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Abstract. We characterize which graph parameters are partition functions of a vertex model over an
algebraically closed field of characteristic 0 (in the sense of de la Harpe and Jones, Graph invariants
related to statistical mechanical models: examples and problems, Journal of Combinatorial Theory,

Series B 57 (1993) 207–227).
We moreover characterize when the vertex model can be taken so that its moment matrix

has finite rank. Basic instruments are the Nullstellensatz and the First and Second Fundamental
Theorems of Invariant theory for the orthogonal group.

1. Introduction and survey of results

Let G denote the collection of all undirected graphs, two of them being the same if they
are isomorphic. In this paper, all graphs are finite and may have loops and multiple edges.
We denote by δ(v) the set of edges incident with a vertex v. An edge connecting u and v is
denoted by uv. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. Moreover, N = {0, 1, 2, . . .} and for k ∈ N:

(1) [k] := {1, . . . , k}.

Let k ∈ N and let F be a commutative ring. Following de la Harpe and Jones [5], call
any function y : N

k → F a (k-color) vertex model (over F).6 The partition function of y is
the function py : G → F defined for any graph G = (V, E) by

(2) py(G) :=
∑

κ:E→[k]

∏

v∈V

yκ(δ(v)).

Here κ(δ(v)) is a multisubset of [k], which we identify with its incidence vector in N
k.

We can visualize κ as a coloring of the edges of G and κ(δ(v)) as the multiset of colors
‘seen’ from v. The vertex model was considered by de la Harpe and Jones [5] as a physical
model, where vertices serve as particles, edges as interactions between particles, and colors
as states or energy levels. They also introduced the ‘spin model’, where the role of vertices
and edges is interchanged. The partition function of any spin model is also the partition
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function of some vertex model, as was shown by Szegedy [10]7. Hence it includes the
Ising-Potts model (cf. Section 2 below). Also several graph parameters (like the number
of matchings) are partition functions of some vertex model. There are real-valued graph
parameters that are partition functions of a vertex model over C, but not over R. (A simple
example is (−1)|E(G)|.)

In this paper, we characterize which functions f : G → F are the partition function of a
vertex model over F, when F is an algebraically closed field of characteristic 0.

To describe the characterization, let GH denote the disjoint union of graphs G and
H. Call a function f : G → F multiplicative if f(∅) = 1 and f(GH) = f(G)f(H) for all
G, H ∈ G.

Moreover, for any graph G = (V, E), any U ⊆ V , and any s : U → V , define

(3) Es := {us(u) | u ∈ U} and Gs := (V, E ∪ Es)

(adding multiple edges if Es intersects E). Let SU be the group of permutations of U .

Theorem 1. Let F be an algebraically closed field of characteristic 0. A function f : G → F

is the partition function of some k-color vertex model over F if and only if f is multiplicative

and for each graph G = (V, E), each U ⊆ V with |U | = k + 1, and each s : U → V :

(4)
∑

π∈SU

sgn(π)f(Gs◦π) = 0.

Let y : N
k → F. The corresponding moment matrix is

(5) My := (yα+β)α,β∈Nk .

Abusing language we say that y has rank r if My has rank r. For any graph G = (V, E),
U ⊆ V , and s : U → V , let G/s be the graph obtained from Gs by contracting all edges in
Es.

Theorem 2. Let f be the partition function of a k-color vertex model over an algebraically

closed field F of characteristic 0. Then f is the partition function of a k-color vertex model

over F of rank at most r if and only if for each graph G = (V, E), each U ⊆ V with

|U | = r + 1, and each s : U → V \ U :

(6)
∑

π∈SU

sgn(π)f(G/s ◦ π) = 0.

It is easy to see that the conditions in Theorem 2 imply those in Theorem 1 for k := r,
since for each u ∈ U we can add to G a new vertex u′ and a new edge uu′, thus obtaining
graph G′. Then (6) for G′, U ′, and s′(u′) := s(u) gives (4). This implies that if f is the

7The construction given in [5] only extends the spin model for line graphs.
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partition function of a vertex model of rank r, it is also the partition function of an r-color
vertex model of rank r.

