
Architectural Characterization of XQuery Workloads on
Modern Processors

Rubao Lee, Bihui Duan, Taoying Liu

Research Centre for Grid and Service Computing,

Institute of Computing Technology, Chinese Academy of Sciences

PO Box 2704, Beijing, China

{lirubao,duanbihui,liutaoying}@software.ict.ac.cn

ABSTRACT

As XQuery rapidly emerges as the standard for querying XML
documents, it is very important to understand the architectural
characteristics and behaviors of such workloads. A lot of efforts
are focused on the implementation, optimization, and evaluation
of XQuery tools. However, few or no prior work studies the
architectural and memory system behaviors of XQuery workloads
on modern hardware platforms. This makes it unclear whether
modern CPU techniques, such as the multi-level caches and
hardware branch predictors, can support such workloads well
enough.

This paper presents a detailed characterization of the architectural
behavior of XQuery workloads. We examine four XQuery tools
on three hardware platforms (AMD, Intel, and Sun) using well-
designed XQuery queries. We report measured architectural data,
including the L1/L2 cache misses, TLB misses, and branch
mispredictions. We believe that the information will be useful in
understanding XQuery workloads and analyzing the potential
architectural optimization opportunities of improving XQuery
performance.

1. INTRODUCTION
The wide spread of XML storages and web service creates a lot of
applications which need to query and process XML documents.
More than traditional scientific computing applications and
OLTP/DSS workloads [2], such applications run on a larger range
of hardware platforms, which include web servers, desktops, and
even mobile devices. As XQuery rapidly emerges as the standard
for querying XML documents, it is very important to understand
the architectural characteristics and behaviors of running such
workloads on different hardware platforms.

However, the current architectural research community and the
current XQuery research community are not well joining to study
and make it clear how XQuery workloads run on modern
processors. Architectural researchers have focused on studying the
architectural characteristics of database workloads including
query processing and transaction processing. Furthermore,

architectural optimized database algorithms and schemes
[24][25][26] are presented on the basis of insights given by
DBMS-characterizing works. Compared with the joint of
architecture research and database research, researching XQuery
from the viewpoint of architecture is just beginning.

Although XQuery shares many common concepts with SQL, its
executions have many specific features differing from them in
relational database. Intuitively, XQuery is basically computing
and memory bound since (1) XML documents are relatively small
(<100MB) in typical applications and as thus the I/O is not the
dominating factor, and (2) executions of XQuery queries are often
time-consuming, which need to manipulate a lot of nodes resident
in memory. Path navigation is the cornerstone of XQuery, which
creates different memory-accessing patterns from DBMS’s tuple-
based query executions. In addition, current XQuery engines are
often written in an object-oriented language and running on a
virtual machine, such as typical Java-based systems [20][22].
These factors make it necessary to characterize the CPU and
memory behavior of XQuery workloads.

This paper is our first step to understand the architectural
characteristics of running XQuery workloads on modern
processors. We present a detailed characterization of architectural
behaviors of XQuery workloads. We examined four XQuery tools
on three hardware platforms (AMD, Intel, and Sun) using our
designed XQuery queries. We report measured architectural data,
including the L1/L2 cache misses, TLB misses, and branch
mispredictions. We believe that the information will be useful in
understanding XQuery workloads and analyzing the potential
architectural optimization opportunities of improving XQuery
performance.

The remainder of this paper is organized as follows. Section 2 lists
related work very briefly. Section 3 introduces our designed
XQuery workloads. In section 4, we introduce the target hardware
platforms and corresponding tools. All test results are presented in
section 5. We conclude this paper in section 6.

2. RELATED WORK
There are many papers for characterizing architectural behaviors
of DBMS queries including OLTP and DSS workloads, such as
[1][2][3][4][5][6]. Some papers involve examining Java
workloads, such as [7][8][9]. To our knowledge, almost no prior
work is specially focused on charactering XQuery workloads. In
[10], the authors report the measured architectural characteristics
for XML processing on an Intel Xeon platform. In addition, work
on benchmarking XQuery is related to this paper, such as
[16][17][18][19][28][29].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the Second International Workshop on Performance and
Evaluation of Data Management Systems (ExpDB 2007), June 15, 2007,
Beijing, China.
Copyright 2007 ACM 978-1-59593-773-5/07/06 ...$5.00.

3. XQUERY WORKLOAD DESIGN
In this section, we introduce the XQuery workloads used in our
experiments, which include the data part and the query part.

3.1 Documents
We design three categories of XML documents. Their visual
shapes are illustrated by Figure 1.

3.1.1 Rectangle XML
Rectangle XML has two parameters: the width and the height. The
width means how many child nodes the root has, while the height
means how many levels the tree has under the root node.

We distinguish two kinds of Rectangle XML: the wide one and
the narrow one. A wide Rectangle XML has a very large width
but a very small height, while a narrow one has a very small width
but a very large height. Although the narrow Rectangle XML is
very rare, we are expecting that the difference between the two
shapes can show different memory system behaviors considering
their structural difference.

The concrete values of the two parameters are given as the
following.

