,) is a multiplicative commutative semigroup with unit 1 , satisfying $0 a=0$ and $a(b+c)=a b+a c$ for all $a, b, c \in S$. As usual, for any $n \in \mathbb{N}$, the n-fold sum of 1 is denoted by n.

Call a preorder \leq on S good if for all $a, b, c \in S$:
(i) $n \leq n+1$ and $n+1 \not \leq n$ for all $n \in \mathbb{N}$;
(ii) if $a \leq b$, then $a+c \leq b+c$ and $a c \leq b c$;
(iii) if $b \neq 0$, then $a \leq n b$ for some $n \in \mathbb{N}$.

Note that (i) says that \leq induces the natural total order on \mathbb{N}. Note also that $0 \leq c$ for all $c \in S$ (by (ii), as $0 \leq 1$).

For any good preorder \leq, Volker Strassen [6] defines the asymptotic order \lesssim associated with \leq by, for $a, b \in S$:

$$
\begin{equation*}
a \lesssim b \Longleftrightarrow \exists r: \mathbb{N} \rightarrow \mathbb{N} \quad \forall n \in \mathbb{N}: a^{n} \leq r(n) b^{n} \text { and } \inf _{n \geq 1} r(n)^{1 / n}=1 \tag{2}
\end{equation*}
$$

Clearly, $a \leq b$ implies $a \lesssim b$ (as then we can take $r(1)=1$). Since for r in (2) one has $a^{n+m} \leq r(n) r(m) b^{n+m}$ for all n, m, we can assume that $r(n+m) \leq r(n) r(m)$. Hence, by Fekete's lemma [4], we can assume that $\lim _{n \rightarrow \infty} r(n)^{1 / n}=1$.

Strassen [6] proved, using the Kadison-Dubois theorem ([5], [2,3], cf. [1]) :2
Strassen's semiring theorem. Let $\leq b e$ a good preorder. Then for all $a, b \in S: a \lesssim b$ if and only if $\varphi(a) \leq \varphi(b)$ for each monotone homomorphism $\varphi: S \rightarrow \mathbb{R}_{+}$.

We give five propositions, from which Strassen's theorem will be derived.
Proposition 1. \lesssim is a good preorder.
Proof. Trivially, \lesssim is a preorder containing \leq. So (1)(iii) for \lesssim direct. To prove that \lesssim is good, we prove (1)(i) and (ii) for \lesssim.

Let $a, b \in S$ with $a \lesssim b$. So there exists $r: \mathbb{N} \rightarrow \mathbb{N}$ satisfying $\lim _{n \rightarrow \infty} r(n)^{1 / n}=1$ and $a^{n} \leq r(n) b^{n}$ for all $n \in \mathbb{N}$. We can assume that r is nondecreasing. ${ }^{3}$ Then for any $c \in S$:

$$
\begin{equation*}
(a+c)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} c^{n-k} \leq \sum_{k=0}^{n}\binom{n}{k} r(k) b^{k} c^{n-k} \leq \sum_{k=0}^{n}\binom{n}{k} r(n) b^{k} c^{n-k}=r(n)(b+c)^{n} . \tag{3}
\end{equation*}
$$

So $a+c \lesssim b+c$. Moreover,

[^0]\[

$$
\begin{equation*}
(a c)^{n}=a^{n} c^{n} \leq r(n) b^{n} c^{n}=r(n)(b c)^{n} \tag{4}
\end{equation*}
$$

\]

So $a c \lesssim b c$. This proves $\sqrt{1}$ (ii) for \lesssim.
To check (1)(i), let a and b belong in particular to \mathbb{N} and $a=b+1$. Then, by taking n-th roots, $a^{n} \leq r(n) b^{n}$ gives $b+1=a \leq \inf _{n \geq 1} r(n)^{1 / n} b=b$, contradicting (1)(i) for \leq. So (1)(i) holds for \lesssim.

Call a preorder \leq closed if \leq is good and \lesssim is equal to \leq.
Proposition 2. $\lesssim i s ~ c l o s e d$.
Proof. Let $a, b \in S$ with $a \lesssim b$. So there exists $r: \mathbb{N} \rightarrow \mathbb{N}$ satisfying $\inf _{n \geq 1} r(n)^{1 / n}=1$ and $a^{n} \lesssim r(n) b^{n}$ for all n. We must show that $a \lesssim b$.

