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1. Notation and terminology

Let D = (V,A) be a directed graph. For U ⊆ V , δin(U) and δout(U) denote the sets of
arcs entering U and leaving U , respectively. Moreover, δ(U) := δin(U) ∪ δout(U), din(U) :=
|δin(U)| (the indegree), dout(U) := |δout(U)| (the outdegree), and d(U) := |δ(U)| (the degree
or total degree). If U = {u} is a singleton, we replace the argument {u} by u. We attach
subscript D or A if useful. For B ⊆ A, B−1 := {(u, v) | (v, u) ∈ B}.

A directed cut is a subset C of A such that C = δin(U) for some subset U of V satisfying
∅ 6= U 6= V and δout(U) = ∅. We say that U determines a directed cut if U is a subset of
V satisfying ∅ 6= U 6= V and δout(U) = ∅. Denote by σ(D) the minimum size of a directed
cut. This is ∞ if D has no directed cut, i.e., if D is strongly connected.

A directed cut cover or dijoin is a subset B of A intersecting each directed cut. Trivially,
B is a directed cut cover if and only if the digraph (V,A∪B−1) is strongly connected. Call
a subset B of A strengthening if the digraph (V, (A \ B) ∪ B−1) is strongly connected. So
each strengthening arc set is a directed cut cover. Call a function ϕ : A → [k] a strong
coloring or strong k-coloring if ϕ−1(i) is strengthening for each i ∈ [k].

2. Woodall’s conjecture

Woodall [2] conjectures:

Conjecture (Woodall’s conjecture). Let D = (V,A) be a digraph. The maximum number
of pairwise disjoint directed cut covers is equal to the minimum size of a directed cut.

Woodall’s conjecture is equivalent to:

Conjecture (Woodall’s conjecture). Let D = (V,A) be a digraph and let k ≥ 2. Then A
can be partitioned into k strengthening sets if and only if each directed cut has size at least
k.

Proof of equivalence. Since each strengthening set is a directed cut cover, necessity in
the latter conjecture is direct. To see sufficiency, let each directed cut have size at least k.
Add to each arc a = (u, v) two new vertices ua and va, and replace a by arcs (u, ua), (va, v),
and k − 1 parallel arcs from va to ua. Let D′ be the new digraph. Then each directed cut
in D′ has size at least k. By the first version of Woodall’s conjecture, D′ contains k disjoint
directed cut covers B′1, . . . , B

′
k. For each arc a of D, each B′i contains precisely one of the
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arcs incident with any ua and one of the arcs incident with va. So, if B′i contains (u, ua) if
and only if it contains (va, v). Let Bi be the set of arcs a of D with (va, v) ∈ B′i.

Then each Bi is strengthening. For suppose to the contrary that there is a nonempty
proper subset X of V not entered by any arc in (A \Bi) ∪B−1i . So

(1) δout(X) = Bi ∩ δ(X).

Define

(2) X ′ := X ∪ {ua | a = (u, v) ∈ A, u ∈ X} ∪ {va | a = (u, v) ∈ A, u, v ∈ X}.

Then X ′ determines a directed cut in D′. Hence B′i contains an arc a′ of D′ entering X ′.
If a′ = (u, ua) for some arc a = (u, v) of D, then ua ∈ X ′ while u 6∈ X, contradicting the
definition of X ′. If a′ = (va, ua) for some arc a = (u, v) of D, then ua ∈ X ′ and va 6∈ X ′, so
u ∈ X and v 6∈ X, so (u, v) leaves X. Since a′ ∈ B′i, we know a 6∈ Bi. This contradicts (1).
If a′ = (va, v) for some arc a = (u, v) of D, then va 6∈ X ′ and v ∈ X. So by definition of X ′,
u 6∈ X. So (u, v) enters X. As (va, v) ∈ B′i, we have a ∈ Bi. This again contradicts (1).

3. Decomposition and connection

In this section, we prove a few decomposition results on digraphs that can be useful in
proving Woodall’s conjecture.