Wide Rectangle XML:

Width: [10000,20000,40000,80000,100000]

Height: [1,2,4,6,8,10]

Narrow Rectangle XML:

Width: [1,2,4,6,8,10]

Height: [500,1000,5000,10000,20000,40000]

In a Rectangle XML document, the root is labeled root. Nodes at
the level x are all labeled tx. No node contains attribute.

3.1.2 Triangle XML
In a Triangle XML document, each non-leaf node has two child
nodes, so the tree is a complete binary tree. Triangle XML has
only one parameter: the height. The concrete values of heights are
given as the following.

Triangle XML:

Height: [15,16,17,18,19,20]

In a Triangle XML document, the root is labeled t1. Nodes at the
level x are all labeled tx. No node has attribute.

3.1.3 List XML (300k.xml)
Unlike the above Rectangle XML and Triangle XML, List XML
has payloads and it is defined as the following:

(1) The root node has 300000 child nodes and each child
node has a text child node whose value is a random
integer between 1 and 300000.

(2) The root node is labeled result and all 300000 child
nodes are labeled t.

3.2 Queries
In our experiments, we only use three queries which contain basic
operations of XQuery: path navigation, selection and sorting,
considering our major goal is not to evaluate language supporting
capabilities of concrete tools, but to understand and analyze
architectural behaviors of basic XQuery workloads.

Q1: Retrieving all leaf nodes This query is actually an XPath
query. It is executed on Rectangle XML and Triangle XML. The
query has the form of “doc(“xmlname”)//tn”, in which “n” is the
level of all leaf nodes in the corresponding document “xmlname”.

Q2: Selection This query is executed only on List XML. The
selectivity of the where clause in the query is 50%.

for $t in doc(“300k.xml")/result//t

where number($t/child::node()) < 150000

return $t

Q3: Sorting This query is executed only on List XML.

for $t in doc(“300k.xml")/result//t

order by number($t/child::node())

 return $t

Figure 1: visual shapes of tree kinds of XML documents. In

the graphs, a circle means an element node, while a rectangle

means a text node (only existing in List XML).

Table 1: Characteristics of three CPUs. (The data is from corresponding official websites [11][14][15].)

Characteristic AMD Sempron 2500+ Intel Pentium P4 2.8GHz Sun UltraSPARC T1

L1 cache organization Split instruction/data caches Split instruction/data caches Split instruction/data caches

L1 cache size 64 KB each for instructions/data 8KB for data, 96KB trace cache 16KB instruction cache per core;
8KB data cache per core

L1 cache associativity 2-way set associative 4-way set associative 4-way set associative

L1 block size 64 bytes 64 bytes 32 bytes(instruction cache)

16 bytes(data cache)

L2 cache organization Unified (instruction and data) Unified (instruction and data) Unified (instruction and data)

L2 cache size 256 KB 512 KB 3 MB (shared by cores)

L2 cache associativity 16-way set associative 8-way set associative 12-way set associative

L2 block size 64 bytes 128 bytes 64 bytes

Rectangle XM L Triangle XM L List XM L

4. HARDWARE & SOFTWARE

4.1 Hardware Platforms and Measuring

Tools
Our experiments were executed on three hardware platforms. The
specifications of involved CPUs are briefly given in Table 1.

4.1.1 AMD
This system contains an AMD Sempron 2500+ CPU, 2048MB
DDR400 RAM. The operating system of this system is FreeBSD
6.2. We use the pmcstat tool [12] to count hardware events.

This system is our primary platform in the experiments, on which
we measure the following architectural characteristics:

(1) L2 miss rate
(2) Frequency of branch mispredictions
(3) L1 I-TLB misses per 1000 instructions
(4) L1 D-TLB misses per 1000 instructions
(5) L1 I-Cache misses per 1000 instructions
(6) L1 D-Cache misses per 1000 instructions

To measure these targets, we need to count events listed in Table
2. We use the indirect method [13] to measure L2 cache
request/misses and calculate L2 miss rate.

Table 2: events used by pmcstat on AMD Sempron

4.1.2 Intel
This system contains an Intel Pentium P4 2.8GHz CPU, 512MB
DDR266 memory. Although this CPU supports Hyper-Threading
technology, we disabled this feature in our experiments. Like the
above AMD system, we also run FreeBSD 6.2 operating system
and use pmcstat tool on this system.

On this system, we only measure the following architectural
characteristics using the events listed in Table 3 [11]:

(1) L2 miss rate
(2) Frequency of branch mispredictions

Table 3: events used by pmcstat on Intel P4

Characteristics Event name (used by the pmcstat tool)

L2 cache accesses P4-bsq-cache-reference

L2 Misses P4-bsq-cache-reference,mask=rd-2ndl-
miss+wr-2ndl-miss

branches Branches (common alias)

Branch
mispredictions

Branch-mispredicts (common alias)

4.1.3 Sun UltraSPARC T1
This system is a Sun Fire T1000 Server with 8 cores, 8GB RAM,
running Solaris 10. On this system, we use the collect and
er_print command provided by Sun Studio to measure
instructions, and misses of L1/L2 instruction/data cache [27].

