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ABSTRACT 

As XQuery rapidly emerges as the standard for querying XML 
documents, it is very important to understand the architectural 
characteristics and behaviors of such workloads. A lot of efforts 
are focused on the implementation, optimization, and evaluation 
of XQuery tools. However, few or no prior work studies the 
architectural and memory system behaviors of XQuery workloads 
on modern hardware platforms. This makes it unclear whether 
modern CPU techniques, such as the multi-level caches and 
hardware branch predictors, can support such workloads well 
enough. 

This paper presents a detailed characterization of the architectural 
behavior of XQuery workloads. We examine four XQuery tools 
on three hardware platforms (AMD, Intel, and Sun) using well-
designed XQuery queries. We report measured architectural data, 
including the L1/L2 cache misses, TLB misses, and branch 
mispredictions.  We believe that the information will be useful in 
understanding XQuery workloads and analyzing the potential 
architectural optimization opportunities of improving XQuery 
performance. 

1. INTRODUCTION 
The wide spread of XML storages and web service creates a lot of 
applications which need to query and process XML documents. 
More than traditional scientific computing applications and 
OLTP/DSS workloads [2], such applications run on a larger range 
of hardware platforms, which include web servers, desktops, and 
even mobile devices. As XQuery rapidly emerges as the standard 
for querying XML documents, it is very important to understand 
the architectural characteristics and behaviors of running such 
workloads on different hardware platforms. 

However, the current architectural research community and the 
current XQuery research community are not well joining to study 
and make it clear how XQuery workloads run on modern 
processors. Architectural researchers have focused on studying the 
architectural characteristics of database workloads including 
query processing and transaction processing. Furthermore, 

architectural optimized database algorithms and schemes 
[24][25][26] are presented on the basis of insights given by 
DBMS-characterizing works. Compared with the joint of 
architecture research and database research, researching XQuery 
from the viewpoint of architecture is just beginning. 

Although XQuery shares many common concepts with SQL, its 
executions have many specific features differing from them in 
relational database. Intuitively, XQuery is basically computing 
and memory bound since (1) XML documents are relatively small 
(<100MB) in typical applications and as thus the I/O is not the 
dominating factor, and (2) executions of XQuery queries are often 
time-consuming, which need to manipulate a lot of nodes resident 
in memory. Path navigation is the cornerstone of XQuery, which 
creates different memory-accessing patterns from DBMS’s tuple-
based query executions. In addition, current XQuery engines are 
often written in an object-oriented language and running on a 
virtual machine, such as typical Java-based systems [20][22]. 
These factors make it necessary to characterize the CPU and 
memory behavior of XQuery workloads. 

This paper is our first step to understand the architectural 
characteristics of running XQuery workloads on modern 
processors. We present a detailed characterization of architectural 
behaviors of XQuery workloads. We examined four XQuery tools 
on three hardware platforms (AMD, Intel, and Sun) using our 
designed XQuery queries. We report measured architectural data, 
including the L1/L2 cache misses, TLB misses, and branch 
mispredictions.  We believe that the information will be useful in 
understanding XQuery workloads and analyzing the potential 
architectural optimization opportunities of improving XQuery 
performance. 

The remainder of this paper is organized as follows. Section 2 lists 
related work very briefly. Section 3 introduces our designed 
XQuery workloads. In section 4, we introduce the target hardware 
platforms and corresponding tools. All test results are presented in 
section 5. We conclude this paper in section 6. 

2. RELATED WORK 
There are many papers for characterizing architectural behaviors 
of DBMS queries including OLTP and DSS workloads, such as 
[1][2][3][4][5][6]. Some papers involve examining Java 
workloads, such as [7][8][9]. To our knowledge, almost no prior 
work is specially focused on charactering XQuery workloads. In 
[10], the authors report the measured architectural characteristics 
for XML processing on an Intel Xeon platform. In addition, work 
on benchmarking XQuery is related to this paper, such as 
[16][17][18][19][28][29]. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Proceedings of the Second International Workshop on Performance and 
Evaluation of Data Management Systems (ExpDB 2007), June 15, 2007, 
Beijing, China. 
Copyright 2007 ACM 978-1-59593-773-5/07/06 ...$5.00. 

