Vectorized Data Processing on the Cell Broadband Engine

Sandor Héman Niels Nes

Marcin Zukowski

Peter Boncz

CWI, Kruislaan 413
Amsterdam, The Netherlands
{Firstname.Lastname}@cwi.nl

ABSTRACT

In this work, we research the suitability of the Cell Broad-
band Engine for database processing. We start by outlin-
ing the main architectural features of Cell and use micro-
benchmarks to characterize the latency and throughput of
its memory infrastructure. Then, we discuss the challenges
of porting RDBMS software to Cell: (i) all computations
need to SIMD-ized, (i) all performance-critical branches
need to be eliminated, (%ii) a very small and hard limit on
program code size should be respected.

While we argue that conventional database implementa-
tions, i.e. row-stores with Volcano-style tuple pipelining,
are a hard fit to Cell, it turns out that the three challenges
are quite easily met in databases that use column-wise pro-
cessing. We managed to implement a proof-of-concept port
of the vectorized query processing model of MonetDB /X100
on Cell by running the operator pipeline on the PowerPC,
but having it execute the vectorized primitives (data paral-
lel) on its SPE cores. A performance evaluation on TPC-H
Q1 shows that vectorized query processing on Cell can beat
conventional PowerPC and Itanium2 CPUs by a factor 20.

1. INTRODUCTION

The Cell Broadband Engine [9] is a new heterogeneous
multi-core CPU architecture that combines a traditional
PowerPC core with multiple mini-cores (SPEs), that have
limited but SIMD- and stream-optimized functionality. Cell
is produced in volume for the Sony Playstation3, and is also
sold in blades by IBM for high-performance computation
applications (we used both incarnations). The Playstation3
Cell runs at 3.2GHz and offers 6 SPEs providing a com-
putational power of 6x25.6=154GFLOPs, which compares
favorably to “classical” contemporary CPUs, which provide
up to 10GFLOPs.

In this paper, we research the suitability of the Cell Broad-
band Engine for database processing. This is especially in-
teresting for highly compute-intensive analysis applications,
like data warehousing, OLAP and data mining. Therefore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Proceedings of the Third International Workshop on Data Management on
New Hardware (DaMoN 2007) June 15, 2007, Beijing, China.

Copyright 2007 ACM 978-1-59593-772-8 ...$5.00.

PowerPC SPED SPE1 SPE2 SPE3 RAM
Processing Interrupt] Memory System Memory
Element Gontraile 256KB 256KE 25648 256KE || | Controller
{PPE) Local Stor Local Stor Local Star Local Ston ‘m
G4-bit PPC I]]] } l
2 Thread SMT
VM [Element Intercennect Bus (El
L1 cache SPE4 SPES SPEB SPE7 o0
--—(evice
) [} 256KE 256KE. 258iE1 256K 1o
Local Store] | | |Local 5 Local Stord | | [Local Stord | | Controller
S12KB je| 10 Device
L2 cache

Figure 1: Cell Broadband Engine Architecture

we use the TPC-H data warehousing benchmark to evaluate
the efficiency of running database software on Cell.

There turned out to be three main challenges in porting
RDBMS software to Cell:

(i) all computations need to SIMD-ized, as the SPEs sup-
port SIMD instructions only. While there has been work
on using SIMD in database systems [15], this work needs
to be extended to enable full database operation on Cell.
We address this need partly in Section 4, by contributing a
new method to process grouped aggregates (i.e. SELECT ..
GROUP BY) using SIMD instructions.

(%) all performance-critical if-then-else branches need to
be eliminated, as SPEs combine a high branch penalty with
a lack of branch prediction. Some database processing tech-
niques such as buffered execution of relational operators [16],
predicated selection [13] but also vectorized execution [3],
can be used to reduce the impact of these branch misses.

(#41) there is a very small yet hard limit on program code
size, as in each SPE data plus code should not exceed 256 KB.
It turned out impossible to run “conventional” database en-
gines — such as Postgres — on the SPEs, as their code mea-
sures MBs rather than KBs. The code size challenge implies
that on Cell, a database system must not only manage the
data cache, but also its own instruction cache!

