A PROOF OF STRASSEN'S SEMIRING THEOREM

Notes for our seminar — Lex Schrijver

Fix a commutative semiring (S, +); so (S, +) is an additive commutative semigroup with null 0 and (S,) is a multiplicative commutative semigroup with unit 1, satisfying 0a = 0 and a(b + c) = ab + ac for all $a, b, c \in S$. As usual, for any $n \in \mathbb{N}$, the *n*-fold sum of 1 is denoted by *n*.

Call a preorder \leq on S good if for all $a, b, c \in S$:

(1) (i) $n \le n+1$ and $n+1 \ne n$ for all $n \in \mathbb{N}$; (ii) if $a \le b$, then $a+c \le b+c$ and $ac \le bc$; (iii) if $b \ne 0$, then $a \le nb$ for some $n \in \mathbb{N}$.

Note that (i) says that \leq induces the natural total order on \mathbb{N} . Note also that $0 \leq c$ for all $c \in S$ (by (ii), as $0 \leq 1$).

For any good preorder \leq , Volker Strassen [6] defines the asymptotic order \leq associated with \leq by, for $a, b \in S$:

(2)
$$a \lesssim b \iff \exists r : \mathbb{N} \to \mathbb{N} \quad \forall n \in \mathbb{N}: a^n \leq r(n)b^n \text{ and } \inf_{n \geq 1} r(n)^{1/n} = 1.$$

Clearly, $a \leq b$ implies $a \leq b$ (as then we can take r(1) = 1). Since for r in (2) one has $a^{n+m} \leq r(n)r(m)b^{n+m}$ for all n, m, we can assume that $r(n+m) \leq r(n)r(m)$. Hence, by Fekete's lemma¹ [4], we can assume that $\lim_{n\to\infty} r(n)^{1/n} = 1$.

Strassen [6] proved, using the Kadison-Dubois theorem ([5], [2,3], cf. [1]):²

Strassen's semiring theorem. Let \leq be a good preorder. Then for all $a, b \in S$: $a \leq b$ if and only if $\varphi(a) \leq \varphi(b)$ for each monotone homomorphism $\varphi : S \to \mathbb{R}_+$.

We give five propositions, from which Strassen's theorem will be derived.

Proposition 1. \leq *is a good preorder.*

Proof. Trivially, \leq is a preorder containing \leq . So (1)(iii) for \leq direct. To prove that \leq is good, we prove (1)(i) and (ii) for \leq .

Let $a, b \in S$ with $a \leq b$. So there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying $\lim_{n \to \infty} r(n)^{1/n} = 1$ and $a^n \leq r(n)b^n$ for all $n \in \mathbb{N}$. We can assume that r is nondecreasing.³ Then for any $c \in S$:

(3)
$$(a+c)^n = \sum_{k=0}^n {n \choose k} a^k c^{n-k} \le \sum_{k=0}^n {n \choose k} r(k) b^k c^{n-k} \le \sum_{k=0}^n {n \choose k} r(n) b^k c^{n-k} = r(n)(b+c)^n.$$

So $a + c \leq b + c$. Moreover,

¹If $c_1, c_2, \ldots \in \mathbb{R}_+$ with $c_{n+m} \leq c_n c_m$ for all $n, m \in \mathbb{N}$, then $\lim_{n \to \infty} c_n^{1/n} = \inf_{n \geq 1} c_n^{1/n}$.

²A function $\varphi : S \to \mathbb{R}_+$ is a monotone homomorphism if for all $a, b \in S$: $\varphi(a + b) = \varphi(a) + \varphi(b)$, $\varphi(ab) = \varphi(a)\varphi(b), \varphi(1) = 1$, and, if $a \leq b$, then $\varphi(a) \leq \varphi(b)$.