It is enough to prove that, for any real $\gamma>1$, there exist $k, t \in \mathbb{N}$ with $k \geq 1, t^{1 / k}<\gamma$, and $a^{k} \leq t b^{k}$. To that end, choose $n \geq 1$ with $r(n)^{1 / n}<\sqrt{\gamma}$. As $a^{n} \lesssim r(n) b^{n}$, by definition of \lesssim there exists $s: \mathbb{N} \rightarrow \mathbb{N}$ with $\inf _{m \geq 1} s(m)^{1 / m}=1$ and $\left(a^{n}\right)^{m} \leq s(m)\left(r(n) b^{n}\right)^{m}$ for all m. Choose $m \geq 1$ with $s(m)^{1 / m}<\sqrt{\gamma}$. Then for $k:=n m$ and $t:=s(m) r(n)^{m}$ one has $a^{k}=a^{n m} \leq s(m) r(n)^{m} b^{n m}=t b^{n m}=t b^{k}$ and $t^{1 / k}=t^{1 / n m}=s(m)^{1 / n m} r(n)^{1 / n}<\gamma$, as required.

Proposition 3. Let \leq be closed. Then for all $a, b, c \in S$:
(i) if $a+c \leq b+c$, then $a \leq b$;
(ii) if $a c \leq b c$ and $c \neq 0$, then $a \leq b$;
(iii) if $n a \leq n b+1$ for all $n \in \mathbb{N}$, then $a \leq b$.

Proof. I. First we prove (5)(ii). Assume $a c \leq b c$ and $c \neq 0$. Induction gives $a^{n} c \leq b^{n} c$ for each $n \in \mathbb{N}$, since $a^{0} c=b^{0} c$ and $a^{n+1} c=a^{n} a c \leq a^{n} b c \leq b^{n} b c=b^{n+1} c$.

By (1)(iii), there exist $r, k \in \mathbb{N}$ with $1 \leq c r \leq k$. Then $a^{n} \leq a^{n} c r \leq b^{n} c r \leq k b^{n}$ for each $n \in \mathbb{N}$. As $\inf _{n \geq 1} k^{1 / n}=1$, we know $a \lesssim b$, hence, as \lesssim is equal to $\leq, a \leq b$.
II. Next we prove (5) (iii). Assume $n a \leq 1+n b$ for each $n \in \mathbb{N}$. If $b=0$, then $a=0$ by (1) (iii), hence $a \leq b$. So we can assume $b \neq 0$. Let $r \in \mathbb{N}$ satisfy $1 \leq r b$. So for all $n \in \mathbb{N}$ we have $n a \leq n b+1 \leq(n+r) b$. Consider any $k \in \mathbb{N}$, and choose n large enough such that $(n+r)^{k} \leq 2 n^{k}$. Then $n^{k} a^{k} \leq(n+r)^{k} b^{k} \leq 2 n^{k} b^{k}$. Hence by (5)(ii), $a^{k} \leq 2 b^{k}$. As this holds for each $k \in \mathbb{N}$ and as $\inf _{k \geq 1} 2^{1 / k}=1$, we know $a \lesssim b$. Hence, as \lesssim is equal to $\leq, a \leq b$.
III. Finally, we prove (5)(i). Assume $a+c \leq b+c$. Induction gives $n a+c \leq n b+c$ for each $n \in \mathbb{N}$, since $0 a+c=0 b+c$ and $(n+1) a+c=n a+a+c \leq n a+b+c \leq n b+b+c=(n+1) b+c$.

Choose $k \in \mathbb{N}$ with $c \leq k$. Then $n a \leq n a+c \leq n b+c \leq n b+k$ for each $n \in \mathbb{N}$. Replacing n by $n k$, we get $n k a \leq n k b+k$, for each $n \in \mathbb{N}$. So by (5) (ii), $n a \leq n b+1$ for each $n \in \mathbb{N}$. Hence by (5) (iii), $a \leq b$.

Proposition 4. Let \leq be closed and $a \not \leq b$. Then there exists a good preorder \preceq containing \leq and satisfying $b \preceq a$.

Proof. Define \preceq by, for $x, y \in S$,

$$
\begin{equation*}
x \preceq y \Longleftrightarrow \exists c \in S: x+a c \leq y+b c . \tag{6}
\end{equation*}
$$

Then \preceq contains \leq, since if $x \leq y$, then $x+a 0 \leq y+b 0$, so $x \preceq y$. Also, $b \preceq a$, since $b+a 1=a+b 1$. As \preceq contains \leq, the relation \preceq is reflexive and satisfies (1) (iii).