We report here on our initial experiences of porting the
vectorized query processing model of MonetDB /X100 [3] to
Cell. This port uses the PowerPC to run the relational op-
erator pipeline, but executes its data-intensive wvectorized
primitives data parallel on the SPEs, using a small run-
time system that manages transfer of data and instructions.
At the time of this writing, the port only consists of this
run-time system, together with the operators and primitives
needed by TPC-H Query 1.

Outline & Contributions. Section 2 summarizes the
Cell architecture, and characterizes its programmable DMA
memory infrastructure using micro-benchmarks. In Sec-
tion 3 we discuss how various DBMS software architectures

Sequential DMA Bandwidth (Varying number of SPEs)

Random List DMA Bandwidth (Varying DMA list length)

Random List DMA Bandwidth (Varying number of SPEs)

Bandwidth (GB/s)
Bandwidth (GB/s)

01 I I I I I I I I I

16 32 64 128 256 512 1K 2K 4K 8K 16K 16 32 64
Read Granularity (bytes)

(a) DMA read bandwidth as a func-

Read Granularity (bytes)

(b) List-DMA read bandwidth as a

- T T e
20 P
10 |- = i
e
9 - e o
g L—"
s 2F E
3
g 6 ——
g 5 -
g 05 4
3
02 2 4
1
0.1 L L L
256 512 1K 2K 16 32 64 128 256

Read Granularity (bytes)

(c¢) List-DMA read bandwidth as a

tion of bytes per transfer, for varying function of bytes per transfer element, function of bytes per transfer ele-

number of SPEs

for varying DMA-list lengths (1 SPE)

ment, for varying number of SPEs
(list length 128)

Figure 2: DMA read bandwidth Micro-Benchmarks (logarithmic scale)

could be mapped to Cell hardware. We cover three main
processing models: classical Volcano-style NSM tuple pipelin-
ing, column-wise materialization (MonetDB) and vector-
ized query execution (MonetDB/X100). Section 4 shows
how various vectorized relational database operators can be
implemented using SIMD instructions. Experiments with
TPC-H Query 1 show that the vectorized query processing
used in MonetDB/X100 can be a factor 20 faster on Cell
than on contemporary CPU architectures. Wrapping up, we
have related work in Section 5 and conclude in Section 6.

2. CELL ARCHITECTURE

Figure 1 shows a diagram of the Cell architecture. To
the left is the PowerPC Processor Element (PPE), which is
a general-purpose CPU, good at executing control-intensive
code such as operating systems and application logic. The
remaining eight cores are equivalent Synergistic Processing
Elements (SPEs). The SPEs are optimized for compute-
intensive tasks, and operate independently from the PPE.
However, they do depend on the PPE to run an operating
system, and in most cases the main thread of an applica-
tion. The SPEs and PPE are connected using a 128-byte
Element Interconnect Bus (EIB) that is connected to a 2-
channel memory controller, with each channel being able to
deliver 12.6GB/s of data, resulting in a theoretical maxi-
mum memory bandwidth of 25.2 GB/s.

Our main experimentation platform, a Sony Playstation 3
(PS3) game console, differs slightly from this architecture in
that it has two of the eight SPEs disabled. The PS3 contains
a Cell processor running at 3.2GHz, 256 MB RAM, and runs
the Linux operating system.

The SPE is an independent processor that runs threads
spawned by the PPE. It consist of a processing core, the
Synergistic Processing Unit (SPU), a Memory Flow Con-
troller (MFC), and a 256KB local storage memory area (LS),
that must keep both data and code. There is no instruction
cache, which implies that code must fit in the LS. Although
SPEs share the effective address (EA) space of the PPE,
they cannot access main memory directly. All data an SPE
wishes to operate on, needs to be explicitly loaded into the
LS by means of DMA transfers. Once the data is in LS, the
SPU can use it by explicitly loading it into one of its 128
128-bit registers. The SPE instruction set differs from the
PowerPC instruction set and consists of 128-bit SIMD in-
structions only, of which it can execute two per clock cycle.
The SPEs are designed for high-frequency (with a pipeline

depth of 18), but lack branch prediction logic. While it is
possible to provide explicit branch hints, if this is not done
a branch costs 20 cycles, which implies that they should be
avoided in performance-critical code paths.

Summing up, the SPE architecture requires careful engi-
neering by the programmer to ensure that efficient branch-
free SIMD code is generated, and to use parallel algorithms
to exploit all SPEs, while keeping a careful eye on code size
or even employing some dynamic code management scheme
(see Section 2.2).

