V. Szemerédi’s regularity lemma

1. Szemerédi’s regularity lemma

The ‘regularity lemma’ of Endre Szemerédi [5] roughly asserts that, for each € > 0, there
exists a number k such that the vertex set V' of any graph G = (V, E) can be partitioned
into at most k almost equal-sized classes so that between almost any two classes, the edges
are distributed almost homogeneously. Here almost depends on €. The important issue is
that k& only depends on €, and not on the size of the graph.

Let G = (V, E) be a directed graph. For nonempty I,J C V, let e(I,J) := |EN(I x J)]
and d(I,J) :=e(I,J)/|I||J|. Call the pair (I, J) e-regular if for all X C I,Y C J:

(1) if | X| > e|I| and |Y| > ¢|J| then |d(X,Y) —d(I,J)| <e.
A partition P of V is called e-regular if

(2) Yo I <elvP.

I,JeP
(I,J) e-irregular

Moreover, P is called e-balanced if P contains a subcollection C such that all sets in C have
the same size and such that |V \ |JC| < ¢|V].

For I,J C V,let L; j be the linear subspace of RY*V consisting of all scalar multiples
of the incidence matrix of I x J in RV*YV. For any M € RV*V let M; ; be the orthogonal
projection of M onto Ly j (with respect to the inner product Tr(MN T) for matrices M, N €
RV*V). So the entries of My yon I x J are all equal to the average value of M on I x J.

If P is a partition of V', let Lp be the sum of the spaces Ly ;y with I,J € P, and let Mp
be the orthogonal projection of M onto Lp. So Mp =3} ;cp My ;.

Define f.(z) := (1 +¢&~1)x4® for v € R.

Lemma 1. Let € > 0 and G = (V,E) be a directed graph, with adjacency matriz A.
Then each e-irreqular partition P has an e-balanced refinement Q with |Q| < f:(|P|) and
[Agl® > | Ap|? + 2|V

Proof. Let (I1,.J1),..., (I, J,) be the e-irregular pairs in P2. For each i = 1,...,n, we
can choose (by definition () subsets X; C I; and Y; C J; with | X;| > ¢|L;], |Y;| > ¢|J;| and
|d(X;,Y;) —d(1;, J;)| > €. For any fixed K € P, there exists a partition Rx of K such that
each X; with I, = K and each Y; with J; = K is a union of classes of Rx and such that
|Ri| < 2Pl — 4IP| et R := Ugep Rix. Then R is a refinement of P such that each X;
and each Y; is a union of classes of R. Moreover, |R| < |P|4/Fl.

Now note that for each i, since (Agr)x,y; = Ax,y, (as Lx,y; € Lr) and since Ay, y,
and Ap are constant on X; x Y;, with values d(X;,Y;) and d(1;, J;), respectively:

(3) I(AR-Ap)x, . lI* = | Ax,v:i(Ap)x, v.lI* = Xl Vil (d(X;, Yi)—d(Li, Ji))? > L] Ji].

Then negating (2)) gives with Pythagoras, as Ap is orthogonal to A — Ap (as Lp C Lg),



and as the spaces L, y, are pairwise orthogonal,

(4) IARIP=ApI* = 1Ar—ApI* = > I(Ar—Ap)x, vl = > LT > V],
i=1 i=1

To obtain an e-balanced partition @, define t := ¢|V|/|R|. Split each class of R into
classes, each of size [t], except for at most one of size less than t. This gives partition Q.
Then |Q| < |R| + |V|/t = (1 + &7 1)|R| < f-(|P]). Moreover, the union of the classes of Q
of size less than t has size at most |R|t = €|V|. So @Q is e-balanced. As Lr C Lq, we have,
using @), [[Aqll* > [|Ar[* > | Ap[* + V] 1

For n € N, fI' denotes the n-th iterate of f.

Theorem 1 (Szemerédi’s regularity lemma). For each e > 0 and directed graph G = (V, E),

each partition P of V' has an e-balanced e-reqular refinement of size < f!giﬂ (|P]).

Proof. Let A be the adjacency matrix of G. Set Py = P. For ¢ > 0, if P; has been set, let
P; 1 be an e-balanced refinement of P; with |P; 1| < f-(|F;|) and with ||Ap,, , || maximal. As
|Ap % < |A|? < [V|? for all 4, ||Ap,, ||? < ||Ap||*> + €%|V|? for some i with 1 <4 < [¢75].