If D = (V,A) is a digraph and U is a nonempty proper subset of V , let D/U be the
digraph obtained by identifying all vertices in U to one vertex cU . There is a natural inclu-
sion function iD/U of A(D/U) to A(D). We call the inverse function (iD/U )−1 : P(A(D))→
P(A(D/U)) the corresponding projection. Note that if d(U) ≤ 3, then D is planar if and
only if D/U and D/U are planar.

We will consider this decomposition also in the reversed order. Let D1 and D2 be
digraphs and let v1 ∈ V (D1) and v2 ∈ V (D2). We say that digraph D = (V,A) arises by
connecting D1 and D2 at v1 and v2 if for some nonempty proper subset U of V , D1 = D/U ,
v1 = cU , D2 = D/U , and v2 = cU . (Here equality is meant up to isomorphism.) If for
a1 ∈ δD1(v1) and a2 ∈ δD2(v2) one has iD/U (a1) = iD/U (a2), we say that a1 and a2 are
linked in this connection.

Theorem 1. Let D = (V,A) be a digraph and let U be a nonempty proper subset of V
with dout(U) ≤ 1. Then D is strongly connected if and only if D/U and D/U are strongly
connected.

Proof. Let D1 := D/U and D2 := D/U . Necessity is direct, since each directed cut in any
Di yields a directed cut in D. To see sufficiency, suppose X determines a directed cut in D.

If X ∩ U = ∅, then X determines a directed cut in D2, a contradiction. So X ∩ U 6= ∅.
As X ∩ U determines no directed cut in D1, δ

out(X ∩ U) 6= ∅. Since δout(X) = ∅, there is
an arc from X ∩ U to X \ U .

Similarly, if X ∪ U = V , then X determines a directed cut in D1, a contradiction. So
X∪U 6= V . As X∪U determines no directed cut in D2, δ

out(X∪U) 6= ∅. Since δout(X) = ∅,
there is an arc from U \X to X ∪ U .
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Concluding, there at least two arcs from U to U , contradicting the assumption that
dout(U) ≤ 1.

Corollary 1a. Let D = (V,A) be a digraph and let U be a nonempty proper subset of V .
Let B ⊆ A such that doutA′ (U) ≤ 1 where A′ := (A \ B) ∪ B−1. Then B is strengthening if
and only if the projections of B in D/U and D/U are strengthening.

Proof. Directly from Theorem 1 applied to the digraph (V,A′).

Corollary 1b. Let D = (V,A) be a weakly connected digraph and let U be a nonempty
proper subset of V with d(U) ≤ 3. Let ϕ : A → [k]. Then ϕ is a strong coloring for D if
and only if ϕ ◦ iD/U and ϕ ◦ iD/U are strong colorings for D/U and D/U respectively.

Proof. Directly from Corollary 1a.

Theorem 2. Let D = (V,A) be a weakly connected digraph and let U be a nonempty proper
subset of V with d(U) ≤ 3. Then σ(D) = min{σ(D/U), σ(D/U)}.

Proof. Let D1 := D/U and D2 := D/U . Let k := min{σ(D1), σ(D2)}. Clearly, σ(D) ≤ k,
since each directed cut in any Di yields a directed cut in D.

To see the reverse inequality, suppose σ(D) < k. As D is weakly connected, σ(D) ≥ 1,
hence k ≥ 2. So δout(X) = ∅ and din(X) < k for some nonempty proper subset X of V .
Since d(U) ≤ 3, at least one of X and X spans at most one arc in δ(U). By symmetry, we
may assume that X spans at most one arc in δ(U) — otherwise reverse all arcs and replace
X by X. So there is at most one arc connecting X ∩U and X \U . Hence we may assume in
addition that no arc leaves X ∩ U , that is, runs from X ∩ U to X \ U — otherwise replace
U by U .

If X ⊆ U or X ⊆ U , δin(X) gives a directed cut of size less than k in D1 or D2,
contradicting the definition of k. So we know that both X ∩ U and X \ U are nonempty.
Hence δin(X ∩ U) is a directed cut.