DMA Engine. An interesting aspect of SPE program-
ming is the DMA Engine it exposes. The explicit memory
access programming it enforces poses some extra work for
the application developer, compared to normal cache-based
memory access. Explicit memory access can, however, be an
advantage for database software, as it provides full control of
data placement and transfer, such that advance knowledge
of data access patterns can be exploited. Previous work on
data management using cache-less architectures has demon-
strated that this is quite workable [6, 4] The DMA engine al-
lows to request multiple (at most 256) memory blocks in one
go (“List-DMA”). The practical minimal transfer unit (and
alignment unit) is 128 bytes, while the maximum is 16KB.
Each DMA transfer moves data between main memory and
LS in asynchronous fashion, supporting both a polling and
signaling programming model.

2.1 Memory Micro-Benchmarks

Potentially, the feature of List-DMA allows for efficient
scatter-gather algorithms that gather input data from a large
amount of random memory locations or scatter data output
over a series of random locations. On normal cached mem-
ory architectures, such algorithms perform badly if the ran-
domly accessed memory range exceeds the cache size, even
if all cache lines are used fully. The reason is that opti-
mum memory bandwidth is only achieved when sequential
access triggers built-in hardware memory prefetching (e.g.
a memory latency of 100ns and a cache line size of 64 bytes
produces 640MB/s of random throughput, while sequential
bandwidth on modern PCs gets to 4GB/s with prefetch-
ing). An example of a gather algorithm is Hash Join. For
such algorithms, it is currently beneficial to perform addi-
tional partitioning steps (a scatter operation) to make the
randomly accessed range fit the CPU cache first [10].

We use micro-benchmarks to investigate whether the Cell

DMA Engine offers alternative ways of expressing data-intensive

algorithms (e.g. is cache-, or rather LS-partitioning required

at all for hash-based algorithms?).

Sequential Access. We conducted a micro-benchmark
where we iteratively transfer a large region of main memory
into the LS, in consecutive DMA transfers of x bytes, for
varying z. Figure 2(a), shows that DMA latency dominates
using small transfer sizes, but good bandwidth is achieved
with memory blocks > 2KB, giving one SPE a maximum
of 6GB/s (these sequential accesses use only a single mem-
ory channel). If multiple SPEs perform the same micro-
benchmark, we observe that already around 1KB transfers
the SPEs fight for bandwidth. When all SPEs demand large
sequential blocks simultaneously, we achieve a total score of
20GB/s memory read bandwidth, thus relatively close to the
theoretical maximum of 25.6GB/s.

List-DMA allows to instantiate a list of (size, effective_address)

pairs in LS to pass to the MFC for processing in one go. Fig-
ure 2(b) shows the single-SPE bandwidth, as a function of
the transfer size per list element, where each list element
reads from a random, 128-bit aligned location. The lin-
ear bandwidth increase up to 128 byte transfers is simply
caused by the fact that all data transfers over the EIB have
a minimum 128-byte granularity. For transfer sizes below
128 bytes, one is simply wasting bandwidth. We also see
that beyond list-DMA bandwidth continues to improve with
larger transfer sizes and approaches 10GB/s, surpassing the
6GB/s achieved with sequential access. The reason is that
these random transfers use both memory channels. The fig-
ure furthermore shows that increasing the DMA list length
keeps improving performance.

Figure 2(c) shows that when more than one SPEs are
performing scatter/gather DMA at the same time, the bus
again gets saturated, achieving peak 22GB/s memory band-
width already at 128-byte transfer sizes.

The fact that random List-DMA is able to achieve high
bandwidth indicates that Cell algorithms may indeed forgo
LS-partitioning and work in a scatter/gather fashion directly
on RAM. However, three caveats apply. First, it is essen-
tial that algorithms use a 128-byte granularity for memory
access, thus making full use of the EIB “cache lines” to
avoid bandwidth waste. Secondly, as SPEs should oper-
ate in parallel, the per-SPE usable throughput is limited
to roughly 3GB/s (i.e. 1 byte per cycle). Given the 2-per-
cycle throughput of the SIMD instructions that may process
two 16 byte inputs, there is a distinct danger of becoming
LS bandwidth-bound (16-bytes/cycle max). Finally, as the
LS is not a coherent cache, RAM-based scatter/gather al-
gorithms must explicitly prevent that the same memory lo-
cations are updated multiple times by the same DMA-List
command, which can significantly increase their complexity.