4.2 Software
We examined the following XQuery tools:

� Berkeley DB XML v2.3.10 (Bdb-xml for short) [23]

We only ran this software on our AMD/Intel systems. We
downloaded the source tarball which includes sources of all the
components: Berkeley DB, Xerces, and XQilla, and build them on
our FreeBSD systems. The query execution command was “dbxml
–s ourquery”, in which the “ourquery” was a script containing a
query command and a quit command. For our experiments, we did
not use the container concept but build our queries on XML files
directly.

� Galax v0.5.0. (Galax for short) [21]

We ran it on all systems. We used the Linux binary version on our
FreeBSD systems without any modifications. And on the Sun
system, we used the Solaris binary version downloaded from the
official website. The query executing command was “Galax-run –
print-xml off our.xquery”.

� Saxon-B 8.9 for Java. (Saxon for short) [20]

This is written in Java. We ran it only on the Sun system. The
query executing command was “java net.sf.Saxon.Query
our.xquery”.

� Gnu Qexo v1.9.1. (Qexo for short) [22].

This is also written in Java. We ran it only on the Sun system. We
downloaded the executable jar file and executed it directly, and
the command was “java –jar kawa.jar our.xquery”.

5. RESULTS
In this section, we first report results on AMD and Intel systems
for Bdb-xml and Galax, which include the following three parts:

(1) The L2 Cache miss rates on both AMD and Intel
systems (subsection 5.1)

(2) The frequency of branch mispredictions on both AMD
and Intel systems (subsection 5.2)

(3) The L1 Cache misses and TLB misses on only AMD
system (subsection 5.3)

Then, we report results of running Q1 to wide Rectangle XML
documents on the Sun UltraSPARC T1 system for Galax, Saxon,
and Qexo (subsection 5.4), which include the following parts:

(1) The total count of instructions
(2) The L1 I-Cache/D-Cache misses per 1000 instructions
(3) The L2 I-Cache/D-Cache misses per 1000 instructions

Characteristics Event name (used by the pmcstat tool)

branches Branches (common alias)

Branch
mispredictions

Branch-mispredicts (common alias)

instructions Instructions (common alias)

L1 I-TLB misses K8-ic-l1-itlb-miss-and-l2-itbl-hit +

K8-ic-l1-itlb-miss-and-l2-itlb-miss

L1 D-TLB misses K8-ic-l1-dtlb-miss-and-l2-dtlb-hit +

K8-ic-l1-dtlb-miss-and-l2-dtlb-miss

L1 I-Cache misses K8-ic-refill-from-l2 + K8-ic-refill-from-
system

L1 D-Cache misses K8-dc-refill-from-l2 + K8-dc-refill-from-
system

L2 Cache accesses L1 I-TLB misses + L1 D-TLB misses +
L1 I-Cache misses + L1 D-Cache misses

L2 Cache misses K8-ic-refill-from-system + k8-dc-refill-
from-system + K8-ic-l1-itlb-miss-and-
l2-itlb-miss + K8-ic-l1-dtlb-miss-and-l2-
dtlb-miss

5.1 L2 Cache Miss Rate

5.1.1 AMD
On this system, we measure Sempron’s L2 Cache miss rates for
running Q1 on Rectangle XML and Triangle XML, and running
Q2/Q3 on List XML.

5.1.1.1 Rectangle XML
Figure 2 shows L2 miss rates of executing Q1 on wide Rectangle
XML in Bdb-xml, while Figure 3 shows them in Galax. By
comparing these two graphs, we can see that Bdb-xml has a better
L2 miss rate than Galax for wide XML documents. Moreover,
when the width increases from 10000 to 100000, the L2 miss rate
decreases for Bdb-xml but increases for Galax (not including
height 1/2).

Figure 4 shows L2 miss rates of executing Q1 on narrow
Rectangle XML in Bdb-xml, while Figure 5 shows them in Galax.
We can see that Bdb-xml has a very bad L2 miss rate for this
situation, especially when the height is larger than 5000 (up to
50%). What is interesting is that the miss rate in Bdb-xml is
minimized when the height equals to 1000.

As shown in the graphs for Galax, no matter whether the
Rectangle XML is wide or narrow, Galax has a relatively close L2
miss rate (8% -13%). However, Bdb-xml cannot fit narrow XML
shapes as well as to wide shapes (ranging from 2% to 50%).

Figure 2: L2 miss rates of executing Q1 on wide Rectangle

XML documents in Bdb-xml (varying width and height)

Figure 3: L2 miss rates of executing Q1 on wide Rectangle

XML documents in Galax (varying width and height)

Figure 4: L2 miss rates of executing Q1 on narrow Rectangle

XML documents in Bdb-xml (varying width and height)

Figure 5: L2 miss rates of executing Q1 on narrow Rectangle

XML documents in Galax (varying width and height)

5.1.1.2 Triangle XML
Figure 6 shows that Bdb-xml and Galax have completely converse
L2 cache miss behaviors for Triangle XML when the height of the
tree increases. Bdb-xml fits Triangle XML better than Galax, as it
does for wide Rectangle XML.