 



3. XQUERY WORKLOAD DESIGN 
In this section, we introduce the XQuery workloads used in our 
experiments, which include the data part and the query part. 

3.1 Documents 
We design three categories of XML documents. Their visual 
shapes are illustrated by Figure 1. 

3.1.1 Rectangle XML 
Rectangle XML has two parameters: the width and the height. The 
width means how many child nodes the root has, while the height 
means how many levels the tree has under the root node. 

We distinguish two kinds of Rectangle XML: the wide one and 
the narrow one.  A wide Rectangle XML has a very large width 
but a very small height, while a narrow one has a very small width 
but a very large height. Although the narrow Rectangle XML is 
very rare, we are expecting that the difference between the two 
shapes can show different memory system behaviors considering 
their structural difference. 

The concrete values of the two parameters are given as the 
following. 

Wide Rectangle XML: 

Width: [10000,20000,40000,80000,100000] 

Height: [1,2,4,6,8,10] 

Narrow Rectangle XML: 

Width: [1,2,4,6,8,10] 

Height: [500,1000,5000,10000,20000,40000] 

In a Rectangle XML document, the root is labeled root. Nodes at 
the level x are all labeled tx. No node contains attribute. 

3.1.2 Triangle XML 
In a Triangle XML document, each non-leaf node has two child 
nodes, so the tree is a complete binary tree. Triangle XML has 
only one parameter: the height. The concrete values of heights are 
given as the following. 

Triangle XML: 

Height: [15,16,17,18,19,20] 

In a Triangle XML document, the root is labeled t1. Nodes at the 
level x are all labeled tx. No node has attribute. 

 

3.1.3 List XML (300k.xml) 
Unlike the above Rectangle XML and Triangle XML, List XML 
has payloads and it is defined as the following: 

(1) The root node has 300000 child nodes and each child 
node has a text child node whose value is a random 
integer between 1 and 300000. 

(2) The root node is labeled result and all 300000 child 
nodes are labeled t. 

3.2 Queries 
In our experiments, we only use three queries which contain basic 
operations of XQuery: path navigation, selection and sorting, 
considering our major goal is not to evaluate language supporting 
capabilities of concrete tools, but to understand and analyze 
architectural behaviors of basic XQuery workloads. 

Q1: Retrieving all leaf nodes This query is actually an XPath 
query. It is executed on Rectangle XML and Triangle XML. The 
query has the form of “doc(“xmlname”)//tn”, in which “n” is the 
level of all leaf nodes in the corresponding document “xmlname”. 

Q2: Selection This query is executed only on List XML. The 
selectivity of the where clause in the query is 50%. 

for $t in doc(“300k.xml")/result//t 

where number($t/child::node()) < 150000 

return  $t 

Q3: Sorting This query is executed only on List XML. 

for $t in doc(“300k.xml")/result//t 

order by number($t/child::node()) 

 return  $t 

Figure 1: visual shapes of tree kinds of XML documents. In 

the graphs, a circle means an element node, while a rectangle 

means a text node (only existing in List XML). 

Table 1: Characteristics of three CPUs. (The data is from corresponding official websites [11][14][15].) 