2.2 Code Management

As the SPE local storage (LS) is limited to 256KB and
needs to be shared between both code and data, major soft-
ware products such as database systems simply will not
fit. The Octopiler research compiler, being developed by
IBM [5], tries to hide code size limitations by automati-
cally partitioning code into small enough chunks. It em-
beds in each SPE program a small runtime system called
the partition manager. The compiler also translates calls
to functions outside the current partition into calls into the
partition manager. At runtime, when called, the partition
manager brings in the desired partition — swapping out the

current one — using a DMA data transfer, and then calls
into the newly loaded function. Additionally, this compiler
promises a 32KB software cache, that allows to transpar-
ently access RAM resident arrays with a 12 instruction la-
tency, and many other advanced features. Regrettably, how-
ever, all these features are not yet available in the IBM com-
pilers currently distributed. Thus, code partitioning on Cell
remains a programmer responsibility, so we discuss various
ways to do this.

Separate Binaries. Each SPE can only run one single-
threaded program at a given time, and no operating system
code is running in between. Such a program is spawned by
the PPE as an SPE thread, which transfers the SPE binary
to any number of SPEs and runs it till completion. The sim-
plest approach to partitioning thus is to explicitly compile
the program into separate binaries and let these be spawned
as SPE threads by the PPE whenever appropriate. Regret-
tably, this approach is slow, taking approximately 3804000
cycles (1.2ms) on average per SPE, so it is only viable when
one partition will run for at least 100 milliseconds (in which
300MB of data should be processed). A second disadvan-
tage is that it is static: the partitions need to be defined at
system compile-time, making it hard to e.g. adapt to the
needs of a run-time query plan.

Overlays. While the IBM compiler does not yet deliver the
fancy features it promised, it does allow for code overlays:
small libraries of SPE code that are compiled into the main
binary, but do not get loaded into the SPE upon thread cre-
ation. Only when a function from a certain overlay is called,
the overlay is loaded into the SPE at run-time, and the func-
tion gets executed. At roughly 775 cycles, this approach is
much faster then separate binaries, but is still static (and
even if the overlay is already loaded, the function call over-
head is still a hefty 236 cycles). Also, overlay technology
depends on inter-procedural analysis and thus cannot deal
with late binding and function de-referencing, often used to
implement DBMS execution engines.

Manual Loading. It is perfectly possible for an SPE pro-
gram to issue a DMA memory transfer and upon comple-
tion call into that location. This makes it a viable strategy
for a database system to add code management to the list
of database (optimization) tasks. Like the Octopiler parti-
tion manager, each SPE could run a small runtime system
that waits for code and data requests from the PPE. When
a request comes in, it loads the data and code (if not al-
ready present in LS) and executes the required operation.
The overhead of this approach is similar to the overlay ap-
proach. A limitation of this approach is that the code snip-
pets that get transferred need to be stand-alone functions
(i.e. functions that do not rely on relocation and/or call
other functions). The advantage of manual loading is that,
unlike overlays, it is able to deal with late binding — as said
an important feature for porting database systems. In our
database experiments of Cell, we therefore have used the
Manual Loading approach to code management.

3. DBMS ARCHITECTURE ON CELL
3.1 Classical NSM Tuple Pipelining

Conventional relational database architecture uses a disk-
based storage manager using an NSM layout. Query execu-
tion uses a Volcano-style [7] iterator class hierarchy, where

all relational operators (Scan, Select, Join, Aggregation) are
instantiated as objects that implement an open(), next(),
close() method interface. A full query plan is a tree of such
objects, and the result is generated by calling next() on the
root of the tree, which pulls data up by calling nezt() in its
children (and so on), finally producing a single result tuple.
This is then repeated until no more tuples are returned.
Conventional relational database systems have a large code
base that does not fit the 256 KB LS, and therefore we think
it is an absolute necessity that Cell compilers support auto-
matic code partitioning (see Section 2.2). As this is not yet
the case, we did not really attempt to port a real system.
Even if code partitioning would be available, the cost of
crossing code partitions could be a problem. It may be pos-
sible to overcome this problem by inserting Buffer() oper-
ators [17] in the query plan, that force the nezt() method
of its child operator to be called many times, buffering the
results, before passing them up higher in the pipeline.
Finally, Cell may be an interesting platform for compiled

query execution, where a query plan generator emits (C/C++)

program code that is compiled Just-in-Time (JIT). It has
been shown that query-specific code generation can be more
efficient than a query interpreter [12, 3]. On Cell, an addi-
tional advantage is that the generated binary is much smaller
than the full DBMS, and likely fits in LS.