It is also direct to see that in both theorems we may restrict s to injective functions.
However, in Theorem 1, s(U) should be allowed to intersect U (otherwise f(G) := 2# of loops

would satisfy the condition for k = 1, but is not the partition function of some 1-color vertex
model). Moreover, in Theorem 2, s(U) may not intersect U (otherwise f(G) := 2|V (G)| would
not satisfy the condition for k = r = 1, while it is the partition function of some 1-color
vertex model of rank 1).

2. Background

In this section, we give some background to the results described in this paper. The defini-
tions and results given in this section will not be used in the remainder of this paper.

As mentioned, the vertex model has its roots in mathematical physics, see de la Harpe
and Jones [5], and for more background on the relations between graph theory and models
in statistical mechanics, [1], [9], and [12]. De la Harpe en Jones also gave the dual ‘spin
model’, where the roles of vertices and edges are interchanged. Partition functions of spin
models were characterized by Freedman, Lovász, and Schrijver [3] and Schrijver [8]. Szegedy
[10] showed that the partition function of any spin model is also the partition function of
some vertex model (it extends a result of [5]).

Let us illustrate these results by applying them to the Ising model. The Ising model (a
spin model) has the following partition function:

(7) f(G) :=
∑

σ:V (G)→{+1,−1}

∏

uv∈E(G)

exp(σ(u)σ(v)L/kT ),

where L is a positive constant, k is the Boltzmann constant and T is the temperature. Now
for each U ⊆ V (G) with |U | = 3 and each s : U → V (G), condition (4) is satisfied, that is,
equivalently,

(8)
∑

σ:V (G)→{+1,−1}

∑

π∈SU

sgn(π)
∏

uv∈E(Gs◦π)

exp(σ(u)σ(v)L/kT ) = 0.

This follows from the fact that for each fixed σ : V (G) → {+1,−1} there exist distinct
u1, u2 ∈ U with σ(u1) = σ(u2). Let ρ be the permutation in SU that exchanges u1 and u2.
Then the terms in (8) for π and π ◦ ρ cancel.

So by Theorem 1, f is the partition function py of some 2-color vertex model y. With
Theorem 2 one may similarly show that one can take y of rank 2. Indeed, one may check
that one has f = py by taking y : N

2 → R with

(9) y(k, l) := γkδl + γlδk,

where γ, δ are real numbers satisfying γ2 + δ2 = exp(L/kT ) and 2γδ = exp(−L/kT ).
We next describe some results of Szegedy [8,9] concerning the vertex model that are
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related to, and have motivated, our results. They require the notions of l-labeled graphs
and l-fragments.

For l ∈ N, an l-labeled graph is an undirected graph G = (V, E) together with an injective
‘label’ function λ : [l] → V . (So unlike in the usual meaning of labeled graph, in an l-labeled
graph only l of the vertices are labeled, while the remaining vertices are unlabeled.)

If G and H are two l-labeled graphs, let GH be the graph obtained from the disjoint
union of G and H by identifying equally labeled vertices. (We can identify (unlabeled)
graphs with 0-labeled graphs, and then this notation extends consistently the notation GH
given in Section 1.)

An l-fragment is an l-labeled graph where each labeled vertex has degree 1. (If you like,
you may alternatively view the degree-1 vertices as ends of ‘half-edges’.) If G and H are
l-fragments, the graph G ·H is obtained from GH by ignoring each of the l identified points
as vertex, joining its two incident edges into one edge. (A good way to imagine this is to
see a graph as a topological 1-complex.) Note that it requires that we also should consider
the ‘vertexless loop’ as possible edge of a graph, as we may create it in G · H.

Let Gl and G′
l denote the collections of l-labeled graphs and of l-fragments, respectively.

For any f : G → F and l ∈ N, the connection matrices Cf,l and C ′
f,l are the Gl × Gl and

G′
l × G′

l matrices defined by

(10) Cf,l := (f(GH))G,H∈Gl
and C ′

f,l := (f(G · H))G,H∈G′

l
.

Now we can formulate Szegedy’s theorem ([10]):

(11) A function f : G → R is the partition function of a vertex model over R if and
only if f is multiplicative and C ′

f,l is positive semidefinite for each l.

Note that the number of colors is equal to the f -value of the vertexless loop. The proof of
(11) is based on the First Fundamental Theorem for the orthogonal group and on the Real
Nullstellensatz.

