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1. CALIBRATING THE MEMORY SYSTEM

The idea underlying our calibrator tool is to have a micro benchmark whose performance only depends
on the frequency of cache misses that occur. Our calibrator is a simple C program, mainly a small loop
that executes a million memory reads. By changing the stride (i.e., the offset between two subsequent
memory accesses) and the size of the memory area, we force varying cache miss rates.

In principle, the occurance of cache misses is determined by the array size. Array sizes that fit into
the L1 cache do not generate any cache misses once the data is loaded into the cache. Analogously,
arrays that exceed the L1 cache size but still fit into L2, will cause L1 misses but no L2 misses. Finally,
arrays larger than L2 cause both L1 and L2 misses.

The frequency of cache misses depends on the access stride and the cache line size. With strides
equal to or larger than the cache line size, a cache miss occurs with every iteration. With strides
smaller than the cache line size, a cache miss occurs only every n iterations (on average), where n is
the ratio cache line size/stride.

Thus, we can calculate the latency for a cache miss by comparing the execution time without
misses to the execution time with exactly one miss per iteration. This approach only works, if
memory accesses are executed purely sequential, i.e., we have to ensure that neither two or more load
instructions nor memory access and pure CPU work can overlap. We use a simple pointer chasing
mechanism to achieve this: the memory area we access is initialized such that each load returns the
address for the subsequent load in the next iteration. Thus, super-scalar CPUs cannot benefit from
their ability to hide memory access latency by speculative execution.

To measure the cache characteristics, we run our experiment several times, varying the stride and
the array size. We make sure that the stride varies at least between 4 bytes and twice the maximal
expected cache line size, and that the array size varies from half the minimal expected cache size to
at least ten times the maximal expected cache size.

Figure 1 depicts the resulting execution time (in nanoseconds) per iteration for different array sizes
on an SGI Origin2000 (MIPS R10000, 250 MHz = 4ns per cycle), a Sun Ultra (Sun UltraSPARC, 200
MHz = 5ns per cycle), an Intel PC (Intel PentiumlIII, 450 MHz = 2.22ns per cycle), and an AMD PC
(AMD Athlon, 600 MHz = 1.66ns per cycle). Each curve represents a different stride. All curves show
two steps, indicating the existence of two cache levels and their sizes. Matching curves mean, that
the cache miss frequency has reached its maximum (one miss per iteration), i.e., that the respective
stride is equal to (or larger than) the cache line size.
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Figure 1: Calibration Tool: Cache sizes, line sizes, and latencies
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(Vertical grid lines indicate number of TLB entries, horizontal grid lines indicate latencies.)

Figure 2: Calibration Tool: TLB entries and TLB miss costs

2. CALIBRATING THE TLB

We use a similar approach as above to measure TLB miss costs. The idea here is to force one TLB
miss per iteration, but to avoid any cache misses. We force TLB misses by using a stride that is
equal to or larger than the systems page size, and by choosing the array size such that we access more
distinct spots than there are TLB entries. Cache misses will occur at least as soon as the number of
spots accessed exceeds the number of cache lines. We cannot avoid that. But even with less spots
accessed, two or more spots might be mapped to the same cache line, causing conflict misses. To
avoid this, we use strides that are not exactly powers of two, but slightly bigger, shifted by L2 cache
line size.



2. Calibrating the TLB 3

| || SGI Origin2000 | Sun Ultra | Intel PC | AMD PC |
oS IRIX64 6.5 Solaris 2.5.1 Linux 2.2.12 Linux 2.2.12
CPU MIPS R10000 Sun UltraSPARC Intel Pentiumlll AMD Athlon
CPU speed 250 MHz 200 MHz 450 MHz 600 MHz
main-memory size 64 GB (4 GB local) 512 MB 512 MB 384 MB
L1 cache size 32 KB 16 KB 16 KB 64 KB
L1 cache line size 32 bytes 16 bytes 32 bytes 64 bytes
L1 cache lines 1024 1024 512 1024
L2 cache size 4 MB 1 MB 512 KB 512 KB
L2 cache line size 128 bytes 64 bytes 32 bytes 64 bytes
L2 lines 32,768 16,384 16,384 8192
TLB entries 64 64 64 32
TLB, entries - - - 256
page size 32 KB 8 KB 4 KB 4 KB
TLB size 2 MB 512 KB 256 KB 128 KB
TLB; size - - - 1 MB
L1 miss latency 24 ns = 6 cycles 30 ns = 6 cycles | 42.2 ns = 19 cycles 45 ns = 27 cycles
L2 miss latency 400 ns = 100 cycles | 195 ns = 39 cycles | 93.3 ns = 42 cycles | 172 ns = 103 cycles
TLB miss latency 228 ns = 57 cycles | 270 ns = 54 cycles | 11.1 ns = 5 cycles 8 ns = 5 cycles
TLB3 miss latency - - - 87 ns = 52 cycles

Table 1: Calibrated Performance Characteristics

Figure 2 shows the results for four machines. The X-axis now gives the number of spots accessed,
i.e., array size divided by stride. Again, each curve represents a different stride. For the SGI and the
Sun, the curves depict a single distinctive step, indicating a single TLB with 64 entries. The impact
of L1 misses when more than 1024 spots are accessed is hardly visible as L1 miss penalty is small
compared to TLB miss penalty. On the Intel PC, the first step relates to the 64-entry TLB and the
second step relates to L1 misses, which are more expensive than TLB misses on the Intel PC. On the
AMD PC, there are two TLBs with 32 and 256 entries, respectively. The third step in the curves
again relates to L1 misses. The page sizes can be derived just like the cache line sizes before.

Table 1 gathers the results for all four machines. The PCs have the highest L2 access latencies,
probably as their L2 caches are running at only half the CPUs’ clock speed. Main-memory access,
however, is faster on the PCs than it is on the SGI and the Sun. The TLB miss latency of the Pen-
tiumlIIT and the Athlon (TLB;) are very low, as their TLB management is implemented in hardware.
This avoids the costs of trapping to the operating system on a TLB miss, that is necessary in the
software controlled TLBs of the other systems. The TLB, miss latency on the Athlon is comparable
to that on the R10000 and the UltraSPARC.