As the query interpreter is an important cause of the high
amount of if-then-else branches in database code, JIT com-
pilation likely reduces the effect of costly branches on Cell.
Data related branches can be addressed by using predicated
programming techniques [13]. The SIMD instruction set of
Cell also provides explicit intrinsics for predication.

Finally, it is known that a wide range of database oper-
ations can be accelerated with SIMD instructions [15]. As
SIMD instructions apply an operation on X consecutive val-
ues from the same column, as a preparation X NSM hori-
zontal records need to be packed vertically to put them into a
SIMD register. It has been shown that on-the-fly conversion
of horizontal (NSM) layout into small vertical arrays can
improve performance [11]. However, the memory-intensive
work of navigating through an NSM disk block following
data layout offsets to gather column data is not a strength of
the SPEs. As mentioned, a vertical (DSM) storage scheme,
as used in MonetDB stores the data in SIMD-friendly verti-
cal layout upfront, avoiding the need of packing. Note that
packing can also be avoided by using column-wise storage
only within a disk block (i.e. PAX [1]).

3.2 MonetDB: Column Materialization

MonetDB is an open-source DBMS using vertically frag-
mented storage (DSM) supporting both SQL and XQuery.*
Internally, it implements a physical column-algebra [2] using
a column-wise materialization strategy, which means that
each operator reads one or more input columns, represented
as contiguous arrays in RAM, and stores back the output
column in RAM. MonetDB can be ported to Cell by run-
ning its algebra interpreter on the PPE, and have it execute
the column operations (data parallel) on the SPEs.

Arguably, column-wise processing overcomes all three main
Cell efficiency challenges (full SIMD-ization, branch elimina-
tion, instruction cache management): (i) Column algebras
carry out one basic action on all values of a column sequen-

'See monetdb.cwi.nl

Aggregate Local Store

quadword Select
ﬂ vector
selection selpack_4fit_cols
vector
,,,,,,,,,,,,,,,,, _|-- vectors
map_select_lte 19981201 i [contain multiple

map_aggr_sum_col_vec_fit4

‘ 7 . values of a single
A attribute and fit
' Project| | the SPEsLS
[groupids
[| [mapmulle
map_hash [map_sub] [map add] " SIzpe- primitives
> = process entire
[1 I 1 I vectors at a ime
[T T————— |
DMA transfer » operators

process sets
/ of tuples
represented as
Scan | | aligned vectors

returnflag
linestatus
shipdate
quantity
extprice
discount

x
g

Figure 3: MonetDB /X100 on Cell

tially, and thus have a high instruction locality. This makes
it easy to do explicit SPE instruction cache management.
(i) Column-wise storage yields array-loop intensive code
patterns that often can be compiled into SIMD instructions
automatically. (4i:) Finally, column-wise execution lessens
the performance impact of branches caused by the query al-
gebra interpreter, as interpretation decisions are made for
whole columns, rather than tuples.

The full materialization strategy of MonetDB causes prob-
lems, however, if queries produce substantial intermediate
results. In the case of our example query TPC-H Q1, this
indeed occurs as the query starts with a selection that keeps
95% of the tuples. In case of Cell, we will see in Section 4.1
that this causes the SPEs to generate huge DMA traffic,
such that performance becomes bus limited.