Next consider the complex case. Szegedy [11] observed that if y is a vertex model of rank
r, then rank(Cpy ,l) ≤ rl for each l. It made him ask whether, conversely, for each function
f : G → C with f(∅) = 1 such that there exists a number r for which rank(Cf,l) ≤ rl for
each l, there exists a finite rank vertex model y over C with f = py. The answer is negative
however: the function f defined by

(12) f(G) :=

{

(−2)# of components if G is 2-regular,

0 otherwise,

has f(∅) = 1 and can be shown to satisfy rank(Cf,l) ≤ 4l for each l. However, f is not
the partition function of a vertex model (as for no k it satisfies condition (4) of Theorem
1). The characterizations given in the present paper may serve as alternatives to Szegedy’s
question.
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3. A useful framework

In the proofs of both Theorem 1 and 2 we will use the following framework and results.
Let k ∈ N. Introduce a variable yα for each α ∈ N

k and define the ring R of polynomials
in these (infinitely many) variables:

(13) R := F[yα | α ∈ N
k].

There is a bijection between the variables yα in R and the monomials xα =
∏k

i=1 xαi

i in
F[x1, . . . , xk]. (Note that xαxβ does not correspond to yαyβ , but with yα+β.) In this way,
functions y : N

k → F correspond to elements of F[x1, . . . , xk]
∗.

Define p : G → R by p(G)(y) := py(G) for any graph G = (V, E) and y : N
k → F. Let

FG denote the set of formal F-linear combinations of elements of G. The elements of FG are
called quantum graphs. We can extend p linearly to FG. Taking disjoint union of graphs G
and H as product GH, makes FG to an algebra. Then p is an algebra homomorphism.

The main ingredients of the proof are two basic facts about p: a characterization of the
image Im p of p and a characterization of the kernel Ker p of p. The characterization of
Im p is similar to that given by Szegedy [10].

To characterize Im p, let Ok be the group of orthogonal matrices over F of order k.
Observe that Ok acts on F[x1, . . . , xk], and hence on R, through the bijection yα ↔ xα

mentioned above. As usual, ZOk denotes the set of Ok-invariant elements of Z, if Ok acts
on a set Z.

To characterize Ker p, let I be the subspace of FG spanned by the quantum graphs

(14)
∑

π∈SU

sgn(π)Gs◦π,

where G = (V, E) is a graph, U ⊆ V with |U | = k + 1, and s : U → V .

Proposition 1. Im p = ROk and Ker p = I.

Proof. For n ∈ N, let Gn be the collection of graphs with n vertices, again two of them
being the same if they are isomorphic. Let SF

n×n be the set of symmetric matrices in F
n×n.

For any linear space X, let O(X) denote the space of regular functions on X (the algebra
generated by the linear functions on X). Then O(SF

n×n) is spanned by the monomials
∏

ij∈E xi,j in the variables xi,j , where ([n], E) is a graph. Here xi,j = xj,i are the standard

coordinate functions on SF
n×n, while taking ij as unordered pair.

Let FGn be the linear space of formal F-linear combinations of elements of Gn, and
Rn be the set of homogeneous polynomials in R of degree n. We set pn := p|FGn. So
pn : FGn → Rn. Hence it suffices to show, for each n,

(15) Im pn = ROk
n and Ker pn = I ∩ FGn.

To show (15), we define linear functions µ, σ, and τ so that the following diagram
commutes:
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(16)

FGn
pn

−−−−→ Rn
x





µ

x





σ

O(SF
n×n)

τ
−−−−→ O(Fk×n)

.

Define µ by

(17) µ(
∏

ij∈E xi,j) := G

for any graph G = ([n], E). Define σ by

(18) σ(
n

∏

j=1

k
∏

i=1

z
α(i,j)
i,j ) :=

n
∏

j=1

yαj

for α ∈ N
k×n, where zi,j are the standard coordinate functions on F

k×n and where αj =
(α(1, j), . . . , α(k, j)) ∈ N

k. Then σ is Ok-equivariant, for the natural action of Ok on
O(Fk×n).

Finally, define τ by

(19) τ(q)(z) := q(zT z)

for q ∈ O(SF
n×n) and z ∈ F

k×n.
Now (16) commutes; in other words,

(20) pn ◦ µ = σ ◦ τ.