Figure 6: L2 miss rates of executing Q1 on Triangle XML

documents in Bdb-xml and in Galax (varying height)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Height of XML Tree

Bdb-xml on AMD: Rectangle (wide)

10000

20000

40000

80000

100000

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Height of XML Tree

Galax on AMD: Rectangle (wide)

10000

20000

40000

80000

100000

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Width of XML Tree

Bdb-xml on AMD: Rectangle (narrow)

500

1000

5000

10000

20000

40000

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Width of XML Tree

Galax on AMD: Rectangle (narrow)

500

1000

5000

10000

20000

40000

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

15 16 17 18 19 20

L
2

 M
is

s
R

a
te

Height of XML Tree

AMD: Triangle (Bdb-xml vs Galax)

Bdb-xml

Galax

5.1.1.3 List XML
Figure 7 shows L2 cache miss rates when executing Q2
(selection) and Q3 (sorting) on List XML in Bdb-xml and Galax.
Although Bdb-xml has a very low L2 cache miss rate (<2%) for
selection, its sorting algorithm has to suffer a high L2 cache miss
rate (>14%). Galax has converse behaviors for the two operations.

Figure 7: L2 miss rates of executing Q2 (selection) and Q3

(sorting) on List XML document in Bdb-xml and in Galax.

5.1.2 Intel
On this system, we only report results of executing Q1 on
Rectangle XML. Figure 8 and Figure 9 show L2 miss rates of
Bdb-xml and Galax for executing Q1 on wide shapes. Figure 10
and Figure 11 show them on narrow ones. We summarize them as
following:

(1) The four graphs show similar L2 miss rate trends as
corresponding AMD versions (in subsection 5.1.1.1).

(2) Except the case of Bdb-xml for narrow Rectangle XML,
P4 shows lower L2 miss rates than Sempron, which is
the benefit of increased L2 cache size (512KB vs
256KB).

(3) Amazingly, for executing Q1 on narrow Rectangle
XML in Bdb-xml, Figure 10 presents a worse L2 miss
rate for P4 than Figure 4 for Sempron, despite P4’s
larger L2 cache. For the maximized document
(width=10, height=40000), the L2 miss rate of P4 is up
to 87%.

Figure 8: L2 miss rates of executing Q1 on wide Rectangle

XML documents in Bdb-xml (varying width and height)

Figure 9: L2 miss rates of executing Q1 on wide Rectangle

XML documents in Galax (varying width and height)

Figure 10: L2 miss rates of executing Q1 on narrow Rectangle

XML documents in Bdb-xml (varying width and height)

Figure 11: L2 miss rates of executing Q1 on narrow Rectangle

XML documents in Galax (varying width and height)

5.2 Branch Mispredictions

5.2.1 AMD

5.2.1.1 Rectangle XML
Figure 12-15 shows branch misprediction rates of executing Q1
on wide Rectangle XML and narrow one in Bdb-xml and in Galax
on our AMD system, correspondingly. We summarize the results
as follows:

(1) Whether the XML document is wide or narrow, running
Galax has similar behaviors of branch mispredictions.
(comparing Figure 13 with Figure 15)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Bdb-xml sort Bdb-xml sel Galax sort Galax sel

L
2

 M
is

s
R

a
te

AMD: List XML

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Height of XML Tree

Bdb-xml on P4: Rectangle XML (wide)

10000

20000

40000

80000

100000

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Height of XML Tree

Galax on P4: Rectangle XML (wide)

10000

20000

40000

80000

100000

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Width of XML Tree

Bdb-xml on P4: Rectangle XML (narrow)

500

1000

5000

10000

20000

40000

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1 2 4 6 8 10

L
2

 M
is

s
R

a
te

Width of XML Tree

Galax on P4: Rectangle XML (narrow)

500

1000

5000

10000

20000

40000

(2) However, the XML shape has a significant influence on
Bdb-xml. By comparing Figure 12 with Figure 14, we
can see that it is better for Bdb-xml to process narrow
documents than wide ones.

Figure 12: branch misprediction rates of executing Q1 on

wide Rectangle XML documents in Bdb-xml (varying width

and height)

Figure 13: branch misprediction rates of executing Q1 on

wide Rectangle XML documents in Galax (varying width and

height)

Figure 14: branch misprediction rates of executing Q1 on

narrow Rectangle XML documents in Bdb-xml (varying

width and height)

Figure 15: branch misprediction rates of executing Q1 on

narrow Rectangle XML documents in Galax (varying width

and height)

5.2.1.2 Triangle XML
Figure 16 shows the difference between Bdb-xml and Galax when
executing Q1 on Triangle XML. From the graph, we can see,
Bdb-xml has higher branch misprediction rates than Galax in this
situation.

Figure 16: branch misprediction rates of executing Q1 on

Triangle XML documents in Bdb-xml and in Galax (varying

width and height)

5.2.1.3 List XML
Figure 17 shows the branch information on List XML. Bdb-xml
has larger misprediction rates than Galax for both selection and
sorting.

Figure 17: branch misprediction rates of executing Q2

(selection) and Q3 (sorting) on List XML document in Bdb-

xml and in Galax.