3.3 MonetDB/X100: Vectorized Processing

Contrary to MonetDB, the MonetDB/X100 system [3] al-
lows for Volcano-style pipelining (avoiding materialization
of intermediates). For disk storage, it can use both hori-
zontal (PAX) and vertical (DSM) storage. Figure 3 shows
an operator tree, being evaluated within MonetDB/X100
in a pipelined fashion, using the traditional open(), next(),
close() interface. However, each nezt() call within Mon-
etDB/X100 does not return a single tuple, as is the case in
most conventional DBMSs, but a collection of wectors, with
each vector containing a small horizontal slice of a single
column. Vectorization of the iterator pipeline allows Mon-
etDB/X100 primitives, which are responsible for computing
core functionality such as addition and multiplication, to be
implemented as simple loops over vectors. This results in
function call overheads being amortized over a full vector
of values instead of a single tuple, and allows compilers to
produce data-parallel code that can be executed efficiently
on modern CPUs. The vector size is configurable (typically
100-1000) and should be tuned such that all vectors needed
for a query fit in the CPU cache (or LS — for Cell).

Cell Port. The vectorized query processing model of Mon-
etDB/X100 can be mapped on Cell by running the rela-
tional operator pipeline (Scan,Select,Aggregation, etc) on
the PPE. When a nezt() method needs to compute primi-
tives, it sends a primitive request to all SPEs (data parallel
on the vectors). Double buffering can be applied by execut-
ing a request only when a subsequent request is issued, using

the time in between to initiate DMA for code and data (if
needed). As for code loading, we applied the manual loading
approach described in Section 2.2 to load MonetDB/X100
vectorized primitives on demand to the SPEs.

In vectorized query processing, rather than writing all in-
termediate results to RAM, the result vectors coming out
of vectorized primitives are kept in the local SPE memories,
for use as input to the next operation. The main database
system running on the PPE, allocates wector registers to
primitive function inputs and outputs found in the query
plan. These vector registers are symbolic representations of
memory areas in the LS. Upon plan generation, the total
number of vectors and their types are known, so a suitable
vector size and vector register allocation can be chosen.

The Cell port of MonetDB/X100 is currently in a proof-
of-concept stage. For the experiments presented in the next
section, we hand-coded the PPE query plan and register
allocation, and ported only the MonetDB/X100 primitives
we needed to the SPE. Also, we re-used this code for vector-
ized query processing to emulate full column materialization
(MonetDB), using an alternative plan that writes out each
primitive output into a RAM-resident result column.

4. VECTORIZED SIMD PROCESSING

Projection. To integrate SIMD processing into a database
kernel, it is advisable to let the compiler do as much of
the work as possible. Implementing database operators as
branch- and dependency free loops is crucial to make that
possible. In MonetDB/X100, this holds automatically for
most projection-related primitives, which are simple loops
over vectors of the form:

for (i=0; i<n; i++)
res[i] = input1[i] OP input2[i] ;

If we take for example addition on two floating point vec-
tors, this will get compiled as if the code was explicitly
SIMD-ized as follows (trailing tuples left out):

vector float *inputl, *input2, *res ;
for (i=0; i < (n/4); i++)
res[i] = spu_add(inputi[i], input2[i]) ;

This adds four pairs of floats in parallel, obtaining a through-
put of 1 tuple per SPE cycle.

Selection. To be able to exploit SIMD, the input vector ar-
rays need to be aligned and organized sequentially in mem-
ory, so that multiple data items can be loaded into a SIMD
register. The constraint of sequential input data, however, is
violated by the way X100 originally implements selections,
which it does by passing an optional selection vector to prim-
itives, which is an integer array, containing the offsets of
those tuples within the vector that are within the selection.
This gives primitives of the form:

for (j=0; j < n; j++) {
int i = sellj] ;
res[i] = inputi[i] OP input2[i] ;

which decreases Cell throughput by a factor 20 (in case
of 100% selection). To avoid this, instead of a positional
selection vector we decided to use bit-mask selection vectors
on Cell, which are aligned to data vectors, and contain bit-
masks of either zeros or ones for non-selected and selected

a b ¢ d Sel Res
2 [=] [oo] [c0] [a0] [o] a1]
2 [lat| [bz| fc2] |az 1 bl
a\[2 =2 || |ee| [of [ex
o e [b3] [es| fas] |o ol
7 [aa] [oa] [ea] [ea] |o

[a5] [65] [cs] [os] | o] B

BIBIBIENE 6]

] Lo e] |do

Selection Bitvector

Figure 4: selpack SOA into AOS with selection

tuples respectively. This has the advantage that code re-
mains SIMD-izable, as non-selected tuples can be quickly
masked out whenever needed. A disadvantage is that non-
selected tuples are still being processed and occupy space in
the LS. Thus, if the selectivity is high, it may be better to
compact the vectors, making them densely populated again.