³ Define $r'(n) := \max_{k \le n} r(k)$. Then $a^n \le r(n)b^n \le r'(n)b^n$ for each n. To show $\lim_{n \to \infty} r'(n)^{1/n} = 1$, choose a real $\gamma > 1$. Choose N with $r(k)^{1/k} < \gamma$ for all $k \ge N$. Choose $K \ge N$ with $r(k)^{1/K} < \gamma$ for all k < N. (This is possible, since there are only finitely many k < N.) Then $r'(n)^{1/n} < \gamma$ for all $n \ge K$. Indeed, r'(n) = r(k) for some $k \le n$. If k < N, then $r'(n)^{1/n} = r(k)^{1/n} \le r(k)^{1/K} < \gamma$ (since $n \ge K$ and k < N). If $k \ge N$, then $r'(n)^{1/n} = r(k)^{1/n} \le r(k)^{1/K} < \gamma$ (since $n \ge K$ and k < N).

(4)
$$(ac)^n = a^n c^n \le r(n)b^n c^n = r(n)(bc)^n.$$

So $ac \leq bc$. This proves (1)(ii) for \leq .

To check (1)(i), let a and b belong in particular to \mathbb{N} and a = b + 1. Then, by taking *n*-th roots, $a^n \leq r(n)b^n$ gives $b + 1 = a \leq \inf_{n \geq 1} r(n)^{1/n}b = b$, contradicting (1)(i) for \leq . So (1)(i) holds for \leq .

Call a preorder $\leq closed$ if \leq is good and \lesssim is equal to \leq .

Proposition 2. \leq *is closed.*

Proof. Let $a, b \in S$ with $a \leq b$. So there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying $\inf_{n \geq 1} r(n)^{1/n} = 1$ and $a^n \leq r(n)b^n$ for all n. We must show that $a \leq b$.

It is enough to prove that, for any real $\gamma > 1$, there exist $k, t \in \mathbb{N}$ with $k \ge 1$, $t^{1/k} < \gamma$, and $a^k \le tb^k$. To that end, choose $n \ge 1$ with $r(n)^{1/n} < \sqrt{\gamma}$. As $a^n \le r(n)b^n$, by definition of \le there exists $s : \mathbb{N} \to \mathbb{N}$ with $\inf_{m\ge 1} s(m)^{1/m} = 1$ and $(a^n)^m \le s(m)(r(n)b^n)^m$ for all m. Choose $m \ge 1$ with $s(m)^{1/m} < \sqrt{\gamma}$. Then for k := nm and $t := s(m)r(n)^m$ one has $a^k = a^{nm} \le s(m)r(n)^m b^{nm} = tb^{nm} = tb^k$ and $t^{1/k} = t^{1/nm} = s(m)^{1/nm}r(n)^{1/n} < \gamma$, as required.

Proposition 3. Let \leq be closed. Then for all $a, b, c \in S$:

(5) (i) if $a + c \leq b + c$, then $a \leq b$; (ii) if $ac \leq bc$ and $c \neq 0$, then $a \leq b$; (iii) if $na \leq nb + 1$ for all $n \in \mathbb{N}$, then $a \leq b$.

Proof. I. First we prove (5)(ii). Assume $ac \leq bc$ and $c \neq 0$. Induction gives $a^n c \leq b^n c$ for each $n \in \mathbb{N}$, since $a^0 c = b^0 c$ and $a^{n+1}c = a^n ac \leq a^n bc \leq b^n bc = b^{n+1}c$.

By (1)(iii), there exist $r, k \in \mathbb{N}$ with $1 \leq cr \leq k$. Then $a^n \leq a^n cr \leq b^n cr \leq kb^n$ for each $n \in \mathbb{N}$. As $\inf_{n \geq 1} k^{1/n} = 1$, we know $a \leq b$, hence, as \leq is equal to $\leq, a \leq b$.

