
A PROOF OF STRASSEN’S SEMIRING THEOREM

Notes for our seminar — Lex Schrijver

Fix a commutative semiring (S,+, ); so (S,+) is an additive commutative semigroup
with null 0 and (S, ) is a multiplicative commutative semigroup with unit 1, satisfying
0a = 0 and a(b+ c) = ab+ ac for all a, b, c ∈ S. As usual, for any n ∈ N, the n-fold sum of
1 is denoted by n.

Call a preorder ≤ on S good if for all a, b, c ∈ S:

(1) (i) n ≤ n+ 1 and n+ 1 6≤ n for all n ∈ N;
(ii) if a ≤ b, then a+ c ≤ b+ c and ac ≤ bc;
(iii) if b 6= 0, then a ≤ nb for some n ∈ N.

Note that (i) says that ≤ induces the natural total order on N. Note also that 0 ≤ c for all
c ∈ S (by (ii), as 0 ≤ 1).

For any good preorder ≤, Volker Strassen [6] defines the asymptotic order . associated
with ≤ by, for a, b ∈ S:

(2) a . b ⇐⇒ ∃r : N→ N ∀n ∈ N: an ≤ r(n)bn and inf
n≥1

r(n)1/n = 1.

Clearly, a ≤ b implies a . b (as then we can take r(1) = 1). Since for r in (2) one has
an+m ≤ r(n)r(m)bn+m for all n,m, we can assume that r(n + m) ≤ r(n)r(m). Hence, by
Fekete’s lemma1 [4], we can assume that limn→∞ r(n)1/n = 1.

Strassen [6] proved, using the Kadison-Dubois theorem ([5], [2,3], cf. [1]):2

Strassen’s semiring theorem. Let ≤ be a good preorder. Then for all a, b ∈ S: a . b if
and only if ϕ(a) ≤ ϕ(b) for each monotone homomorphism ϕ : S → R+.

We give five propositions, from which Strassen’s theorem will be derived.

Proposition 1. . is a good preorder.

Proof. Trivially, . is a preorder containing ≤. So (1)(iii) for . direct. To prove that . is
good, we prove (1)(i) and (ii) for ..

Let a, b ∈ S with a . b. So there exists r : N → N satisfying limn→∞ r(n)1/n = 1 and
an ≤ r(n)bn for all n ∈ N. We can assume that r is nondecreasing.3 Then for any c ∈ S:

(3) (a+ c)n =
n∑

k=0

(
n
k

)
akcn−k ≤

n∑
k=0

(
n
k

)
r(k)bkcn−k ≤

n∑
k=0

(
n
k

)
r(n)bkcn−k = r(n)(b+ c)n.

So a+ c . b+ c. Moreover,

1If c1, c2, . . . ∈ R+ with cn+m ≤ cncm for all n,m ∈ N, then limn→∞ c
1/n
n = infn≥1 c

1/n
n .

2A function ϕ : S → R+ is a monotone homomorphism if for all a, b ∈ S: ϕ(a + b) = ϕ(a) + ϕ(b),
ϕ(ab) = ϕ(a)ϕ(b), ϕ(1) = 1, and, if a ≤ b, then ϕ(a) ≤ ϕ(b).

3 Define r′(n) := maxk≤n r(k). Then an ≤ r(n)bn ≤ r′(n)bn for each n. To show limn→∞ r
′(n)1/n = 1,

choose a real γ > 1. Choose N with r(k)1/k < γ for all k ≥ N . Choose K ≥ N with r(k)1/K < γ for all
k < N . (This is possible, since there are only finitely many k < N .) Then r′(n)1/n < γ for all n ≥ K.
Indeed, r′(n) = r(k) for some k ≤ n. If k < N , then r′(n)1/n = r(k)1/n ≤ r(k)1/K < γ (since n ≥ K and
k < N). If k ≥ N , then r′(n)1/n = r(k)1/n ≤ r(k)1/k < γ (since n ≥ k and k ≥ N).
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(4) (ac)n = ancn ≤ r(n)bncn = r(n)(bc)n.