Characteristic AMD Sempron 2500+ Intel Pentium P4 2.8GHz Sun UltraSPARC T1 

L1 cache organization Split instruction/data caches Split instruction/data caches Split instruction/data caches 

L1 cache size 64 KB each for instructions/data 8KB for data, 96KB trace cache 16KB instruction cache per core; 
8KB data cache per core 

L1 cache associativity 2-way set associative 4-way set associative 4-way set associative 

L1 block size 64 bytes 64 bytes 32 bytes(instruction cache) 

16 bytes(data cache) 

L2 cache organization Unified (instruction and data) Unified (instruction and data) Unified (instruction and data) 

L2 cache size 256 KB 512 KB 3 MB (shared by cores) 

L2 cache associativity 16-way set associative 8-way set associative 12-way set associative 

L2 block size 64 bytes 128 bytes 64 bytes 

Rectangle XM L Triangle XM L List XM L



4. HARDWARE & SOFTWARE 

4.1 Hardware Platforms and Measuring 

Tools 
Our experiments were executed on three hardware platforms. The 
specifications of involved CPUs are briefly given in Table 1. 

4.1.1 AMD 
This system contains an AMD Sempron 2500+ CPU, 2048MB 
DDR400 RAM. The operating system of this system is FreeBSD 
6.2. We use the pmcstat tool [12] to count hardware events. 

This system is our primary platform in the experiments, on which 
we measure the following architectural characteristics: 

(1) L2 miss rate 
(2) Frequency of branch mispredictions 
(3) L1 I-TLB misses per 1000 instructions 
(4) L1 D-TLB misses per 1000 instructions 
(5) L1 I-Cache misses per 1000 instructions 
(6) L1 D-Cache misses per 1000 instructions 

To measure these targets, we need to count events listed in Table 
2. We use the indirect method [13] to measure L2 cache 
request/misses and calculate L2 miss rate. 

Table 2: events used by pmcstat on AMD Sempron 

4.1.2 Intel 
This system contains an Intel Pentium P4 2.8GHz CPU, 512MB 
DDR266 memory. Although this CPU supports Hyper-Threading 
technology, we disabled this feature in our experiments. Like the 
above AMD system, we also run FreeBSD 6.2 operating system 
and use pmcstat tool on this system. 

On this system, we only measure the following architectural 
characteristics using the events listed in Table 3 [11]: 

(1) L2 miss rate 
(2) Frequency of branch mispredictions 

Table 3: events used by pmcstat on Intel P4 

Characteristics Event name (used by the pmcstat tool) 

L2 cache accesses P4-bsq-cache-reference 

L2 Misses P4-bsq-cache-reference,mask=rd-2ndl-
miss+wr-2ndl-miss 

branches Branches (common alias) 

Branch 
mispredictions 

Branch-mispredicts (common alias) 

4.1.3 Sun UltraSPARC T1 
This system is a Sun Fire T1000 Server with 8 cores, 8GB RAM, 
running Solaris 10. On this system, we use the collect and 
er_print command provided by Sun Studio to measure 
instructions, and misses of L1/L2 instruction/data cache [27]. 

4.2 Software 
We examined the following XQuery tools: 

� Berkeley DB XML v2.3.10 (Bdb-xml for short) [23] 

We only ran this software on our AMD/Intel systems. We 
downloaded the source tarball which includes sources of all the 
components: Berkeley DB, Xerces, and XQilla, and build them on 
our FreeBSD systems. The query execution command was “dbxml 
–s ourquery”, in which the “ourquery” was a script containing a 
query command and a quit command. For our experiments, we did 
not use the container concept but build our queries on XML files 
directly. 

� Galax v0.5.0. (Galax for short) [21] 

We ran it on all systems. We used the Linux binary version on our 
FreeBSD systems without any modifications. And on the Sun 
system, we used the Solaris binary version downloaded from the 
official website. The query executing command was “Galax-run –
print-xml off our.xquery”. 

� Saxon-B 8.9 for Java. (Saxon for short) [20] 

This is written in Java. We ran it only on the Sun system. The 
query executing command was “java net.sf.Saxon.Query 
our.xquery”. 

� Gnu Qexo v1.9.1.  (Qexo for short) [22]. 

This is also written in Java. We ran it only on the Sun system. We 
downloaded the executable jar file and executed it directly, and 
the command was “java –jar kawa.jar our.xquery”. 