To prove it, consider any monomial q :=
∏

ij∈E xi,j in O(SF
n×n), where G = ([n], E) is a

graph. Then for z ∈ F
k×n,

(21) τ(q)(z) = q(zT z) =
∏

ij∈E

k
∑

h=1

zh,izh,j =
∑

κ:E→[k]

∏

i∈[n]

∏

e∈δ(i)

zκ(e),i.

So, by definition (18) of σ and (17) of µ,

(22) σ(τ(q)) =
∑

κ:E→[k]

∏

i∈[n]

yκ(δ(i)) = pn(G) = pn(µ(q)).

This proves (20).
Note that τ is an algebra homomorphism, but µ and σ generally are not. (FGn and

Rn are not algebras.) The latter two functions are surjective, and their restrictions to the
Sn-invariant part of their respective domains are bijective.

The First Fundamental Theorem (FFT) for Ok (cf. [4] Theorem 5.2.2) says that Im τ =
(O(Fk×n))Ok . Hence, as µ and σ are surjective, and as σ is Ok-equivariant,
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(23) Im pn = pn(FGn) = pn(µ(O(SF
n×n))) = σ(τ(O(SF

n×n))) = σ(O(Fk×n)Ok) =
ROk

n .

(The last equality follows from the fact that σ is Ok-equivariant, so that we have ⊆. To see
⊇, take q ∈ ROk

n . As σ is surjective, q = σ(r) for some r ∈ O(Fk×n). Then q = σ(ρOk
(r)),

where ρOk
is the Reynolds operator.) This is the first statement in (15).

To see I ∩ FGn ⊆ Ker pn, let G = ([n], E) be a graph, U ⊆ [n] with |U | = k + 1, and
s : U → [n]. Then

∑

π∈SU
sgn(π)Gs◦π belongs to Ker pn, as

(24) p(
∑

π∈SU

sgn(π)Gs◦π) =
∑

κ:E∪Es→[k]

∑

π∈SU

sgn(π)
∏

v∈V

yκ(δGs◦π (v)).

For fixed κ, there exist distinct u1, u2 ∈ U with κ(u1s(u1)) = κ(u2s(u2)). So if ρ is the
permutation of U interchanging u1 and u2, we have that the terms corresponding to π and
π ◦ ρ cancel. Hence (24) is zero.

We finally show Ker pn ⊆ I. The Second Fundamental Theorem (SFT) for Ok (cf. [4]
Theorem 12.2.14) says that Ker τ = K, where K is the ideal in O(SF

n×n) generated by
the (k + 1) × (k + 1) minors of SF

n×n. Then

(25) µ(K) ⊆ I.

It suffices to show that for any (k + 1) × (k + 1) submatrix N of F
n×n and any graph

G = ([n], E) one has

(26) µ(det N
∏

ij∈E

xi,j) ∈ I.

There is a subset U of [n] with |U | = k + 1, and an injective function s : U → [n] such that
{(u, s(u)) | u ∈ U} forms the diagonal of N . So

(27) det N =
∑

π∈SU

sgn(π)
∏

u∈U

xu,s◦π(u).

Then

(28) µ(det N
∏

ij∈E

xi,j) =
∑

π∈SU

sgn(π)µ
(

∏

u∈U

xu,s◦π(u) ·
∏

ij∈E

xi,j

)

=
∑

π∈SU

sgn(π)Gs◦π ∈ I,

by definition of I. This proves (26).
To prove Ker pn ⊆ I, let γ ∈ FGn with pn(γ) = 0. Then γ = µ(q) for some q ∈

(O(SF
n×n))Sn . Hence σ(τ(q)) = p(µ(q)) = p(γ) = 0. As τ(q) is Sn-invariant, this implies

τ(q) = 0 (as σ is bijective on O(Fk×n)Sn). So q ∈ K, hence γ = µ(q) ∈ µ(K) ⊆ I.
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4. Proof of Theorem 1

We fix k. Necessity of the conditions is direct. Condition (4) follows from the fact that
Ker p = I (Proposition 1).

To prove sufficiency, we must show that the polynomials p(G) − f(G) have a common
zero. Here f(G) denotes the constant polynomial with value f(G). So a common zero
means an element y : N

k → F with for all G ∈ G, (p(G) − f(G))(y) = 0, equivalently
py(G) = f(G), as required.