SOA vs AOS. The representation used so far of horizon-
tally aligned vectors, is called Structure of Arrays (SOA).
SIMD operations can also be applied using an Array of
Structures (AOS) layout. These SIMD data layout con-
cepts roughly correspond with column-wise versus row-wise
database storage. For some operations, the AOS representa-
tion is more convenient. One example of this is compaction
of selections, which introduces a data dependency, limit-
ing SPE throughput severely. While paying this cost of se-
lection, it is thus better to compact multiple SOA input
columns at once using SIMD, thus producing one AOS out-
put. An example of such a reorganization is shown in Fig-
ure 4, where we see four input vectors being combined into
a single quadword vector, with each quadword containing a
value from each of the four input columns, throwing away
non-selected tuples in the process. Currently, we only con-
sidered packing data of the same type together. For each
supported data type we can have a pre-generated selpack
primitive, but also a pack (a version without selection) and
an unpack. The query optimizer should decide the proper
data layout (selection/dense, AOS/SOA).

Hash Aggregation. For the mapping of database opera-
tions to SIMD instructions, we build on [15], that described
projections, selections, joins and index lookup. Lacking still
in this list were grouped aggregates, which form an impor-
tant part of our example query (TPC-H Q1). Grouped ag-
gregates can be SIMD-ized if multiple aggregates of an equal
type need to be computed. In case of TPC-H Q1 (see Fig-
ure 3), there are 4 floating point SUMs, one integer SUM
and one COUNT (which can be treated as an integer SUM
of a constant column filled with one-s).

In this case, we can pack the four float columns to be
aggregated into a quadword vector values in AOS layout,
using the selpack operation, and do the following:

vector int *grp;
vector float *values;
for (i=0; i < n; i++)
int id = si_to_int(grp[il);
aggr[id] = spu_add(aggr[id], values[il);

This updates four aggregate results in parallel. Here we
assume that previously an aggregate group-ID has been com-
puted and is available in AOS int vector grp[i]. For space
reasons, we omit a detailed discussion of SIMD hashing here.
SIMD-based Cuckoo hash on Cell is discussed in [14].

Platform Evaluation Strategy
column vector |vector
at-a-time | at-a-time | SIMD
Itanium?2 1.3Ghz 3400 311 n.a.
PPE + 1 SPE (3.2GHz) 493 459 95

PPE + 2 SPEs (3.2GHz 280 229 47

)
PPE + 3 SPEs (3.2GHz) || 202 153 32
PPE + 4 SPEs (3.2GHz) || 178 115 24
PPE + 5 SPEs (3.2GHz) || 142 92 19
PPE + 6 SPEs (3.2GHz) || 129 77 16

Table 1: TPC-H Q1: avg elapsed msec (SF=1)

4.1 Evaluation: TPC-H Q1

Table 1 lists the initial results of our Cell experiments
on the SF-1 TPC-H dataset (6M lineitems, RAM resident)
on query 1. This query is a good measure of the computa-
tional power of a database system as it is a simple Select-
Project-Aggregate query, that consumes a large input table,
producing almost no output, and performs quite a few com-
putations. Our main result is the “Vector SIMD” column
that shows the (almost perfect) parallel scaling of our SIMD
implementation of vectorized query processing. For compar-
ison, we reproduce results from [3] obtained on a 1.3GHz
Itanium2: Cell is 20 times faster than MonetDB/X100 on
Itanium?2 (16 vs 311 msec). An important requirement to
obtain such speedup is proper use of SIMD friendly code.
Just compiling the standard MonetDB/X100 primitives for
the Cell (“vector at-a-time”) is 5 times slower; but still beats
the same code on Itanium?2 by a factor 4. While the origi-
nal MonetDB strategy of full materialization (which causes
huge memory traffic on Q1) brings the Itanium2 memory
subsystem to its knees (3.4sec), we see the 25.6GB/s Cell
memory infrastructure holding up well (129msec), though
scaling is sub-linear. From this data, we speculate that
massive scatter/gather algorithms on Cell are likely to yield
bandwidth-bound results. Such results might be acceptable,
but certainly not optimal (129 vs 16 msec here).