5. RESULTS 
In this section, we first report results on AMD and Intel systems 
for Bdb-xml and Galax, which include the following three parts: 

(1) The L2 Cache miss rates on both AMD and Intel 
systems (subsection 5.1) 

(2) The frequency of branch mispredictions on both AMD 
and Intel systems  (subsection 5.2) 

(3) The L1 Cache misses and TLB misses on only AMD 
system (subsection 5.3) 

Then, we report results of running Q1 to wide Rectangle XML 
documents on the Sun UltraSPARC T1 system for Galax, Saxon, 
and Qexo (subsection 5.4), which include the following parts: 

(1) The total count of instructions 
(2) The L1 I-Cache/D-Cache misses per 1000 instructions 
(3) The L2 I-Cache/D-Cache misses per 1000 instructions 

Characteristics Event name (used by the pmcstat tool) 

branches Branches (common alias) 

Branch 
mispredictions 

Branch-mispredicts (common alias) 

instructions Instructions (common alias) 

L1 I-TLB misses K8-ic-l1-itlb-miss-and-l2-itbl-hit + 

K8-ic-l1-itlb-miss-and-l2-itlb-miss 

L1 D-TLB misses K8-ic-l1-dtlb-miss-and-l2-dtlb-hit + 

K8-ic-l1-dtlb-miss-and-l2-dtlb-miss 

L1 I-Cache misses K8-ic-refill-from-l2 + K8-ic-refill-from-
system 

L1 D-Cache misses K8-dc-refill-from-l2 + K8-dc-refill-from-
system 

L2 Cache accesses L1 I-TLB misses + L1 D-TLB misses + 
L1 I-Cache misses + L1 D-Cache misses 

L2 Cache misses K8-ic-refill-from-system + k8-dc-refill-
from-system +  K8-ic-l1-itlb-miss-and-
l2-itlb-miss +  K8-ic-l1-dtlb-miss-and-l2-
dtlb-miss 



5.1 L2 Cache Miss Rate 

5.1.1 AMD 
On this system, we measure Sempron’s L2 Cache miss rates for 
running Q1 on Rectangle XML and Triangle XML, and running 
Q2/Q3 on List XML. 

5.1.1.1 Rectangle XML 
Figure 2 shows L2 miss rates of executing Q1 on wide Rectangle 
XML in Bdb-xml, while Figure 3 shows them in Galax. By 
comparing these two graphs, we can see that Bdb-xml has a better 
L2 miss rate than Galax for wide XML documents. Moreover, 
when the width increases from 10000 to 100000, the L2 miss rate 
decreases for Bdb-xml but increases for Galax (not including 
height 1/2).   

Figure 4 shows L2 miss rates of executing Q1 on narrow 
Rectangle XML in Bdb-xml, while Figure 5 shows them in Galax. 
We can see that Bdb-xml has a very bad L2 miss rate for this 
situation, especially when the height is larger than 5000 (up to 
50%). What is interesting is that the miss rate in Bdb-xml is 
minimized when the height equals to 1000. 

As shown in the graphs for Galax, no matter whether the 
Rectangle XML is wide or narrow, Galax has a relatively close L2 
miss rate (8% -13%). However, Bdb-xml cannot fit narrow XML 
shapes as well as to wide shapes (ranging from 2% to 50%). 

 

Figure 2: L2 miss rates of executing Q1 on wide Rectangle 

XML documents in Bdb-xml (varying width and height) 

 

Figure 3: L2 miss rates of executing Q1 on wide Rectangle 

XML documents in Galax (varying width and height) 

 

Figure 4: L2 miss rates of executing Q1 on narrow Rectangle 

XML documents in Bdb-xml (varying width and height) 

 

Figure 5: L2 miss rates of executing Q1 on narrow Rectangle 

XML documents in Galax (varying width and height) 

5.1.1.2 Triangle XML 
Figure 6 shows that Bdb-xml and Galax have completely converse 
L2 cache miss behaviors for Triangle XML when the height of the 
tree increases. Bdb-xml fits Triangle XML better than Galax, as it 
does for wide Rectangle XML.  

