Today's Thursday Tutorial

Be(com)ing a MonetDB Developer

Craftsmen's Tools, Tips & Tricks for Genii

http://monetdb.cwi.nl/

Stefan.Manegold@cwi.nl

Topics

* Maliling lists

* Packages, dependencies, versions
* CVS

* Compilation

* Manual testing (Mtest.py)

* Automatic testing (TestWeb)

Mailing lists (@lists.sf.net)

For all developers

— monetdb-developers, monetdb-bugs, monetdb-*-checkins
For all users (and developers)

— monetdb-users

For all users and developers

— Monetdb-announce

Detalls:

— http://monetdb.cwi.nl/Development/MailChannels/

— http://sourceforge.net/mail/?group_id=56967

Packages & Dependencies

buildtools
B MonetDB (Common, GDK)
- clients
— > MonetDB4
— > MonetDB5

pathfinder

amdb

™~
I
™~

sql

L geom

datacell

Versions & Branches

Release Development
“Stable” “Current”
Version CVS-branch Version

Buildtools 1.20 'MonetDB 1-20 1.21
MonetDB 1.20 MonetDB 1-20 1.21
Clients 1.20 Clients_1-20 1.21
MonetDB4 ' 4.20 MonetDB 4-20 4.21
MonetDB5 5.2 MonetDB 5-2 5.3
Sal 2.20 SQL 2-20 2.21
Pathfinder 0.20 | XQuery_0-20 0.21

Versions & Branches

New features must be implemented, tested & checked-in on the
development trunk (HEAD), only.

Bug-fixes must be implemented, tested & checked-in on the
release branches, only.

Bug-fixes on the latest release branches are automaltng]ically
propagated (currently by Sjoerd or Stefan) to the HEAD on
Irregular basis (or on request).

Bug-fixes on the latest release branches will eventually be
release in bug-fix releases

Bug-fixes on old (abandoned) release branches are neither
propagated nor released (other than being in CVS).

What's new in *.20?

Bug fixes

MapiClient » mclient plus enhanced functionality, cf.

- mclient --help

- mclient --language=<lang> --help

XQuery: automatic use of value indices (dynamic optimization)

‘man cvs : checkout & update

export CVS RSH=ssh

Initial checkout

cvs -d username@monetdb.cvs.sf.net:/cvsroot/monetdb
co -P [-r branchname] modulename

Updating your checkout (in . ../modulename/)

— To a branch: cvs [-g] up -dP -r branchname
— To the trunk (HEAD): cvs [-g] up -dP -A
— To whatever you have: cvs [-gq] up -dP

— Local changes are not lost during cvs up !

Checking the status of your checkout: cvs [-q] status [-V]

‘man cvs : defaults & help

* For convenience, create ~/ .cvsrc with (e.g.)
- CVSsS —-q
- update -dP
- diff -u

— status -v

* Handy:
- cvs --help
- cvs —--help-commands
- cvs —--help-synonyms
- cvs -H commandname

— Inan CVS

‘man cvs : diff & commit

Be(come) aware of what you changed before checking it in

- cvs diff

Gather (closely) related changes into a single cvs commit call,
or at least use the identical check-in message

Use separate cvs commit calls for unrelated changes
Think of check-ins as transactions and recall ACID
Check in early but not pre-mature

If you checked-out/updated from a branch, your check-ins will
automatically go to that branch

Read your own check-in emails to double-check / verity your changes

‘man cvs : log messages

Be(come) aware that some people indeed read check-in mails and
want to understand / learn from them

Be(come) aware that commit messages are not only read at time of
check-in and in order / context of each other, but also individually as
any later point in time as log messages (cvs 1log) when analyzing the
(development of) the code

Ideal: (self-contained) message describes reason, content and
consequences of your changes

Ok: message describes only reason and consequences; content is in
the diff

‘man cvs : log messages

* Counter examples:
- <Empty log message>
- “"sorry”
- “fixed bugs”
- “did this at home and/or in the train”

- “forgot this earlier”