II. Next we prove (5)(iii). Assume $na \leq 1 + nb$ for each $n \in \mathbb{N}$. If b = 0, then a = 0 by (1)(iii), hence $a \leq b$. So we can assume $b \neq 0$. Let $r \in \mathbb{N}$ satisfy $1 \leq rb$. So for all $n \in \mathbb{N}$ we have $na \leq nb + 1 \leq (n+r)b$. Consider any $k \in \mathbb{N}$, and choose n large enough such that $(n+r)^k \leq 2n^k$. Then $n^k a^k \leq (n+r)^k b^k \leq 2n^k b^k$. Hence by (5)(ii), $a^k \leq 2b^k$. As this holds for each $k \in \mathbb{N}$ and as $\inf_{k\geq 1} 2^{1/k} = 1$, we know $a \leq b$. Hence, as \leq is equal to \leq , $a \leq b$.

III. Finally, we prove (5)(i). Assume $a+c \leq b+c$. Induction gives $na+c \leq nb+c$ for each $n \in \mathbb{N}$, since 0a+c = 0b+c and $(n+1)a+c = na+a+c \leq na+b+c \leq nb+b+c = (n+1)b+c$.

Choose $k \in \mathbb{N}$ with $c \leq k$. Then $na \leq na+c \leq nb+c \leq nb+k$ for each $n \in \mathbb{N}$. Replacing n by nk, we get $nka \leq nkb+k$, for each $n \in \mathbb{N}$. So by (5)(ii), $na \leq nb+1$ for each $n \in \mathbb{N}$. Hence by (5)(iii), $a \leq b$.

Proposition 4. Let \leq be closed and $a \not\leq b$. Then there exists a good preorder \leq containing \leq and satisfying $b \leq a$.

Proof. Define \leq by, for $x, y \in S$,

(6)
$$x \leq y \iff \exists c \in S: x + ac \leq y + bc.$$

Then \leq contains \leq , since if $x \leq y$, then $x + a0 \leq y + b0$, so $x \leq y$. Also, $b \leq a$, since b + a1 = a + b1. As \leq contains \leq , the relation \leq is reflexive and satisfies (1)(iii).

To see that \leq is transitive, let $x \leq y$ and $y \leq z$. Then $x + ac \leq y + bc$ and $y + ad \leq z + bd$ for some $c, d \in S$. Therefore, $x + a(c+d) \leq y + bc + ad \leq z + b(c+d)$. So $x \leq z$.

To see (1)(ii) for \leq , let $x \leq y$ and $z \in S$. Then $x + ac \leq y + bc$ for some $c \in S$, hence $x + z + ac \leq y + z + bc$ and $xz + acz \leq yz + bcz$. So $x + z \leq y + z$ and $xz \leq yz$.

Finally, to check (1)(i) for \leq , suppose that $n+1 \leq n$ for some $n \in \mathbb{N}$. Hence $n+1+ac \leq n+bc$ for some $c \in S$, implying (by (5)(i)) $1 + ac \leq bc$. So $c \neq 0$ (otherwise $1 \leq 0$ would follow) and $ac \leq bc$, implying (by(5)(ii)) $a \leq b$. This contradicts $a \not\leq b$.

Proposition 5. If \leq is good, there exists a monotone homomorphism $\varphi : S \to \mathbb{R}_+$.

Proof. Let \leq be good. By Zorn's lemma, we can assume that \leq is an inclusionwise maximal good preorder. This implies that \leq is not larger than \leq . So \leq is closed.

For each $a \in S$, define

(7)
$$L_a := \{ \frac{k}{n} \mid k, n \in \mathbb{N}, n \ge 1, k \le na \} \text{ and } U_a := \{ \frac{k}{n} \mid k, n \in \mathbb{N}, n \ge 1, na \le k \}.$$

Note that if $\frac{k}{n} = \frac{k'}{n'}$, then $k \leq na \iff k'n = kn' \leq nn'a \iff k' \leq n'a$, by (1)(ii) and (5)(ii). Similarly, $na \leq k \iff n'a \leq k'$.