10.5

11

11.5

12

12.5

13

13.5

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Height of XML Tree

Bdb-xml on AMD: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10

F
re

q
u

e
n

c
y

 o
f

m
is

p
r
e

d
ic

ti
o

n
s

(%
)

Height of XML Tree

Galax on AMD: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

2

4

6

8

10

12

14

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Width of XML Tree

Bdb-xml on AMD: Rectangle XML (narrow)

500

1000

5000

10000

20000

40000

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Width of XML Tree

Galax on AMD: Rectangle XML (narrow)

500

1000

5000

10000

20000

40000

6

7

8

9

10

11

12

13

14

15 16 17 18 19 20

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Height of XML Tree

AMD: Triangle XML

Bdb-xml

Galax

0

2

4

6

8

10

12

14

16

18

Bdb-xml sort Bdb-xml sel Galax sort Galax sel

Fr
e

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

AMD: List XML

5.2.2 Intel
On this system, we only report results for executing Q1 on
Rectangle XML. Figure 18-21 show branch misprediction rates of
executing Q1 on wide Rectangle XML and narrow one in Bdb-
xml and in Galax on our P4 system, correspondingly. There
graphs are similar with corresponding AMD Sempron versions,
only with the differences of lower misprediction rates, which
show that Pentium P4 has a more effective branch predictor than
AMD Sempron.

Figure 18: branch misprediction rates of executing Q1 on

wide Rectangle XML documents in Bdb-xml (varying width

and height)

Figure 19: branch misprediction rates of executing Q1 on

wide Rectangle XML documents in Galax (varying width and

height)

Figure 20: branch misprediction rates of executing Q1 on

narrow Rectangle XML documents in Bdb-xml (varying

width and height)

Figure 21: branch misprediction rates of executing Q1 on

narrow Rectangle XML documents in Galax (varying width

and height)

5.3 L1 Cache & TLB Misses
In this subsection, we present our measured results about L1
cache and TLB behaviors of Bdb-xml and Galax on our AMD
system. We examine five fixed queries in turn:

(1) wide: Executing Q1 on the maximized wide Rectangle
XML document. The width is 100000 and the height is
10.

(2) narrow: Executing Q1 on the maximized narrow
Rectangle XML document. The width is 10 and the
height is 40000.

(3) triangle: Executing Q1 on the maximized Triangle
XML document. The height is 20.

(4) selection: Executing Q2 on the List XML document.
(5) sorting: Executing Q3 on the List XML document.

We measure five architectural characteristics available on our
AMD system: total instructions, L1 instruction cache misses per
1000 instructions, L1 data cache misses per 1000 instructions, L1
instruction TLB misses per 1000 instructions, and L1 data TLB
misses per 1000 instructions.

Figure 22 shows the count of total instructions for executing the
five queries in Bdb-xml and in Galax. We can see that, except the
query “narrow”, Bdb-xml needs fewer instructions than Galax,
especially for the query “wide” and “sorting”.

Figure 22: count of instructions of executing corresponding

query in Bdb-xml and in Galax on Sempron

0

2

4

6

8

10

12

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Height of XML Tree

Bdb-xml on P4: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Height of XML Tree

Galax on P4: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

2

4

6

8

10

12

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Width of XML Tree

Bdb-xml on P4: Rectangle XML (narrow)

500

1000

5000

10000

20000

40000

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10

F
re

q
u

e
n

cy
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

Width of XML Tree

Galax on P4: Rectangle XML (narrow)

500

1000

5000

10000

20000

40000

0.0E+00 5.0E+10 1.0E+11 1.5E+11 2.0E+11 2.5E+11

wide

wide

narrow

narrow

triangle

triangle

selection

selection

sortting

sortting

Instructions: Bdb-xml vs Galax

Bdb-xml

Galax

Figure 23 shows the difference between Bdb-xml and Galax for
the query “wide”. Except L1 data cache misses, Galax has a better
behavior than Bdb-xml.

Figure 24 shows the astonishing difference between Bdb-xml and
Galax when executing the query “narrow”. The graph reveals two
points. First, for both tools, L1 instruction cache misses and L1
instruction TLB misses are very few. Second, Bdb-xml has a very
bad L1 data cache behavior in this situation. This result is
consistent with the above L2 cache miss rates for Bdb-xml on
both AMD and Intel systems, which reflects the bad memory-
access pattern of Bdb-xml for narrow Rectangle XML documents.

Figure 25 shows the compared results for query “triangle”, which
is similar with the query “wide”.

Figure 26 shows the difference between Bdb-xml and Galax when
executing “selection” on List XML. From the graph, we can see
that Bdb-xml has a bad L1 instruction cache behavior (more than
25 misses per 1000 instructions).

Figure 27 shows the compared results for query “sorting”. For
each aspect shown in the graph, Bdb-xml is worse than Galax.
However, as shown in Figure 22, Bdb-xml needs much fewer
instructions to finish sorting than Galax (3.2E+10 vs 2.5E+11).