So ac . bc. This proves (1)(ii) for ..
To check (1)(i), let a and b belong in particular to N and a = b + 1. Then, by taking

n-th roots, an ≤ r(n)bn gives b + 1 = a ≤ infn≥1 r(n)1/nb = b, contradicting (1)(i) for ≤.
So (1)(i) holds for .. �

Call a preorder ≤ closed if ≤ is good and . is equal to ≤.

Proposition 2. . is closed.

Proof. Let a, b ∈ S with a / b. So there exists r : N→ N satisfying infn≥1 r(n)1/n = 1 and
an . r(n)bn for all n. We must show that a . b.

It is enough to prove that, for any real γ > 1, there exist k, t ∈ N with k ≥ 1, t1/k < γ,
and ak ≤ tbk. To that end, choose n ≥ 1 with r(n)1/n <

√
γ. As an . r(n)bn, by definition

of . there exists s : N → N with infm≥1 s(m)1/m = 1 and (an)m ≤ s(m)(r(n)bn)m for all
m. Choose m ≥ 1 with s(m)1/m <

√
γ. Then for k := nm and t := s(m)r(n)m one has

ak = anm ≤ s(m)r(n)mbnm = tbnm = tbk and t1/k = t1/nm = s(m)1/nmr(n)1/n < γ, as
required. �

Proposition 3. Let ≤ be closed. Then for all a, b, c ∈ S:

(5) (i) if a+ c ≤ b+ c, then a ≤ b;
(ii) if ac ≤ bc and c 6= 0, then a ≤ b;
(iii) if na ≤ nb+ 1 for all n ∈ N, then a ≤ b.

Proof. I. First we prove (5)(ii). Assume ac ≤ bc and c 6= 0. Induction gives anc ≤ bnc for
each n ∈ N, since a0c = b0c and an+1c = anac ≤ anbc ≤ bnbc = bn+1c.

By (1)(iii), there exist r, k ∈ N with 1 ≤ cr ≤ k. Then an ≤ ancr ≤ bncr ≤ kbn for each
n ∈ N. As infn≥1 k

1/n = 1, we know a . b, hence, as . is equal to ≤, a ≤ b.
II. Next we prove (5)(iii). Assume na ≤ 1 + nb for each n ∈ N. If b = 0, then a = 0 by

(1)(iii), hence a ≤ b. So we can assume b 6= 0. Let r ∈ N satisfy 1 ≤ rb. So for all n ∈ N
we have na ≤ nb+ 1 ≤ (n+ r)b. Consider any k ∈ N, and choose n large enough such that
(n+ r)k ≤ 2nk. Then nkak ≤ (n+ r)kbk ≤ 2nkbk. Hence by (5)(ii), ak ≤ 2bk. As this holds
for each k ∈ N and as infk≥1 21/k = 1, we know a . b. Hence, as . is equal to ≤, a ≤ b.

III. Finally, we prove (5)(i). Assume a+c ≤ b+c. Induction gives na+c ≤ nb+c for each
n ∈ N, since 0a+c = 0b+c and (n+1)a+c = na+a+c ≤ na+b+c ≤ nb+b+c = (n+1)b+c.

Choose k ∈ N with c ≤ k. Then na ≤ na+c ≤ nb+c ≤ nb+k for each n ∈ N. Replacing
n by nk, we get nka ≤ nkb+ k, for each n ∈ N. So by (5)(ii), na ≤ nb+ 1 for each n ∈ N.
Hence by (5)(iii), a ≤ b. �

Proposition 4. Let ≤ be closed and a 6≤ b. Then there exists a good preorder � containing
≤ and satisfying b � a.

Proof. Define � by, for x, y ∈ S,

(6) x � y ⇐⇒ ∃c ∈ S: x+ ac ≤ y + bc.
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Then � contains ≤, since if x ≤ y, then x + a0 ≤ y + b0, so x � y. Also, b � a, since
b+ a1 = a+ b1. As � contains ≤, the relation � is reflexive and satisfies (1)(iii).

To see that � is transitive, let x � y and y � z. Then x+ac ≤ y+bc and y+ad ≤ z+bd
for some c, d ∈ S. Therefore, x+ a(c+ d) ≤ y + bc+ ad ≤ z + b(c+ d). So x � z.

To see (1)(ii) for �, let x � y and z ∈ S. Then x + ac ≤ y + bc for some c ∈ S, hence
x+ z + ac ≤ y + z + bc and xz + acz ≤ yz + bcz. So x+ z � y + z and xz � yz.