Now for each $\frac{k}{n} \in L_a$ and $\frac{k'}{n'} \in U_a$ one has $\frac{k}{n} \leq \frac{k'}{n'}$, since $k \leq na$ and $n'a \leq k'$ give $kn' \leq nn'a \leq k'n$. Moreover, $L_a \cup U_a = \mathbb{Q}_+$, since for each $k, n \in \mathbb{N}$, at least one of $k \leq na$ and $na \leq k$ holds, as otherwise by Proposition 4 we can augment \leq with $na \leq k$ (because $k \not\leq na$), contradicting the maximality of \leq . Finally, $L_a \neq \emptyset$ and $U_a \neq \emptyset$, since $0 \leq a \leq k$ for some $k \in \mathbb{N}$, by (1)(iii).

So we can define $\varphi(a) := \sup L_a = \inf U_a$. Consider $a, b \in S$. Then $L_{a+b} \supseteq L_a + L_b$, since if $\frac{k}{n} \in L_a$ and $\frac{k'}{n'} \in L_b$, then $k \leq na$ and $k' \leq n'b$, hence $kn' + k'n \leq nn'a + nn'b = nn'(a+b)$, so that $\frac{k}{n} + \frac{k'}{n'} = \frac{kn' + k'n}{nn'}$ belongs to L_{a+b} . This implies $\varphi(a+b) \geq \varphi(a) + \varphi(b)$.

One similarly proves $U_{a+b} \supseteq U_a + U_b$, hence $\varphi(a+b) \leq \varphi(a) + \varphi(b)$. So $\varphi(a+b) = \varphi(a) + \varphi(b)$. Similarly, since $L_{ab} \supseteq L_a L_b$ and $U_{ab} \supseteq U_a U_b$ we have $\varphi(ab) = \varphi(a)\varphi(b)$. Finally, if $a \leq b$, then $L_a \subseteq L_b$, hence $\varphi(a) \leq \varphi(b)$.

Proof of Strassen's semiring theorem. To see necessity, let $a \leq b$ and let φ be a \leq -monotone homomorphism. Let $r : \mathbb{N} \to \mathbb{N}$ satisfy $\inf_{n \geq 1} r(n)^{1/n} = 1$ and $a^n \leq r(n)b^n$ for all n. Then $\varphi(a)^n = \varphi(a^n) \leq \varphi(r(n)b^n) = r(n)\varphi(b)^n$ for all $n \in \mathbb{N}$. Taking *n*-th roots and infimum over n, we obtain $\varphi(a) \leq \varphi(b)$.

To see sufficiency of the condition in Strassen's semiring theorem, we can assume that \leq is closed, as the condition for \leq implies the condition for \leq . So \leq satisfies (5).

Choose $a, b \in S$ with $a \not\leq b$. We must prove that $\varphi(a) \not\leq \varphi(b)$ for some monotone homomorphism $\varphi: S \to \mathbb{R}_+$.

By (5)(iii), as $a \leq b$, there exists $n \in \mathbb{N}$ with $na \leq 1+nb$. Then, by Proposition 4, there exists a good preorder \leq containing \leq and satisfying $1+nb \leq na$. Next by Proposition 5, there exists a homomorphism $\varphi : S \to \mathbb{R}_+$ that is monotone with respect to \leq . As \leq contains \leq , φ is also monotone with respect to \leq . Moreover, as $1+nb \leq na$, we have $\varphi(1+nb) \leq \varphi(na)$, so $1+n\varphi(b) \leq n\varphi(a)$, yielding $\varphi(b) < \varphi(a)$, as required.

References

- E. Becker, N. Schwartz, Zum Darstellungssatz von Kadison-Dubois, Archiv der Mathematik 40 (1983) 421–428.
- [2] D.W. Dubois, A note on David Harrison's theory of preprimes, *Pacific Journal of Mathematics* 21 (1967) 15–19.
- [3] D.W. Dubois, Second note on David Harrison's theory of preprimes, *Pacific Journal of Mathematics* 24 (1968) 57–68.
- [4] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Mathematische Zeitschrift 17 (1923) 228–249.
- [5] R.V. Kadison, A representation theory for commutative topological algebra, Memoirs of the American Mathematical Society 7 (1951), 39 pp.
- [6] V. Strassen, The asymptotic spectrum of tensors, Journal f
 ür die reine und angewandte Mathematik 384 (1988) 102–152.