Figure 23: L1 behaviors of executing “wide” in Bdb-xml and

in Galax on Sempron

Figure 24: L1 behaviors of executing “narrow” in Bdb-xml

and in Galax on Sempron

Figure 25: L1 behaviors of executing “triangle” in Bdb-xml

and in Galax on Sempron

Figure 26: L1 behaviors of executing “selection” in Bdb-xml

and in Galax on Sempron

Figure 27: L1 behaviors of executing “sorting” in Bdb-xml

and in Galax on Sempron

We summarize this group of measures into three points. First,
from the viewpoint of architecture, Bdb-xml is worse than Galax,
especially in the respect of being aware of instruction locality.
Bdb-xml has more misses than Galax in L1 I-Cache and L1 I-
TLB. Second, from the viewpoint of algorithms, however, Bdb-
xml is more effective than Galax (except the case for narrow

0 2 4 6 8 10 12 14 16

L1 I-Cache

L1 I-Cache

L1 D-Cache

L1 D-Cache

L1 I-TLB

L1 I-TLB

L1 D-TLB

L1 D-TLB

8.14

0.72

9.73

15.99

12.86

5.33

9.65

2.33

Misses per 1000 instructions

wide: Bdb-xml vs Galax

Bdb-xml

Galax

0 20 40 60 80 100 120

L1 I-Cache

L1 I-Cache

L1 D-Cache

L1 D-Cache

L1 I-TLB

L1 I-TLB

L1 D-TLB

L1 D-TLB

0.68

0.54

108.93

10.13

0.54

0.52

16.9

3.07

Misses per 1000 instructions

narrow: Bdb-xml vs Galax

Bdb-xml

Galax

0 2 4 6 8 10 12 14

L1 I-Cache

L1 I-Cache

L1 D-Cache

L1 D-Cache

L1 I-TLB

L1 I-TLB

L1 D-TLB

L1 D-TLB

8.51

1.43

5.07

7.06

13.8

1.19

10.62

5.36

Misses per 1000 instructions

triangle: Bdb-xml vs Galax

Bdb-xml

Galax

0 5 10 15 20 25 30

L1 I-Cache

L1 I-Cache

L1 D-Cache

L1 D-Cache

L1 I-TLB

L1 I-TLB

L1 D-TLB

L1 D-TLB

27.67

1.59

4.5

15.89

19.48

1.37

10.14

1.95

Misses per 1000 instructions

selection: Bdb-xml vs Galax

Bdb-xml

Galax

0 2 4 6 8 10 12 14 16 18

L1 I-Cache

L1 I-Cache

L1 D-Cache

L1 D-Cache

L1 I-TLB

L1 I-TLB

L1 D-TLB

L1 D-TLB

11.88

4.78

13.02

9.4

11.56

4.67

17.65

5.49

Misses per 1000 instructions

sorting: Bdb-xml vs Galax

Bdb-xml

Galax

Rectangle XML). Bdb-xml needs fewer instructions than Galax
for finishing corresponding queries. Last, Bdb-xml cannot fit deep
XML documents (with large heights) as shown in Figure
4/10/24—it suffers significant data cache misses (at both L1 and
L2).

5.4 Results on UltraSPARC T1
In this subsection, we present measured results on UltraSPARC
T1 for Saxon, Qexo, and Galax, in turn. The data are only for
executing Q1 on wide Rectangle XML documents. Limited by the
tool we use on the system, we report the following characteristics:

(1) Count of total instructions
(2) L1 instruction cache misses per 1000 instructions
(3) L1 data cache misses per 1000 instructions
(4) L2 instruction cache misses per 1000 instructions

(unavailable for Galax)
(5) L2 data cache misses per 1000 instructions

5.4.1 Saxon
Figure 28 shows count of instructions needed by Saxon for wide
Rectangle XML documents with varied dimensions.

Figure 28: count of instructions of executing Q1 on wide

Rectangle XML documents in Saxon (varying width and

height)

Figure 29 and Figure 30 show the L1 instruction cache misses and
L1 data cache misses of Saxon. By comparing the two graphs, we
can see that the width has a more dramatic influence on the misses
of instruction cache than on the misses of data cache.

Figure 29: L1 instruction cache misses per 1000 instructions

of executing Q1 on wide Rectangle XML documents in Saxon

(varying width and height)

Figure 30: L1 data cache misses per 1000 instructions of

executing Q1 on wide Rectangle XML documents in Saxon

(varying width and height)

Figure 31 and Figure 32 show the L2 cache behavior of Saxon.
They reflect expectable results since UltraSPARC T1 provides a
3MB L2 cache so that misses on this level cache are few.

Figure 31: L2 instruction cache misses per 1000 instructions

of executing Q1 on wide Rectangle XML documents in Saxon

(varying width and height)

Figure 32: L2 data cache misses per 1000 instructions of

executing Q1 on wide Rectangle XML documents in Saxon

(varying width and height)

5.4.2 Qexo
Figure 33 shows the count of instructions of Qexo.

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

1 2 4 6 8 10

in
st

ru
ct

io
n

s

Height of XML Tree

Saxon on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

5

10

15

20

25

30

35

40

45

50

1 2 4 6 8 10

L
1

 in
st

ru
ct

io
n

 c
a

ch
e

 m
is

se
s

Height of XML Trees

Saxon on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

5

10

15

20

25

30

1 2 4 6 8 10

L
1

 d
a

ta
 c

a
ch

e
 m

is
se

s

height of XML Tree

Saxon on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 6 8 10

L
2

 in
st

rc
ti

o
n

 c
a

ch
e

 m
is

se
s

Height of XML Tree

Saxon on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 6 8 10

L
2

 d
a

ta
 c

a
ch

e
 m

is
se

s

Height of XML Tree

Saxon on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

Figure 33: count of instructions of executing Q1 on wide

Rectangle XML documents in Qexo (varying width and

height)

Figure 34 and Figure 35 show the L1 cache behaviors of Qexo.
Comparing Figure 34 and the above Figure 29 for Saxon, we can
see that Qexo has fewer L1 instruction cache misses than Saxon,
and Qexo is less sensitive to the change of the width than Saxon.
As shown in Figure 35 and Figure 30, Saxon and Qexo have
similar L1 data cache behaviors, although Saxon suffers more
misses than Qexo, correspondingly.