As X spans at most one arc of D and no arc leaves X, dout(X \ U) ≤ 1. Therefore,
din(X\U)−dout(X\U) = d(X\U)−2dout(X\U) ≥ 0, since d(X\U) ≥ 2, as σ(D2) ≥ k ≥ 2.
This implies

(3) din(X ∩ U) = din(X)− din(X \ U) + dout(X \ U) ≤ din(X) < k.

However, as no arc leaves X ∩ U , δin(X ∩ U) is a directed cut, yielding a directed cut in
D1. Hence din(X ∩ U) ≥ k, contradicting (3).

4. Reduction

For any k, consider the following conditions on a directed graph D:

(4) D is acyclic and weakly 3-arc-connected, the directed cuts of size k are precisely
those determined by the sources and sinks, that each vertex not being a source
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or sink has degree 3, and that for each edge a not incident with any sourc or sink
there is a cut δ(U) with d(U) ≤ k and δin(U) = {a}.

We call a digraph satisfying (4) reduced. We denote the set of 3-degree vertices not being
sources or sinks by V3.

Theorem 3. In Woodall’s conjecture we can assume that k ≥ 3 and D is reduced.

Proof. It was observed by András Frank that Woodall’s conjecture is true for k = 2 (see
Theorem 56.3 in [1]). So we can assume k ≥ 3. Trivially, if there is a counterexample there
is an acyclic counterexample, as we can contract each strong component to one vertex.
Choose an acyclic counterexample D = (V,A) minimizing

(5) |V3|+
∑

v∈V \V3

2d(v) = 4|A| − 5|V3|,

where V3 is the set of vertices that have degree 3 and are not a source or sink.
We first show:

(6) D is weakly 3-arc-connected.

Suppose to the contrary that d(U) ≤ 2 for some nonempty proper subset U of V . As
σ(D) ≥ k ≥ 3, din(U) = 1 and dout(U) = 1. Let D1 and D2 be obtained from D − U and
D − U respectively by adding an arc from the tail of the arc in d(U) to the head of the
arc in d(U). For i = 1, 2, σ(Di) ≥ 3, by Theorem 2. As the sum (5) is smaller for Di, Di

can be partitioned into k strengthening sets. This implies with Corollary 1a, that D can be
partitioned into k strengthening sets.

This shows (6). It implies in particular that each vertex of D has degree at least 3.
We next show that

(7) each directed cut of size k is determined by a sink or by the complement of a
source.

Suppose to the contrary that D has a directed cut δin(U) of size k with δout(U) = ∅ and
2 ≤ |U | ≤ |V | − 2. Let D1 and D2 be the digraphs obtained by contracting U and U ,
reespectively, to one vertex. Then for each Di, (5) has decreased. To see this we can
assume i = 2, by symmetry. As δout(U) = ∅, U contains a sink s. Choose t ∈ U \ {s}.
Then s and t have a contribution of at least 2k and 1, respectively, to the sum (5). In the
contracted graph, U becomes a sink of outdegree k. So it has contribution precisely 2k to
(5). Hence (5) has decreased.

By the minimality of the counterexample, each of D1 and D2 can be partitioned into
k strengthening sets. As each of the classes of these partitions intersect δin(U) in precisely
one arc (since din(U) = k), we can glue the two partitions together to obtain a k-partition
of A. Then by Corollary 1a, each class of the partition is strengthening. This contradicts
the assumption that we have a counterexample, thus proving (7).

Next we show:

(8) Let s be a vertex with at least two distinct out-neighbours. Then s is a source
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of degree k or s belongs to V3.

Let u and v be out-neighbours of s with u 6= v. Assume that s is not a source of degree k and
does not belong to V3. Let s′ be a new vertex, and replace (s, u) and (s, v) by (s, s′), (s′, u),
(s′, v), yielding the new digraph D′ = (V ′, A′). Since the number of arcs has increased by
1, while the number of vertices of degree 3 has increased by at least 1, the value of (5) has
decreased.