As f is multiplicative, f extends linearly to an algebra homomorphism f : FG → F. By
the condition in Theorem 1, f(I) = 0. So by Proposition 1, Ker p ⊆ Ker f . Hence there
exists an algebra homomorphism f̂ : p(FG) → F such that f̂ ◦ p = f .

Let I be the ideal in R generated by the polynomials p(G) − f(G) for graphs G. Let
ρOk

denote the Reynolds operator on R. By Proposition 1, ρOk
(I) is equal to the ideal

in p(FG) = ROk generated by the polynomials p(G) − f(G). (This follows essentially
from the fact that if q ∈ ROk and r ∈ R, then ρOk

(qr) = qρOk
(r).) This implies, as

f̂(p(G) − f(G)) = 0, that

(29) f̂(ρOk
(I)) = 0,

hence 1 6∈ I.
If |F| is uncountable (e.g. if F = C), the Nullstellensatz for countably many variables

(Lang [7]) yields the existence of a common zero y.
To prove the existence of a common zero y for general algebraically closed fields F of

characteristic 0, let, for each d ∈ N, Ad := {α ∈ N
k | |α| ≤ d} and

(30) Yd := {z|Ad | z : N
k → F, q(z) = f̂(q) for each q ∈ F[yα | α ∈ Ad]

Ok}.

(Since F[yα | α ∈ Ad] is a subset of F[yα | α : N
k → F], f̂(q) is defined.) So Yd consists

of the common zeros of the polynomials p(G) − f(G) where G ranges over the graphs of
maximum degree at most d.

By the Nullstellensatz, since |Ad| is finite, Yd 6= ∅. Note that Yd is Ok-stable. This
implies that Yd contains a unique Ok-orbit Cd of minimal (Krull) dimension (cf. [6] Satz 2,
page 101 or [2] 1.11 and 1.24).

Let πd be the projection z 7→ z|Ad for z : Ad′ → F (d′ ≥ d). Note that if d′ ≥ d then
πd(Cd′) is an Ok-orbit contained in Yd. Hence

(31) dimCd ≤ dim πd(Cd′) ≤ dimCd′ .

As dim Cd ≤ dimOk for all d, there is a d0 such that for each d ≥ d0, dimCd = dimCd0 .
Hence we have equality throughout in (31) for all d′ ≥ d ≥ d0.

By the uniqueness of the orbit of smallest dimension, this implies that, for all d′ ≥ d ≥ d0,
Cd = πd(Cd′). Hence there exists y : N

k → F such that y|Ad ∈ Cd for each d ≥ d0. This y
is as required.
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5. Proof of Theorem 2

Necessity can be seen as follows. Choose y : N
k → F with rank(My) ≤ r and choose

κ : E → [k], U ⊆ V with |U | = r + 1, and s : U → V \ U . Then

(32)
∑

π∈SU

sgn(π)py(G/s◦π) =
∑

κ:E→[k]

∑

π∈SU

sgn(π)
∏

u∈U

yκ(δ(u)∪δ(s(π(u)))) ·
∏

v∈V \(U∪s(U))

yκ(δ(v)) =

∑

κ:E→[k]

det(yκ(δ(u)∪δ(s(v))))u,v∈U

∏

v∈V \(U∪s(U))

yκ(δ(v)) = 0.

To see sufficiency, let J be the ideal in FG spanned by the quantum graphs

(33)
∑

π∈SU

sgn(π)G/s ◦ π,

where G = (V, E) is a graph, U ⊆ V with |U | = r + 1, and s : U → V \ U . Let J be the
ideal in R generated by the polynomials detN where N is an (r + 1) × (r + 1) submatrix
of My.

Proposition 2. ρOk
(J ) ⊆ p(J).

Proof. It suffices to show that for any (r+1)×(r+1) submatrix N of My and any monomial
a in R, ρOk

(adetN) belongs to p(J). Let a have degree d, and let n := 2(r + 1) + d. Let
U := [r + 1] and let s : U → [n] \ U be defined by s(i) := r + 1 + i for i ∈ [r + 1].