Figure 34: L1 instruction cache misses per 1000 instructions

of executing Q1 on wide Rectangle XML documents in Qexo

(varying width and height)

Figure 35: L1 data cache misses per 1000 instructions of

executing Q1 on wide Rectangle XML documents in Qexo

(varying width and height)

Figure 36 and Figure 37 shows the L2 cache behaviors of Qexo,
for instruction cache and data cache respectively. As shown in
Figure 31 and Figure 32, misses in this level cache are rare.

Figure 36: L2 instruction cache misses per 1000 instructions

of executing Q1 on wide Rectangle XML documents in Qexo

(varying width and height)

Figure 37: L2 data cache misses per 1000 instructions of

executing Q1 on wide Rectangle XML documents in Qexo

(varying width and height)

5.4.3 Galax
Figure 38 shows the count of instructions of Galax. Compared
with Saxon and Qexo, we find that Galax needs the most
instructions to finish the query executions. In addition, the change
of width has a more significant influence on Galax than on Saxon
and Qexo.

Figure 38: count of instructions of executing Q1 on wide

Rectangle XML documents in Galax (varying width and

height)

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1 2 4 6 8 10

in
st

ru
ct

io
n

s

Height of XML Tree

Qexo on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

2

4

6

8

10

12

14

1 2 4 6 8 10

L
1

 in
st

ru
ct

io
n

 c
a

ch
e

 m
is

se
s

Height of XML Tree

Qexo on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

5

10

15

20

25

1 2 4 6 8 10

L1
 d

a
ta

 c
ac

h
e

 m
is

se
s

Height of XML Tree

Qexo on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 4 6 8 10

L
2

 in
st

ru
ct

io
n

 c
a

ch
e

 m
is

se
s

Height of XML Tree

Qexo on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8 10

L
2

 d
a

ta
 c

a
ch

e
 m

is
se

s

Height of XML Tree

Qexo on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1 2 4 6 8 10

in
st

ru
ct

io
ns

Height of XML Tree

Galax on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

Figure 39/40 show L1 cache behaviors of Galax. Galax has fewer
instruction cache misses but more data cache misses than Saxon
and Qexo.

We compare Galax on T1 with it on Sempron for only the case of
maximized wide Rectangle XML documents in Table 4. The
results show the benefit of larger L1 cache size (both instruction
and data) in Sempron than T1.

Table 4: Galax: UltraSPARC T1 vs Sempron (wide Rectangle

XML: width=100000, height=10)

Metrics T1 Sempron

Count of instructions 1.16E+11 8.6E+10

L1 IC misses per 1k instructions 3.47 0.72

L1 DC misses per 1k instructions 36.5 15.99

Figure 39: L1 instruction cache misses per 1000 instructions

of executing Q1 on wide Rectangle XML documents in Galax

(varying width and height)

Figure 40: L1 data cache misses per 1000 instructions of

executing Q1 on wide Rectangle XML documents in Galax

(varying width and height)

Figure 41 shows L2 data cache behaviors of Galax. There are
distinct differences when the width increases from 40000 to
80000.

Figure 41: L2 data cache misses per 1000 instructions of

executing Q1 on wide Rectangle XML documents in Galax

(varying width and height)

6. CONCLUSION
This paper is our first step to understand the architectural
behaviors of XQuery workloads on modern processors. In this
paper, we are focusing on report detailed measures of architectural
characteristics for executing basic XQuery operations on three
modern hardware platforms including AMD’s Sempron, Intel’s
Pentium P4, and Sun’s UltraSPARC T1. We examine four
XQuery tools: Berkeley DB XML, Galax, Saxon-B, and GNU
Qexo. Our measured architectural behaviors include L1 cache
misses, L2 cache misses, TLB misses, and branch misprediction
rates. We believe that these data can be useful in understanding
the specific features of XQuery, comparing XQuery workloads
and RDBMS query workloads, and analyzing potential optimizing
opportunities for XQuery implementations.

Our future work covers the following aspects:

(1) Testing more operations, more complex xml structures, and
more software: Currently we only consider path navigation,
selection, and sorting of XQuery, and we only study Rectangle
XML, Triangle XML, and List XML. We will further consider
existing XQuery application-benchmarks [16][17][29] and micro-
benchmarks [19][28], and make more wide measures.