Suppose σ(D′) < k. Consider a directed cut δin(U ′) in D′, with U ′ a nonempty proper
subset of V ′ not left by any arc of V ′, and with dinD′(U

′) < k. If U ′ does not separate s and
s′, U ′ would yield a directed cut in D of size less than k, a contradiction. So U ′ separates s
and s′, hence, as no arc of D′ leaves U ′, s 6∈ U ′ and s′, u, v ∈ U ′. Therefore, U := U ′ \ {s′}
determines a directed cut in D of size dinD′(U

′) + 1 ≤ k. Hence, by (7), |U | = 1 or |U | = 1.
If |U | = 1, then u = v (as u, v ∈ U), contradicting the choice of u and v. If |U | = 1, then
U = {s}, hence s is a source of degree k, contradicting our assumption.

So σ(D′) = k. Hence, since sum (5) has decreased, A′ can be partitioned into k strength-
ening sets. By contracting the new arc (s, s′) we obtain a partition for A into k strengthening
sets. This contradicts the fact that D is a counterexample, and therefore proves (8).

This implies

(9) all sources and sinks have degree k.

If s is a source of degree at least k+ 1, by (8), all arcs leaving s are parallel. Hence we can
delete one of these arcs, not violating the condition that all directed cuts have size at least
k. So each source, and by symmetry each sink, has degree k.

Also,

(10) each vertex s not being a source or sink has degree 3.

Otherwise, by (8), all arcs leaving s are parallel, and, by symmetry, all arcs entering s are
parallel. Contracting one of these parallel classes to one vertex, we obtain a counterexample
with smaller sum (5), a contradiction.

Finally, let a = (u, v) be an edge connecting two vertices in V3. If dout(v) = 2, then a is
the only edge entering v, so for U := {v} one has d(U) = 3 and δin(U) = {a}. So we can
assume dout(v) = 1 and similarly din(u) = 1. degree 3, and that for each edge a not incident
with any sourc or sink there is a cut δ(U) with d(U) = 3 and δin(U) = {a}. Let digraph
D′ arise from D as follows. Remove arc (u, v). The two remaining arcs incident with u are
in series, and hence form a directed path, from s to t say. Then replace these two arcs by
one arc from s to t. Replace the two arcs incident with v similarly by a path. Thus we
obtain the digraph D′. If σ(D′) ≥ k, we obtain a counterexample with smaller sum (5). So
σ(D′) ≤ k − 1, and hence a cut in D as required exists.

Theorem 4. In Woodall’s conjecture for k = 3 and planar digraphs we can assume that D
is reduced and planar.

Proof. We need to adapt (8) so that the splitting-off construction maintains planarity.
Indeed, we can split off arcs that are consecutive in the cyclic order of edges incident with
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a vertex s.
Let u and v be neighbours of s, where u is an out-neighbour and v is an in-neighbour.

Assume that s does not belong to V3. Let s′ be a new vertex, and replace (s, u) and (v, s)
by (s′, u) and (v, s′), giving digraph D0. Let D′ be the digraph obtained by adding to D0

the arc (s, s′) and let D′′ be the digraph obtained by adding to D0 the arc (s′, s). Both
for D′ and for D′′, the number of arcs has increased by 1, while the number of vertices of
degree 3 has increased by at least 1.

So the value of (5) has decreased, both for D′ and for D′′. We have a reduction as before
if σ(D′) ≥ 3 or σ(D′′) ≥ 3, so we may assume σ(D′) < 3 and σ(D′′) < 3.