To see that \preceq is transitive, let $x \preceq y$ and $y \preceq z$. Then $x+a c \leq y+b c$ and $y+a d \leq z+b d$ for some $c, d \in S$. Therefore, $x+a(c+d) \leq y+b c+a d \leq z+b(c+d)$. So $x \preceq z$.

To see (11)(ii) for \preceq, let $x \preceq y$ and $z \in S$. Then $x+a c \leq y+b c$ for some $c \in S$, hence $x+z+a c \leq y+z+b c$ and $x z+a c z \leq y z+b c z$. So $x+z \preceq y+z$ and $x z \preceq y z$.

Finally, to check (1) (i) for \preceq, suppose that $n+1 \preceq n$ for some $n \in \mathbb{N}$. Hence $n+1+a c \leq$ $n+b c$ for some $c \in S$, implying (by (5)(i)) $1+a c \leq b c$. So $c \neq 0$ (otherwise $1 \leq 0$ would follow) and $a c \leq b c$, implying (by(5)(ii)) $a \leq b$. This contradicts $a \not \leq b$.

Proposition 5. If \leq is good, there exists a monotone homomorphism $\varphi: S \rightarrow \mathbb{R}_{+}$.
Proof. Let \leq be good. By Zorn's lemma, we can assume that \leq is an inclusionwise maximal good preorder. This implies that \lesssim is not larger than \leq. So \leq is closed.

For each $a \in S$, define

$$
\begin{equation*}
L_{a}:=\left\{\left.\frac{k}{n} \right\rvert\, k, n \in \mathbb{N}, n \geq 1, k \leq n a\right\} \text { and } U_{a}:=\left\{\left.\frac{k}{n} \right\rvert\, k, n \in \mathbb{N}, n \geq 1, n a \leq k\right\} \tag{7}
\end{equation*}
$$

Note that if $\frac{k}{n}=\frac{k^{\prime}}{n^{\prime}}$, then $k \leq n a \Longleftrightarrow k^{\prime} n=k n^{\prime} \leq n n^{\prime} a \Longleftrightarrow k^{\prime} \leq n^{\prime} a$, by (11 (ii) and (5)(ii). Similarly, $n a \leq k \Longleftrightarrow n^{\prime} a \leq k^{\prime}$.

Now for each $\frac{k}{n} \in L_{a}$ and $\frac{k^{\prime}}{n^{\prime}} \in U_{a}$ one has $\frac{k}{n} \leq \frac{k^{\prime}}{n^{\prime}}$, since $k \leq n a$ and $n^{\prime} a \leq k^{\prime}$ give $k n^{\prime} \leq n n^{\prime} a \leq k^{\prime} n$. Moreover, $L_{a} \cup U_{a}=\mathbb{Q}_{+}$, since for each $k, n \in \mathbb{N}$, at least one of $k \leq n a$ and $n a \leq k$ holds, as otherwise by Proposition 4 we can augment \leq with $n a \leq k$ (because $k \not \leq n a)$, contradicting the maximality of \leq. Finally, $L_{a} \neq \emptyset$ and $U_{a} \neq \emptyset$, since $0 \leq a \leq k$ for some $k \in \mathbb{N}$, by (11)(iii).

So we can define $\varphi(a):=\sup L_{a}=\inf U_{a}$. Consider $a, b \in S$. Then $L_{a+b} \supseteq L_{a}+L_{b}$, since if $\frac{k}{n} \in L_{a}$ and $\frac{k^{\prime}}{n^{\prime}} \in L_{b}$, then $k \leq n a$ and $k^{\prime} \leq n^{\prime} b$, hence $k n^{\prime}+k^{\prime} n \leq n n^{\prime} a+n n^{\prime} b=n n^{\prime}(a+b)$, so that $\frac{k}{n}+\frac{k^{\prime}}{n^{\prime}}=\frac{k n^{\prime}+k^{\prime} n}{n n^{\prime}}$ belongs to L_{a+b}. This implies $\varphi(a+b) \geq \varphi(a)+\varphi(b)$.

One similarly proves $U_{a+b} \supseteq U_{a}+U_{b}$, hence $\varphi(a+b) \leq \varphi(a)+\varphi(b)$. So $\varphi(a+b)=$ $\varphi(a)+\varphi(b)$. Similarly, since $L_{a b} \supseteq L_{a} L_{b}$ and $U_{a b} \supseteq U_{a} U_{b}$ we have $\varphi(a b)=\varphi(a) \varphi(b)$. Finally, if $a \leq b$, then $L_{a} \subseteq L_{b}$, hence $\varphi(a) \leq \varphi(b)$.