 

Figure 6: L2 miss rates of executing Q1 on Triangle XML 

documents in Bdb-xml and in Galax (varying height) 
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5.1.1.3 List XML 
Figure 7 shows L2 cache miss rates when executing Q2 
(selection) and Q3 (sorting) on List XML in Bdb-xml and Galax. 
Although Bdb-xml has a very low L2 cache miss rate (<2%) for 
selection, its sorting algorithm has to suffer a high L2 cache miss 
rate (>14%). Galax has converse behaviors for the two operations. 

 

Figure 7: L2 miss rates of executing Q2 (selection) and Q3 

(sorting) on List XML document in Bdb-xml and in Galax. 

5.1.2 Intel 
On this system, we only report results of executing Q1 on 
Rectangle XML. Figure 8 and Figure 9 show L2 miss rates of 
Bdb-xml and Galax for executing Q1 on wide shapes. Figure 10 
and Figure 11 show them on narrow ones. We summarize them as 
following: 

(1) The four graphs show similar L2 miss rate trends as 
corresponding AMD versions (in subsection 5.1.1.1). 

(2) Except the case of Bdb-xml for narrow Rectangle XML, 
P4 shows lower L2 miss rates than Sempron, which is 
the benefit of increased L2 cache size (512KB vs 
256KB).  

(3) Amazingly, for executing Q1 on narrow Rectangle 
XML in Bdb-xml, Figure 10 presents a worse L2 miss 
rate for P4 than Figure 4 for Sempron, despite P4’s 
larger L2 cache. For the maximized document 
(width=10, height=40000), the L2 miss rate of P4 is up 
to 87%. 

 

Figure 8: L2 miss rates of executing Q1 on wide Rectangle 

XML documents in Bdb-xml (varying width and height) 

 

Figure 9: L2 miss rates of executing Q1 on wide Rectangle 

XML documents in Galax (varying width and height) 

 

Figure 10: L2 miss rates of executing Q1 on narrow Rectangle 

XML documents in Bdb-xml (varying width and height) 

 

Figure 11: L2 miss rates of executing Q1 on narrow Rectangle 

XML documents in Galax (varying width and height) 

5.2 Branch Mispredictions 

5.2.1 AMD 

5.2.1.1 Rectangle XML 
Figure 12-15 shows branch misprediction rates of executing Q1 
on wide Rectangle XML and narrow one in Bdb-xml and in Galax 
on our AMD system, correspondingly. We summarize the results 
as follows: 

(1) Whether the XML document is wide or narrow, running 
Galax has similar behaviors of branch mispredictions. 
(comparing Figure 13 with Figure 15) 
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(2) However, the XML shape has a significant influence on 
Bdb-xml.  By comparing Figure 12 with Figure 14, we 
can see that it is better for Bdb-xml to process narrow 
documents than wide ones. 

 

 

Figure 12: branch misprediction rates of executing Q1 on 

wide Rectangle XML documents in Bdb-xml (varying width 

and height) 

 

Figure 13: branch misprediction rates of executing Q1 on 

wide Rectangle XML documents in Galax (varying width and 

height) 

 

Figure 14: branch misprediction rates of executing Q1 on 

narrow Rectangle XML documents in Bdb-xml (varying 

width and height) 

 

Figure 15: branch misprediction rates of executing Q1 on 

narrow Rectangle XML documents in Galax (varying width 

and height) 

5.2.1.2 Triangle XML 
Figure 16 shows the difference between Bdb-xml and Galax when 
executing Q1 on Triangle XML. From the graph, we can see, 
Bdb-xml has higher branch misprediction rates than Galax in this 
situation. 