So there exists a nonempty proper subset U ′ of V ∪{s′} with δoutD′ (U ′) = ∅ and dinD′(U
′) ≤

2. If U ′ does not separate s and s′, U ′ would yield a directed cut in D of size less than
3, a contradiction. So U ′ separates s and s′, hence, as no arc of D′ leaves U ′, s 6∈ U ′ and
s′ ∈ U ′. So doutD0

(U ′) = 0 and dinD0
(U ′) ≤ 1. Similarly, there exists a nonempty proper subset

U ′′ of V ∪ {s′} with s ∈ U ′′, s′ 6∈ U ′′, doutD0
(U ′′) = 0 and dinD0

(U ′′) ≤ 1. Then, since U ′ ∩ U ′′
and U ′ ∪ U ′′ do not separate s and s′,

(11) dD(U ′∩U ′′)+dD(U ′∪U ′′) = dD0(U ′∩U ′′)+dD0(U ′∪U ′′) ≤ dD0(U)+dD0(U ′′) ≤ 2.

Since D is 3-connected, this implies U ′∩U ′′ = ∅ and U ′∪U ′′ = V ∪{s′}. As both U ′ and U ′′

determine a directed cut in D0, it follows that no arc of D0 connects U ′ and U ′′. Therefore,
δD(U ′′) = {(s, u), (v, s)}, contradicting the 3-connectivity of D.

5. Equivalent strengthenings of Woodall’s conjecture

Let D be a reduced digraph and let v ∈ V3. Call a partition P of δ(v) proper if din(v) = 1
and δin(v) is not a class of P , or dout(v) = 1 and δout(v) is not a class of P . So if din(v) =
1, let δin(v) = {a} and δout(v) = {a1, a2}; then the proper partitions are {{a, a1, a2}},
{{a, a1}, {a2}}, and {{a, a2}, {a1}}. Similarly if din(v) = 1. Call a subset B of A splitting
if δ(v) 6⊆ B for each vertex v. We say that a partition Π of A extends a partition P of δ(v)
(for some vertex v) if P is equal to the collection of nonempty intersections of classes of Π
with δ(v).

Theorem 5. Let k ≥ 3. Then Woodall’s conjecture holds for k if and only if at least one
of the following statements (i) and (ii) holds:

(12) (i) if D = (V,A) is a reduced digraph, v is a vertex in V3, and P is a proper partition
of δ(v), then A has a partition Π into k strengthening sets such that Π extends
P ;

(ii) if D = (V,A) is a reduced digraph, v is a vertex in V3, and P is a proper partition
of δ(v) with |P | = 2, then A has a partition Π into k splitting strengthening sets
such that Π extends P .

For k = 3, this equivalence is maintained if all digraphs are restricted to planar digraphs.

Proof. I. Sufficiency is direct, since Woodall’s conjecture is known to be true for reduced
digraphs with V3 = ∅, that is, for k-regular bipartite graphs with all edges oriented from
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one colour class to the other.
II. To see necessity, we first show that the negations of (12)(i) and (12)(ii) together

imply the negation of

(13) if D = (V,A) is a reduced digraph, v is a vertex in V3, and P is a proper partition
of δ(v) with |P | = 2, then A has a partition Π into k strengthening sets such
that Π extends P .

Let D = D1, v = v1, P = P1 be a counterexample to (12)(i), and let D = D2, v = v2,
P = P2 be a counterexample to (12)(ii). If |P | = 2 we have a counterexample to (13), so
we can assume that |P | = 1. Now for each vertex u ∈ V3(D2) \ {v2}:

(14) if dinD2
(u) = doutD1

(v), connect D2 and a copy of D1 at u and v; if dinD2
(u) = dinD1

(v),
connect D2 and a copy of (D1)

−1 at u and v.

The final digraph forms with v2 and P2 a counterexample to (13).
III. We next show the following with respect to the graph D12 of in Figure 1. Note that

σ(D12) = k.
…

 

…
 

… 

A1 

A3 

A2 

b1 

c1 

d1 
e1 

f1 

g1 

b2 

c2 

d2 

e2 

f2 

g2 

b3 

c3 

d3 

e3 

f3 

g3 

Figure 1

The digraph D12, where |Ai| = k − 3 for each i = 1, 2, 3

(15) There is no strong k-coloring ϕ for D12 such that ϕ(ci) = ϕ(di) and ϕ(ei) = ϕ(fi)
for i = 1, 2, 3.