Then, by Lemma[ll, P; is e-regular. Moreover |P;| < fi(|P|) < f££751(]P]). |

It is important to observe that the bound on |@Q|, though generally huge, only depends
on ¢ and | P|, and not on the size of the graph. Gowers [1] showed that the bound necessarily
is huge (at least a tower of powers of 2’s of height proportional to e~/16).

Exercise

1.1. Let P be an e-balanced e-regular partition of V', and let C' C P be such that all sets in C
have the same size and such that |V \ |JC| < ¢|V|. Prove that at most (¢/(1 — £)?)|C|? pairs
in C? are e-irregular.

2. Arithmetic progressions

An arithmetic progression of length k is a sequence of numbers aq,...,ar with a; — a;—1 =
ay —ayp # 0 for i = 2,..., k. For any k and n, let ax(n) be the maximum size of a subset
of [n] containing no arithmetic progression of length k. (Here [n] := {1,...,n}.)

We can now derive the theorem of Roth [3], which implies that any set X of natural
numbers with limsup,,_,., |X N [n]|/n > 0 contains an arithmetic progression of length 3.

(f(n) = o(g(n)) means lim, .o f(n)/g(n) = 0.)
Corollary la. az(n) = o(n).

Proof. Choose € > 0, define K := fse_sw(l), and let n > ¢ 3K. It suffices to show that
as(n) < 30en, so suppose ag(n) > 30en. Let S be a subset of [n] of size a3(n) containing
no arithmetic progressions of length 3. Define the directed graph G = (V, E) by V := [2n]
and E := {(u,v) | u,v € V,uv —u € S}. So |E| > |S|n > 30en?.



By Theorem [I] there exists an e-regular partition P of V of size at most K. Let Q be
the set of e-regular pairs (I, J) € P? with d(I, J) > 2¢ and |I| > ¢~2. Then

(5) D e(l,J) > 16en®.

(I,J)eQ

Indeed, as P is e-regular and as e(I,J) < |I||J|, (@) implies that the sum of e(I,J) over
all e-irregular pairs (I, J) is at most ¢|V|? = 4en®. Moreover, the sum of e(I,.J) over all
pairs (I,J) € P? with d(I,J) < 2¢ is at most 2¢|V|? = 8en?. Finally, the sum of e(I,J)
over all (I,J) € P? with |I| < &2 is at most |Ple 2|V| < Ke2|V| = 2Ke2n < 2en?. As
dorgeped,J) =|E] > 30en?, we obtain (H).

Now let A := [4n]. For each a € A, define E, := {(u,v) € E | u+ v = a}, and let T,
and H, be the sets of tails and of heads, respectively, of the edges in E,. Then

(6) there exist a € A and (I, J) € Q such that |T, N I| > ¢|I| and |H, N J| > €|J]|.

Suppose such a, I, J do not exist. For a € A, I,J € P, let e,(I,J) be the number of pairs
in I x J that are adjacent in (V, E,). So e(,J) = ,ca€a(l,J) for all I,J € P. Now the
sum of e, (I, J) over all a,I,J with |T, N I| < ¢|I| is equal to the sum of |T, N I| over all
a, I with [T, N I| < e|I|, which is at most >, ;e[l| = ¢|A|[V]| = 8en?. Similarly, the sum of
ea(I,J) over all a, I, J with |H, N J| < ¢|J| is at most 8en?. Hence, with () we obtain (@).

Set X :=T,NIand Y := H,NJ. So | X| > ¢|I| and |Y]| > ¢|J|. As (I,J) is e-regular,
d(I,J) > 2¢, and |I| > e72, we have d(X,Y) > d(I,J) —e > e > e YI|7! > |X|7L. So
e(X,Y) =d(X,Y)|X||Y| > |Y]|. Hence there is an edge (u,v) in X XY with u+v = b # a (as
E, is a matching). By definition of T}, and H,, there exist v/, v’ € V with (u, "), (v/,v) € E,.
Then v/ — u,v — u,v — v/ is an arithmetic progression in S of length 3, since v’ # v and
v—v =u—u,asu+v =a=u+v. 1

(Note that e-balancedness of partition P of V' is not used in this proof.) This was
extended to ag(n) = o(n) for any k by Szemerédi [4]. Recently, Green and Tao [2] proved
that there exist arbitrarily long arithmetic progressions of primes.
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