 

Figure 16: branch misprediction rates of executing Q1 on 

Triangle XML documents in Bdb-xml and in Galax (varying 

width and height) 

5.2.1.3 List XML 
Figure 17 shows the branch information on List XML. Bdb-xml 
has larger misprediction rates than Galax for both selection and 
sorting. 

 

Figure 17: branch misprediction rates of executing Q2 

(selection) and Q3 (sorting) on List XML document in Bdb-

xml and in Galax. 
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5.2.2 Intel 
On this system, we only report results for executing Q1 on 
Rectangle XML. Figure 18-21 show branch misprediction rates of 
executing Q1 on wide Rectangle XML and narrow one in Bdb-
xml and in Galax on our P4 system, correspondingly. There 
graphs are similar with corresponding AMD Sempron versions, 
only with the differences of lower misprediction rates, which 
show that Pentium P4 has a more effective branch predictor than 
AMD Sempron. 

 

Figure 18: branch misprediction rates of executing Q1 on 

wide Rectangle XML documents in Bdb-xml (varying width 

and height) 

 

Figure 19: branch misprediction rates of executing Q1 on 

wide Rectangle XML documents in Galax (varying width and 

height) 

 

Figure 20: branch misprediction rates of executing Q1 on 

narrow Rectangle XML documents in Bdb-xml (varying 

width and height) 

 

Figure 21: branch misprediction rates of executing Q1 on 

narrow Rectangle XML documents in Galax (varying width 

and height) 

5.3 L1 Cache & TLB Misses 
In this subsection, we present our measured results about L1 
cache and TLB behaviors of Bdb-xml and Galax on our AMD 
system. We examine five fixed queries in turn: 

(1) wide: Executing Q1 on the maximized wide Rectangle 
XML document. The width is 100000 and the height is 
10. 

(2) narrow: Executing Q1 on the maximized narrow 
Rectangle XML document. The width is 10 and the 
height is 40000. 

(3) triangle: Executing Q1 on the maximized Triangle 
XML document. The height is 20. 

(4) selection:  Executing Q2 on the List XML document. 
(5) sorting: Executing Q3 on the List XML document. 

We measure five architectural characteristics available on our 
AMD system: total instructions, L1 instruction cache misses per 
1000 instructions, L1 data cache misses per 1000 instructions, L1 
instruction TLB misses per 1000 instructions, and L1 data TLB 
misses per 1000 instructions. 

Figure 22 shows the count of total instructions for executing the 
five queries in Bdb-xml and in Galax. We can see that, except the 
query “narrow”, Bdb-xml needs fewer instructions than Galax, 
especially for the query “wide” and “sorting”. 

 

Figure 22: count of instructions of executing corresponding 

query in Bdb-xml and in Galax on Sempron 
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Figure 23 shows the difference between Bdb-xml and Galax for 
the query “wide”. Except L1 data cache misses, Galax has a better 
behavior than Bdb-xml. 

Figure 24 shows the astonishing difference between Bdb-xml and 
Galax when executing the query “narrow”. The graph reveals two 
points. First, for both tools, L1 instruction cache misses and L1 
instruction TLB misses are very few. Second, Bdb-xml has a very 
bad L1 data cache behavior in this situation. This result is 
consistent with the above L2 cache miss rates for Bdb-xml on 
both AMD and Intel systems, which reflects the bad memory-
access pattern of Bdb-xml for narrow Rectangle XML documents. 

Figure 25 shows the compared results for query “triangle”, which 
is similar with the query “wide”. 

Figure 26 shows the difference between Bdb-xml and Galax when 
executing “selection” on List XML. From the graph, we can see 
that Bdb-xml has a bad L1 instruction cache behavior (more than 
25 misses per 1000 instructions).  

Figure 27 shows the compared results for query “sorting”. For 
each aspect shown in the graph, Bdb-xml is worse than Galax. 
However, as shown in Figure 22, Bdb-xml needs much fewer 
instructions to finish sorting than Galax (3.2E+10 vs 2.5E+11). 