We use the framework of Proposition 1, with τ as in (19). For each π ∈ Sr+1 we define
linear function µπ and σπ so that the following diagram commutes:

(34)

FGm
p

−−−−→ Rm
x





µπ

x





σπ

O(SF
n×n)

τ
−−−−→ O(Fk×n)

,

where m := r + 1 + d.
The function µπ is defined by

(35) µπ(
∏

ij∈E

xi,j) := G/s ◦ π

for any graph G = ([n], E). It implies that for each q ∈ O(SF
n×n),

(36)
∑

π∈Sr+1

sgn(π)µπ(q) ∈ J,

by definition of J .
Next σπ is defined by
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(37) σπ(
n

∏

j=1

k
∏

i=1

z
αi,j

i,j ) :=
r+1
∏

j=1

yαj+αr+1+π(j)
·

n
∏

j=2r+3

yαi

for any α ∈ N
k×n. So

(38) adetN =
∑

π∈Sr+1

sgn(π)σπ(u)

for some monomial u ∈ O(Fk×n). Note that σπ is Ok-equivariant.
Now one directly checks that diagram (34) commutes, that is,

(39) p ◦ µπ = σπ ◦ τ.

By the FFT, ρOk
(u) = τ(q) for some q ∈ O(SF

n×n). Hence σπ(ρOk
(u)) = σπ(τ(q)) =

p(µπ(q)). Therefore, using (38) and (36),

(40) ρOk
(adet N) =

∑

π∈Sr+1

sgn(π)σπ(ρOk
(u)) =

∑

π∈Sr+1

sgn(π)p(µπ(q)) ∈ p(J),

as required.

(In fact equality holds in this proposition, but we do not need it.)
Since f is the partition function of a k-color vertex model, there exists f̂ : R → F

with f̂ ◦ p = f . If the condition in Theorem 2 is satisfied, then f(J) = 0, and hence with
Proposition 2

(41) f̂(ρOk
(J )) ⊆ f̂(p(J)) = f(J) = 0.

With (29) this implies that 1 6∈ I +J , where I again is the ideal generated by the polyno-
mials p(G) − f(G) (G ∈ G). Hence I + J has a common zero, as required.

6. Analogues for directed graphs

Similar results hold for directed graphs, with similar proofs, now by applying the FFT and
SFT for GL(k, F). The corresponding models were also considered by de la Harpe and Jones
[5]. We state the results.

Let D denote the collection of all directed graphs, two of them being the same if they
are isomorphic. Directed graphs are finite and may have loops and multiple edges.

The directed partition function of a 2k-color vertex model y is the function py : D → F

defined for any directed graph G = (V, E) by

(42) py(G) :=
∑

κ:E→[k]

∏

v∈V

yκ(δ−(v)),κ(δ+(v)).
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Here δ−(v) and δ+(v) denote the sets of arcs entering v and leaving v, respectively. More-
over, κ(δ−(v)), κ(δ+(v)) stands for the concatenation of the vectors κ(δ−(v)) and κ(δ+(v))
in N

k, so as to obtain a vector in N
2k.

Call a function f : D → F multiplicative if f(∅) = 1 and f(GH) = f(G)f(H) for all
G, H ∈ D. Again, GH denotes the disjoint union of G and H.

Moreover, for any directed graph G = (V, E), any U ⊆ V , and any s : U → V , define

(43) As := {(u, s(u)) | u ∈ U} and Gs := (V, E ∪ As).

Theorem 3. Let F be an algebraically closed field of characteristic 0. A function f : D → F

is the directed partition function of some 2k-color vertex model over F if and only if f is

multiplicative and for each directed graph G = (V, E), each U ⊆ V with |U | = k + 1, and

each s : U → V :

(44)
∑

π∈SU

sgn(π)f(Gs◦π) = 0.

For any directed graph G = (V, E), U ⊆ V , and s : U → V , let G/s be the directed
graph obtained from Gs by contracting all edges in As.

Theorem 4. Let f be the directed partition function of a 2k-color vertex model over an

algebraically closed field F of characteristic 0. Then f is the directed partition function

of a 2k-color vertex model over F of rank at most r if and only if for each directed graph

G = (V, E), each U ⊆ V with |U | = r + 1, and each s : U → V \ U :

(45)
∑

π∈SU

sgn(π)f(G/s ◦ π) = 0.
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