Suppose such a coloring ϕ exists. Then, for each i = 1, 2, 3, ϕ(Ai) ∪ {ϕ(ci), ϕ(ei)} is
equal to ϕ(Ai) ∪ {ϕ(di), ϕ(fi)}. As this set has size k − 1 it follows that ϕ(bi) = ϕ(gi).
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and ϕ(Ai ∪ {ci, fi}) = [k] \ {ϕ(bi)}. Since Ai ∪ {ci, fi, bi+2, gi+1} (taking indices mod 3) is
a directed cut, ϕ(bi) must belong to {ϕ(bi+2), ϕ(gi+1)} = {ϕ(bi+2), ϕ(bi+1)}. As this holds
for all i = 1, 2, 3, we know that ϕ(b1) = ϕ(b2) = ϕ(b3) := t. Then ϕ(Ai ∪{di, ei}) = [k] \ {t}
for all i = 1, 2, 3. This implies that ϕ−1(t) does not intersect the set of edges from the inner
hexagon to the outer hexagon, a contradiction.

IV. By part II of this proof, we can assume that we have a counterexample D, v, P
for (13). By symmetry, we can assume that v has indegree 2 and outdegree 1 in D. Let
P = {{a, a′}, {a′′}}, where δoutD (v) = {a′} and δinD(v) = {a, a′′}. So each strong k-coloring of
D satisfies ϕ(a′) = ϕ(a′′). Again we take repeated connections, now of D12 with copies of
D or D−1.

If u ∈ V3(D12) has indegree 1 and outdegree 2, then δinD12
(u) = {ei} and δoutD12

(u) =
{fi, gi+2} for some i. Then connect D12 and a copy of D at u and v such that fi and a′′ are
linked, ei and a′ are linked, and fi and a are linked.

If u ∈ V3(D12) has outdegree 1 and indegree 2, then δoutD12
(u) = {di} and δinD12

(u) =
{ci, bi+1} for some i. Then connect D12 and a copy of D−1 at u and v such that ci and
(a′′)−1 are linked, di and (a′)−1 are linked, and bi+1 and a−1 are linked.

The final digraph H is a counterexample to Woodall’s conjecture, by (15).

As in part IV of this proof one shows:

Theorem 6. For each k ≥ 3, (12)(ii) is equivalent to the following weakened form of it:

(16) if D = (V,A) is a reduced digraph, then A can be partitioned into k splitting
strengthening sets.

This equivalence is maintained if all digraphs are restricted to planar digraphs.

Proof. If D, v, P is a counterexample to (12)(ii), the construction with D12 in part IV of
the proof of Theorem 5 gives a counterexample to (16).

6. Is the following lemma true?

The following lemma, if true, would imply the equivalence of Woodall’s conjecture and
statement (16) (???).

Lemma 1. True?? Let G = (V,E) be an undirected graph. Let C be a collection of
nonempty proper subsets of V such that

(17) for all U,W ∈ C: if U ∩W 6= ∅ then U ∩W ∈ C; if U ∪W 6= V then U ∪W ∈ C,

and such that dE(U) ≥ 2 for each U ∈ C. Then E has an orientation A such that dinA(U) ≥ 1
and doutA (U) ≥ 1 for each U ∈ C.

Proof. (Attempt!) Choose a counterexample with |V | + |E| smallest. Let � be the
pre-order of V given by

(18) u � v ⇐⇒ ∀U ∈ C : v ∈ U ⇒ u ∈ U.
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Then � is a partial order, as we can contract strong components of �. So C ∪ {∅, V } is
equal to the collection of down-ideals in (V,�). Moreover, G has no circuit C, as otherwise
we can choose an orientation of C and then restrict C to those U ∈ C not splitting C.

We show:

(19) there is no U ∈ C with 2 ≤ |U | ≤ |V | − 2 such that dE(U) = 2.