Finally, to check (1)(i) for �, suppose that n+1 � n for some n ∈ N. Hence n+1+ac ≤
n + bc for some c ∈ S, implying (by (5)(i)) 1 + ac ≤ bc. So c 6= 0 (otherwise 1 ≤ 0 would
follow) and ac ≤ bc, implying (by(5)(ii)) a ≤ b. This contradicts a 6≤ b. �

Proposition 5. If ≤ is good, there exists a monotone homomorphism ϕ : S → R+.

Proof. Let ≤ be good. By Zorn’s lemma, we can assume that ≤ is an inclusionwise maximal
good preorder. This implies that . is not larger than ≤. So ≤ is closed.

For each a ∈ S, define

(7) La := { kn | k, n ∈ N, n ≥ 1, k ≤ na} and Ua := { kn | k, n ∈ N, n ≥ 1, na ≤ k}.

Note that if k
n = k′

n′ , then k ≤ na ⇐⇒ k′n = kn′ ≤ nn′a ⇐⇒ k′ ≤ n′a, by (1)(ii) and
(5)(ii). Similarly, na ≤ k ⇐⇒ n′a ≤ k′.

Now for each k
n ∈ La and k′

n′ ∈ Ua one has k
n ≤

k′

n′ , since k ≤ na and n′a ≤ k′ give
kn′ ≤ nn′a ≤ k′n. Moreover, La ∪ Ua = Q+, since for each k, n ∈ N, at least one of k ≤ na
and na ≤ k holds, as otherwise by Proposition 4 we can augment ≤ with na ≤ k (because
k 6≤ na), contradicting the maximality of ≤. Finally, La 6= ∅ and Ua 6= ∅, since 0 ≤ a ≤ k
for some k ∈ N, by (1)(iii).

So we can define ϕ(a) := supLa = inf Ua. Consider a, b ∈ S. Then La+b ⊇ La+Lb, since
if k

n ∈ La and k′

n′ ∈ Lb, then k ≤ na and k′ ≤ n′b, hence kn′+k′n ≤ nn′a+nn′b = nn′(a+b),

so that k
n + k′

n′ = kn′+k′n
nn′ belongs to La+b. This implies ϕ(a+ b) ≥ ϕ(a) + ϕ(b).

One similarly proves Ua+b ⊇ Ua + Ub, hence ϕ(a + b) ≤ ϕ(a) + ϕ(b). So ϕ(a + b) =
ϕ(a) + ϕ(b). Similarly, since Lab ⊇ LaLb and Uab ⊇ UaUb we have ϕ(ab) = ϕ(a)ϕ(b).
Finally, if a ≤ b, then La ⊆ Lb, hence ϕ(a) ≤ ϕ(b). �

Proof of Strassen’s semiring theorem. To see necessity, let a . b and let ϕ be a
≤-monotone homomorphism. Let r : N→ N satisfy infn≥1 r(n)1/n = 1 and an ≤ r(n)bn for
all n. Then ϕ(a)n = ϕ(an) ≤ ϕ(r(n)bn) = r(n)ϕ(b)n for all n ∈ N . Taking n-th roots and
infimum over n, we obtain ϕ(a) ≤ ϕ(b).

To see sufficiency of the condition in Strassen’s semiring theorem, we can assume that
≤ is closed, as the condition for ≤ implies the condition for .. So ≤ satisfies (5).

Choose a, b ∈ S with a 6≤ b. We must prove that ϕ(a) 6≤ ϕ(b) for some monotone
homomorphism ϕ : S → R+.

By (5)(iii), as a 6≤ b, there exists n ∈ N with na 6≤ 1 +nb. Then, by Proposition 4, there
exists a good preorder � containing ≤ and satisfying 1 + nb � na. Next by Proposition
5, there exists a homomorphism ϕ : S → R+ that is monotone with respect to �. As �
contains ≤, ϕ is also monotone with respect to ≤. Moreover, as 1 + nb � na, we have
ϕ(1 + nb) ≤ ϕ(na), so 1 + nϕ(b) ≤ nϕ(a), yielding ϕ(b) < ϕ(a), as required.
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