Proof of Strassen's semiring theorem. To see necessity, let $a \lesssim b$ and let φ be a \leq-monotone homomorphism. Let $r: \mathbb{N} \rightarrow \mathbb{N}$ satisfy $\inf _{n \geq 1} r(n)^{1 / n}=1$ and $a^{n} \leq r(n) b^{n}$ for all n. Then $\varphi(a)^{n}=\varphi\left(a^{n}\right) \leq \varphi\left(r(n) b^{n}\right)=r(n) \varphi(b)^{n}$ for all $n \in N$. Taking n-th roots and infimum over n, we obtain $\varphi(a) \leq \varphi(b)$.

To see sufficiency of the condition in Strassen's semiring theorem, we can assume that \leq is closed, as the condition for \leq implies the condition for \lesssim. So \leq satisfies (5).

Choose $a, b \in S$ with $a \not \leq b$. We must prove that $\varphi(a) \not \leq \varphi(b)$ for some monotone homomorphism $\varphi: S \rightarrow \mathbb{R}_{+}$.

By (5)(iii), as $a \not \leq b$, there exists $n \in \mathbb{N}$ with $n a \not \leq 1+n b$. Then, by Proposition 4 , there exists a good preorder \preceq containing \leq and satisfying $1+n b \preceq n a$. Next by Proposition 5. there exists a homomorphism $\varphi: S \rightarrow \mathbb{R}_{+}$that is monotone with respect to \preceq. As \preceq contains \leq, φ is also monotone with respect to \leq. Moreover, as $1+n b \preceq n a$, we have $\varphi(1+n b) \leq \varphi(n a)$, so $1+n \varphi(b) \leq n \varphi(a)$, yielding $\varphi(b)<\varphi(a)$, as required.

References

[1] E. Becker, N. Schwartz, Zum Darstellungssatz von Kadison-Dubois, Archiv der Mathematik 40 (1983) 421-428.
[2] D.W. Dubois, A note on David Harrison's theory of preprimes, Pacific Journal of Mathematics 21 (1967) 15-19.
[3] D.W. Dubois, Second note on David Harrison's theory of preprimes, Pacific Journal of Mathematics 24 (1968) 57-68.
[4] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Mathematische Zeitschrift 17 (1923) 228-249.
[5] R.V. Kadison, A representation theory for commutative topological algebra, Memoirs of the American Mathematical Society 7 (1951), 39 pp.
[6] V. Strassen, The asymptotic spectrum of tensors, Journal für die reine und angewandte Mathematik 384 (1988) 102-152.

[^0]: ${ }^{1}$ If $c_{1}, c_{2}, \ldots \in \mathbb{R}_{+}$with $c_{n+m} \leq c_{n} c_{m}$ for all $n, m \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} c_{n}^{1 / n}=\inf _{n \geq 1} c_{n}^{1 / n}$.
 ${ }^{2}$ A function $\varphi: S \rightarrow \mathbb{R}_{+}$is a monotone homomorphism if for all $a, b \in S: \varphi(a+b)=\varphi(a)+\varphi(b)$, $\varphi(a b)=\varphi(a) \varphi(b), \varphi(1)=1$, and, if $a \leq b$, then $\varphi(a) \leq \varphi(b)$.
 ${ }^{3}$ Define $r^{\prime}(n):=\max _{k \leq n} r(k)$. Then $a^{n} \leq r(n) b^{n} \leq r^{\prime}(n) b^{n}$ for each n. To show $\lim _{n \rightarrow \infty} r^{\prime}(n)^{1 / n}=1$, choose a real $\gamma>1$. Choose N with $r(k)^{1 / k}<\gamma$ for all $k \geq N$. Choose $K \geq N$ with $r(k)^{1 / K}<\gamma$ for all $k<N$. (This is possible, since there are only finitely many $k<N$.) Then $r^{\prime}(n)^{1 / n}<\gamma$ for all $n \geq K$. Indeed, $r^{\prime}(n)=r(k)$ for some $k \leq n$. If $k<N$, then $r^{\prime}(n)^{1 / n}=r(k)^{1 / n} \leq r(k)^{1 / K}<\gamma$ (since $n \geq K$ and $k<N)$. If $k \geq N$, then $r^{\prime}(n)^{1 / n}=r(k)^{1 / n} \leq r(k)^{1 / k}<\gamma($ since $n \geq k$ and $k \geq N)$.