For assume such a U exists. Let G′ := G/U and G′′ := G/U . Define

(20) C′ := {X ∈ C | X ⊆ U} ∪ {(X ∩ U) ∪ {cU} | X ∈ C, U ⊆ X},
C′′ := {X ∈ C | X ⊆ U} ∪ {(X ∩ U) ∪ {cU} | X ∈ C, U ⊆ X},

where, as before, cU and cU are the vertices obtained by contracting U and U , respectively,
to one vertex. Then C′ and C′ are closed under union and intersection, and dE′(X) ≥ 2 for
each X ∈ C′ and dE′′(X) ≥ 2 for each X ∈ C′′. So by induction, G′ and G′′ have orientations
A′ and A′′ such that dinA′(X) ≥ 1 and doutA′ (X) ≥ 1 for each X ∈ C′ and dinA′′(X) ≥ 1 and
doutA′′ (X) ≥ 1 for each X ∈ C′′, and such that at each vertex the corresponding edges are
oriented in series. As the edges in δE(U) are oriented in opposite directions with respect to
U , we can assume that in A′ and A′′ the orientations coincide. Hence there is an orientation
A of E that on the edges of G′ coincides with A′ and on the edges of G′′ coincide with A′′.
We show that din(X) ≥ 1 and dout(X) ≥ 1 for each X ∈ C.

This is direct if X ⊆ U , or U ⊆ X, or X ⊆ U , or U ⊆ X. So assume to the contrary
that each of U ∩X, U \X, U ∩X, and U \X is nonempty. Then

(21) din(U ∩X) + din(U ∪X) ≤ din(U) + din(X) ≤ 1,

implying that din(U ∩X) = 0 or din(U ∪X) = 0, a contradiction. One similarly shows that
dout(X) ≥ 1. This proves (19).

Let V max and V min be the sets of maximal and minimal elements of V with respect to
�. Let V max

2 and V min
2 be the sets of vertices of degree 2 in V max and V min, respectively.

(22) Each edge e of G is incident with a vertex in V max
2 ∪ V min

2 .

Consider G− e. As our counterexample is minimal, there exists U ∈ C with dG−e(U) ≤ 1.
Then U splits e and dG(U) = 2. Let e = {u, v} with u ∈ U and v 6∈ U . Hence by (19),
|U | = 1 or |U | = |V |−1. So U = {u} or U = V \{v}. Hence u ∈ V min or v ∈ V max, proving
(22).

(23) Let u ≺ w ≺ v and e = {u, v} ∈ E. Then u ∈ V min
2 and v ∈ V max

2 .

Let G′ = (V,E′) be the graph obtained from G by replacing e = {u, v} by e′ := {u,w}.
Suppose that dG′(U) ≥ 2 for all U ∈ C. Then E can be oriented to A′ so that dinA′(U) ≥ 1
and doutA′ (U) ≥ 1 for all U ∈ C. By symmetry, we can assume that e′ is oriented as (u,w).
Let A be the orientation of E that is equal to A′ on E \ {e}, and orients e as (u, v).

Then dinA(U) ≥ 1 for each U ∈ C. Otherwise, if din(A)(U) = 0, then (u,w) enters U . So
u 6∈ U while w ∈ U , contradicting the fact that u � w.

Moreover, doutA (U) ≥ 1 for each U ∈ C. Otherwise, if dout(A)(U) = 0, then (u, v) does
not leave U . So v ∈ U and w 6∈ U , contradicting the fact that w � v.
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So dG′(U) ≤ 1 for some U ∈ C. Then e ∈ δG(U) and e′ 6∈ δG′(U). So U splits u and v
and does not split u and w. So u,w ∈ U and v 6∈ U . Moreover, dG(U) = 2. So U = V \{v},
hence v ∈ V max and dG(v) = 2. Similarly, u ∈ V min and du = 2. This proves (23).

(24) No two vertices in V min
2 are adjacent.