 

Figure 23: L1 behaviors of executing “wide” in Bdb-xml and 

in Galax on Sempron 

 

Figure 24: L1 behaviors of executing “narrow” in Bdb-xml 

and in Galax on Sempron 

 

Figure 25: L1 behaviors of executing “triangle” in Bdb-xml 

and in Galax on Sempron 

 

Figure 26: L1 behaviors of executing “selection” in Bdb-xml 

and in Galax on Sempron 

 

Figure 27: L1 behaviors of executing “sorting” in Bdb-xml 

and in Galax on Sempron 

We summarize this group of measures into three points. First, 
from the viewpoint of architecture, Bdb-xml is worse than Galax, 
especially in the respect of being aware of instruction locality. 
Bdb-xml has more misses than Galax in L1 I-Cache and L1 I-
TLB. Second, from the viewpoint of algorithms, however, Bdb-
xml is more effective than Galax (except the case for narrow 
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Rectangle XML). Bdb-xml needs fewer instructions than Galax 
for finishing corresponding queries. Last, Bdb-xml cannot fit deep 
XML documents (with large heights) as shown in Figure 
4/10/24—it suffers significant data cache misses (at both L1 and 
L2). 

5.4 Results on UltraSPARC T1 
In this subsection, we present measured results on UltraSPARC 
T1 for Saxon, Qexo, and Galax, in turn. The data are only for 
executing Q1 on wide Rectangle XML documents. Limited by the 
tool we use on the system, we report the following characteristics: 

(1) Count of total instructions 
(2) L1 instruction cache misses per 1000 instructions 
(3) L1 data cache misses per 1000 instructions 
(4) L2 instruction cache misses per 1000 instructions 

(unavailable for Galax) 
(5) L2 data cache misses per 1000 instructions 

5.4.1 Saxon 
Figure 28 shows count of instructions needed by Saxon for wide 
Rectangle XML documents with varied dimensions. 

 

Figure 28: count of instructions of executing Q1 on wide 

Rectangle XML documents in Saxon (varying width and 

height) 

Figure 29 and Figure 30 show the L1 instruction cache misses and 
L1 data cache misses of Saxon. By comparing the two graphs, we 
can see that the width has a more dramatic influence on the misses 
of instruction cache than on the misses of data cache. 

 

Figure 29: L1 instruction cache misses per 1000 instructions 

of executing Q1 on wide Rectangle XML documents in Saxon 

(varying width and height) 

 

Figure 30: L1 data cache misses per 1000 instructions of 

executing Q1 on wide Rectangle XML documents in Saxon 

(varying width and height) 

Figure 31 and Figure 32 show the L2 cache behavior of Saxon. 
They reflect expectable results since UltraSPARC T1 provides a 
3MB L2 cache so that misses on this level cache are few. 

 

Figure 31: L2 instruction cache misses per 1000 instructions 

of executing Q1 on wide Rectangle XML documents in Saxon 

(varying width and height) 

 

Figure 32: L2 data cache misses per 1000 instructions of 

executing Q1 on wide Rectangle XML documents in Saxon 

(varying width and height) 

5.4.2 Qexo 
Figure 33 shows the count of instructions of Qexo. 
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Figure 33: count of instructions of executing Q1 on wide 

Rectangle XML documents in Qexo (varying width and 

height) 

Figure 34 and Figure 35 show the L1 cache behaviors of Qexo. 
Comparing Figure 34 and the above Figure 29 for Saxon, we can 
see that Qexo has fewer L1 instruction cache misses than Saxon, 
and Qexo is less sensitive to the change of the width than Saxon. 
As shown in Figure 35 and Figure 30, Saxon and Qexo have 
similar L1 data cache behaviors, although Saxon suffers more 
misses than Qexo, correspondingly. 