(2) Testing concurrent XQuery workloads with write operations:
We are planning to utilize concurrent XQuery workloads to study
the architectural behaviors on platforms with the new chip-
multiprocessor and simultaneous multithreading technology.
Although XQuery is a query-oriented language, many tools (e.g.
Berkeley DB XML) support modification and transaction
processing. We hope to understand the behaviors of shared L2
cache by multiple cores when executing concurrent XQuery
instances.

7. ACKNOWLEDGMENTS
We thank Professor Kai Li and Dr. Zhiwei Xu for their valuable
suggestions, and thank the ExpDB workshop reviewers for their
comments. This work is supported in part by the National Science
Foundation of China (Grant No. 90412010), China Ministry of
Science and Technology 863 Program (Grant No.
2006AA01A106), and the China National 973 Program (Grant
No. 2005CB321807).

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10

L
1

 in
st

ru
ct

io
n

 c
a

ch
e

 m
is

se
s

Height of XML Trees

Galax on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

5

10

15

20

25

30

35

40

1 2 4 6 8 10

L
1

 d
a
ta

 c
a
ch

e
 m

is
se

s

Height of XML Trees

Galax on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

0

1

2

3

4

5

6

1 2 4 6 8 10

L
2

 d
a

ta
 c

a
ch

e
 m

is
se

s

Height of XML Trees

Galax on T1: Rectangle XML (wide)

10000

20000

40000

80000

100000

8. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.

DBMSs on a modern processor: Where does time go? In
Proc. VLDB, 1999.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
System Characterization of Commercial Workloads. In Proc.
ISCA, 1998.

[3] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu. Evaluation of multithreaded
uniprocessors for commercial application environments. In
Proc. ISCA, 1996.

[4] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W.
E. Baker. Performance characterization of a quad Pentium
pro SMP using OLTP workloads. In Proc.ISCA, 1998.

[5] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. S. Parekh. An analysis of database workload
performance on simultaneous multithreaded processors. In
Proc. ISCA, 1998

[6] P. Trancoso, J.L. Larriba-Pey, Z. Zhang, and J. Torellas.
The memory performance of DSS commercial workloads
in shared-memory multiprocessors. In Proc. HPCA, 1997

[7] M. Karlsson, K. E. Moore, E. Hagersten, and D. A. Wood.
Memory System Behavior of Java-Based Middleware. In
Proc.HPCA, 2003.

[8] Y. Luo and L. K. John. Workload Characterization of
Multithreaded Java Servers. In IEEE International
Symposium on Performance Analysis of Systems and
Software, 2001.

[9] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.
Characterizing the Memory Behavior of Java Workloads: A
Structured View and Opportunities for Optimizations. In
Proc. SIGMETRICS, 2001

[10] P. Apparao, R. Iyer, R. Morin, N. Nayak, and M. Bhat.
Architectural Characterization of an XML-centric
Commercial Server Workload. In Proc.ICPP, 2004

[11] IA-32 Intel(R) Architecture Optimization Reference Manual,
http://developer.intel.com/design/pentium4/manuals/

[12] PMC based Performance Measurement in FreeBSD,
http://people.freebsd.org/~jkoshy/projects/perf-measurement/

[13] Basic Performance Measurements for AMD Athlon™ 64 and
AMD Opteron™ Processors,
http://developer.amd.com/articles.jsp?id=90&num=1

[14] AMD Sempron Processor Family, http://www.amd.com/us-
en/Processors/ProductInformation/0,,30_118_11599,00.html

[15] OpenSPARC T1 Documents,
http://opensparct1.sunsource.net/

[16] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, M. J.
Carey, I. Manolescu, and R. Busse. Why and How to
Benchmark XML Databases. SIGMOD Record, 3(30):27-32,
2001.

[17] B. Yao, T. Ozsu, and N. Khandelwal. XBench benchmark
and performance testing of XML DBMSs. In
Proc.ICDE,2004.

[18] S. Manegold. An Empirical Evaluation of XQuery
Processors. In ExpDB, 2006

[19] I. Manolescu, C. Miachon, and P. Michiels. Towards micro-
benchmarking XQuery. In ExpDB, 2006.

[20] The Saxon project web site. http://saxon.sourceforge.net

[21] The Galax web site. http://www.galaxquery.org

[22] The Qexo web site. http://www.gnu.org/software/qexo/

[23] The Berkeley DB XML web site.
http://www.oracle.com/database/berkeley-db/xml/index.html

[24] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A
Simultaneously Pipelined Relational Query Engine. In Proc.
SIGMOD, 2005.

[25] S. Harizopoulos and A. Ailamaki. Improving instructions
cache performance in OLTP. In TODS, 31(3): 887-920, 2006

[26] S. Chen, A. Ailamiaki, P. B. Gibbons, and T. C. Mowry.
Improving Hash Join Performance through Prefetching. In
Proc. ICDE, 2004.

[27] Sun Studio Performance Analyzer.
http://developers.sun.com/sunstudio/analyzer_index.html

[28] K. Runapongsa, J. M. Patel, H. V. Jagadish, and S. AI-
Kalifa. The Michigan Benchmark: A Microbenchmark for
XML Querying Systems. In EEXTT, 2002.

[29] S. Bressnan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, U.
Nambiar, and B. Wadhwa. X007: Applying 007 benchmark
for XML Querying Tool. In Proc.CIKM, 2001.