For suppose u, v ∈ V min, dG(u) = dG(v) = 2, and e := {u, v} ∈ E. Applying induction
to C′ := {U ∈ C | U does not split {u, v}}, we obtain an orientation A′ of E \ {e} such
that dinA′(U) ≥ 1 and doutA′ (U) ≥ 1 for all U ∈ C′. Since {u, v}) ∈ C′ and dG({u, v}) = 2, we
can assume that the edge in δG({u, v}) is oriented towards u, and the edge in δG({u, v})
incodent with v is oriented away from v. Now orient e as (u, v), yielding A. Then dinA(U) ≥ 1
and doutA (U) ≥ 1 for each U ∈ C. If not, by symmetry we can assume that dinA(U) = 0. So
U 6∈ C′, thatis, U splits u and v; and u ∈ U , v 6∈ U . Now dA′(U ∪ {v}) ≥ 1. So A′ contains
an arc entering U ∪{v}, but not entering U , hence entering v. However, A′ contains no arc
entering v. This proves (24).

. . . . . . . . .

7. k = 3 and treelike digraphs

Call a digraph D treelike if it is reduced and there is no arc (u, v) with u, v ∈ V3 and
dout(u) = 2 and din(v) = 2. We can consider them as follows. A birooted tree is an oriented
tree T having an edge a = (u, v) such that T − a consists of a rooted tree with root v, and
an antirooted tree with antiroot u (that is, if we reverse all orientations we obtain a rooted
tree with root u). A birooted forest is the disjoint union of birooted trees. The sources and
sinks then are the vertices of degree 1. Call a birooted tree binary if all degrees are 3 or 1.

Then a treelike digraph arises from a binary birooted forest by partitioning the sinks
into k-tuples and identifying each such k-tuple to one sink, and similarly partitioning the
sources into k-tuples and identifying each such k-tuple to one source.

A digraph D = (V,A) is weakly internally 4-edge-connected if d(U) ≥ 4 for each subset
U of V with 2 ≤ |U | ≤ |V | − 2.

Theorem 7. For k = 3, each of (12)(i) and (12)(ii) is equivalent to its restriction to weakly
internally 4-edge-connected treelike digraphs. This equivalence is maintained if all digraphs
are restricted to planar digraphs.

Proof. Consider any of the two statements (12)(i) and (12)(ii). Suppose the statement holds
for weakly internally 4-edge-connected treelike digraphs, and suppose it does not hold for
general reduced digraphs D = (V,A). Choose a counterexample D, v, P with |A| smallest.

Then D is weakly internally 4-edge-connected. For suppose that there is a subset U of
V with 2 ≤ |U | ≤ |V | − 2 and d(U) = 3. We can assume that v belongs to U . By the
minimality, A(D/U) has a partition Π into k strengthening sets such that Π extends P
and such that Π on δ(U) satisfies the condition in the statement. Let P ′ be the partition
induced by Π on δ(U). Then, again by he minimality, A(D/U) has a partition Π′ into
k strengthening sets such that Π′ extends P ′. Π and Π′ together partition A(D) into k
strengthening sets. This contradicts our assumption.
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So D is weakly internally 4-edge-connected. Now suppose there exists an arc (v, u) with
v, u ∈ V3 and dout(u) = 2 and din(v) = 2. As D is reduced, (v, u) belongs to a cut δ(U)
with δin(U) = {(v, u)} and dout(U) ≤ 2. Then u ∈ U and v 6∈ U . As din(u) = 2, U 6= {u}.
Similarly, as dout(v) = 2, U 6= V \ {v}. So U determines a cut of size at most 3, while
2 ≤ |U | ≤ |V | − 2, a contradiction.

Theorem 8. For k = 3, Woodall’s conjecture holds if and only if at least one of the
following holds:

(25) (i) if D = (V,A) is a cubic treelike digraph and v is a vertex in V3, A has a partition
into k strengthening sets that is not splitting at v;

(ii) if D = (V,A) is a cubic treelike digraph, then A has a partition into k strength-
ening sets that is splitting at each vertex in V3.

This equivalence is maintained if all digraphs are restricted to planar digraphs.
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