 

Figure 34: L1 instruction cache misses per 1000 instructions 

of executing Q1 on wide Rectangle XML documents in Qexo 

(varying width and height) 

 

Figure 35: L1 data cache misses per 1000 instructions of 

executing Q1 on wide Rectangle XML documents in Qexo 

(varying width and height) 

Figure 36 and Figure 37 shows the L2 cache behaviors of Qexo, 
for instruction cache and data cache respectively. As shown in 
Figure 31 and Figure 32, misses in this level cache are rare. 

 

Figure 36: L2 instruction cache misses per 1000 instructions 

of executing Q1 on wide Rectangle XML documents in Qexo 

(varying width and height) 

 

Figure 37: L2 data cache misses per 1000 instructions of 

executing Q1 on wide Rectangle XML documents in Qexo 

(varying width and height) 

5.4.3 Galax 
Figure 38 shows the count of instructions of Galax. Compared 
with Saxon and Qexo, we find that Galax needs the most 
instructions to finish the query executions. In addition, the change 
of width has a more significant influence on Galax than on Saxon 
and Qexo. 

 

Figure 38: count of instructions of executing Q1 on wide 

Rectangle XML documents in Galax (varying width and 

height) 
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Figure 39/40 show L1 cache behaviors of Galax. Galax has fewer 
instruction cache misses but more data cache misses than Saxon 
and Qexo.  

We compare Galax on T1 with it on Sempron for only the case of 
maximized wide Rectangle XML documents in Table 4. The 
results show the benefit of larger L1 cache size (both instruction 
and data) in Sempron than T1. 

Table 4: Galax: UltraSPARC T1 vs Sempron (wide Rectangle 

XML: width=100000, height=10) 

Metrics T1 Sempron 

Count of instructions 1.16E+11 8.6E+10 

L1 IC misses per 1k instructions 3.47 0.72 

L1 DC misses per 1k instructions 36.5 15.99 

 

Figure 39: L1 instruction cache misses per 1000 instructions 

of executing Q1 on wide Rectangle XML documents in Galax 

(varying width and height) 

 

Figure 40: L1 data cache misses per 1000 instructions of 

executing Q1 on wide Rectangle XML documents in Galax 

(varying width and height) 

Figure 41 shows L2 data cache behaviors of Galax. There are 
distinct differences when the width increases from 40000 to 
80000. 

 

Figure 41: L2 data cache misses per 1000 instructions of 

executing Q1 on wide Rectangle XML documents in Galax 

(varying width and height) 

6. CONCLUSION 
This paper is our first step to understand the architectural 
behaviors of XQuery workloads on modern processors. In this 
paper, we are focusing on report detailed measures of architectural 
characteristics for executing basic XQuery operations on three 
modern hardware platforms including AMD’s Sempron, Intel’s 
Pentium P4, and Sun’s UltraSPARC T1. We examine four 
XQuery tools: Berkeley DB XML, Galax, Saxon-B, and GNU 
Qexo. Our measured architectural behaviors include L1 cache 
misses, L2 cache misses, TLB misses, and branch misprediction 
rates. We believe that these data can be useful in understanding 
the specific features of XQuery, comparing XQuery workloads 
and RDBMS query workloads, and analyzing potential optimizing 
opportunities for XQuery implementations. 

Our future work covers the following aspects: 

(1) Testing more operations, more complex xml structures, and 
more software: Currently we only consider path navigation, 
selection, and sorting of XQuery, and we only study Rectangle 
XML, Triangle XML, and List XML. We will further consider 
existing XQuery application-benchmarks [16][17][29] and micro-
benchmarks [19][28], and make more wide measures. 

(2) Testing concurrent XQuery workloads with write operations: 
We are planning to utilize concurrent XQuery workloads to study 
the architectural behaviors on platforms with the new chip-
multiprocessor and simultaneous multithreading technology. 
Although XQuery is a query-oriented language, many tools (e.g. 
Berkeley DB XML) support modification and transaction 
processing. We hope to understand the behaviors of shared L2 
cache by multiple cores when executing concurrent XQuery 
instances. 
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