S. RELATED WORK

The only paper that explicitly touches upon Cell in the
context of data management (hashing, in this case) is [14],
where the computational power of the SPEs is used for
quick hash function computation. Our work builds strongly
on [15], that describes the applicability of SIMD instruction
for database workloads. We extend this work by propos-
ing use of Array-Of-Structure (AOS) data layout to per-
form grouped aggregation in a SIMD-ized fashion as well.
Database workloads on a network processor, which, simi-
lar to Cell SPEs, lack a hardware cache are analyzed in [6].
Both [17] and [8] try to improve instruction-cache reuse by
reusing its contents on buffered data from within the same
query, or on data from other queries respectively. Work on
automatic SPE code partitioning and management is con-
ducted by the IBM compiler team [5]. This compiler is as of
yet not available, so for our Cell database system we created
our own code management runtime.

6. CONCLUSION & FUTURE WORK

In this paper we have taken a sneak preview into a possi-
ble future of query processing on heterogeneous multi-core
CPUs, by using the Cell for database purposes. We made a
case for column-wise query processing on Cell, as it reduces

branchiness of code, allows for better instruction locality,
and produces code that is amendable to efficient (and some-
times even automatic) SIMD translation. However, we have
also shown that care needs to be taken not to materialize in-
termediate results in main-memory, to avoid bus contention.
These ideas correspond to the wectorized query processing
model used in MonetDB /X100, of which parts were ported
to enable these experiments. However, the default Mon-
etDB/X100 primitive functions turned out to yield subopti-
mal SIMD translations on the SPEs. We added support for
AOS (Array of Structures) vector data layout, which allowed
to better SIMD-ize selection and aggregation primitives.

We experimented with a limited set of operators here,
but we believe that with careful engineering of parallel algo-
rithms, more complex operators like joins and aggregations
that exceed LS capacity can benefit from the exceptional
computational power of Cell as well. So far, we performed
main memory resident queries only. Given its enormous
throughput, it is an interesting question whether Cell can
be kept in balance with secondary storage when processing
data beyond main-memory.

7. REFERENCES

[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis.
Weaving Relations for Cache Performance. In Proc. VLDB,
2001.

[2] P. Boncz and M. Kersten. MIL primitives for querying a
fragmented world. VLDB Journal, 8(2):101-119, 1999.

(3] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. CIDR, 2005.

[4] J. Cieslewicz, J. W. Berry, B. Hendrickson, and K. A. Ross.
Realizing parallelism in database operations: insights from
a massively multithreaded architecture. In DaMoN, 2006.

[5] A. E. Eichenberger et al. Using Advanced Compiler
Technology to Exploit the Performance of the Cell
Broadband Engine Architecture. IBM Systems Journal,
45(1):59-84.

[6] B. T. Gold, A. Ailamaki, L. Huston, and B. Falsafi.
Accelerating database operations using a network
processor. In DaMoN, 2005.

[7] G. Graefe. Volcano - an extensible and parallel query

evaluation system. IEEE TKDE, 6(1):120-135, 1994.

S. Harizopoulos and A. Ailamaki. STEPS Towards

Cache-Resident Transaction Processing. In Proc. VLDB,

2004.

[9] IBM Corporation. Cell Broadband Engine Programming
Handbook, 2006.

[10] S. Manegold, P. Boncz, N. Nes, and M. Kersten.
Cache-Conscious Radix-Decluster Projections. In Proc.
VLDB, Toronto, Canada, 2004.

[11] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and
A. Jhingran. Block oriented processing of relational
database operations in modern computer architectures. In
Proc. ICDE, 2001.

[12] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman.
Compiled Query Execution Engine using JVM. In Proc.
ICDE, 2006.

[13] K. A. Ross. Conjunctive selection conditions in main
memory. In Proc. PODS, Washington, DC, USA, 2002.

[14] K. A. Ross. Efficient hash probes on modern processors. In
Proc. ICDE, 2006.

[15] J. Zhou and K. A. Ross. Implementing database operations
using simd instructions. In Proc. SIGMOD, 2002.

[16] J. Zhou and K. A. Ross. Buffering accesses to
memory-resident index structures. In Proc. VLDB, 2003.

[17] J. Zhou and K. A. Ross. Buffering database operations for
enhanced instruction cache performance. In Proc.
SIGMOD, 2004.

B