— Messages that (obviously) don't match the changes

‘man cvs : accident recovery

* Undo accidental check-in of MyPath/MyFile (resulting in revision 1.23)

cvs up -jl.23 -jl.22 MyPath/MyFile

cvs diff -rl1.22 MyPath/MyFile -> no diffs!

cvs ci -m'undo of accidental check-in' MyPath/MyFile

* no/wrong log message with check-in of MyPath/MyFile (-> revision 1.23)

cvs admin -ml.23:'<correct log message>' MyPath/MyFile

‘man cvs : accident recovery

* Check-into HEAD instead of branch (resulting in revision 1.23)

— propagate to branch, but leave in HEAD
cvs up -r<branch> MyPath/MyFile
cvs up -jl.22 -jl.23 MyPath/MyFile
cvs diff MyPath/MyFile

cvs ci -m'
back-ported bug-fix from HEAD:
<original log message>
identical check-in, expecting no conflicts during
propagation
' MyPath/MyFile

cvs up -A MyPath/MyFile

* Do never copy/overwrite files checked-out from CVS!

‘man cvs : accident recovery

* Check-in to branch instead of HEAD (resulting in revision 1.23.4.5)

— propagate to HEAD and remove from branch

cvs up -A MyPath/MyFile

cvs up -jl1.23.4.4 -j1.23.4.5 MyPath/MyFile
cvs diff MyPath/MyFile

cvs ci -m'
moving accidental check-in from <branch> to HEAD:
<original log message>
undo in <branch> follows immediately
' MyPath/MyFile

cvs up -r<branch> MyPath/MyFile
cvs up -jl.23.4.5 -jl1.23.4.4 MyPath/MyFile

cvs diff -rl1.23.4.4 MyPath/MyFile -> no diffs!
cvs ci -m'moved accidental change to HEAD' MyPath/MyFile

‘man cvs : Do & Don't

Do never copy/overwrite files checked-out from CVS!

Do never modify the files in CVS/ (Root, Repository, Entries,
Tag) by hand!

Concentrate and be(come) aware of what you're doing!
Be(come) aware that you're not playing all by yourself but in a team!

Do never try to cover/hide your mistakes, but ask for help in case you
get stuck or are in doubt!

Compilation: Environment

source=MySourcePath
build=MyBuildPath
prefix=MyInstallationPath

export PATH="$prefix/bin:$PATH”

export PYTHONPATH="S$prefix/ python -c 'import
distutils.sysconfig; print
distutils.sysconfig.get python 1lib(0,0,"")"

~
n

Compilation: Configure options

Default Recommended
Stable Current Dev/DBG Exp/OPT
——enable-strict = No Yes Yes Yes
——enable-debug = No No Yes No
——enable-optimize = Yes No No Yes
——enable-assert = No Yes Yes No
——enable-0id32 = No No ? ?

See configure --help for more
conf='<desired combination of the above>'

* Default: CFLAGS='-g -02"
°* ——enable-debug: CFLAGS="'-g"
* ——enable-optimize: CFLAGS='-06 ...'

Compilation: all from scratch

for 1 in buildtools MonetDB clients MonetDB{4,5}
do
(cd Ssource/S$i && \
./bootstrap && \
mkdir -p $build/$i && cd Sbuild/$i && \
$source/$i/configure --prefix=S$prefix S$conf && \
make && make install \
) || break;

done

Compilation: re-compile

* configure notrequired (make [Makefile] calls it if necessary)

* Code changes (incl. *.in files)

— cd $Sbuild/S$Si && make Makefile && make && make install

* buildtools changes and/or *.ag file changes

- cd S$source/S$i && ./bootstrap
- cd Sbuild/S$i && make Makefile && make && make install

Compilation: clean-up

cd $Sbuild/$i && make uninstall

- cd $build/$i && make install

rm -r Sprefix

- cd $build/$i && make install

cd $build/$i && make [dist]clean
- cd $build/$i && make && make install
rm -r Sbuild/Si

- mkdir -p $build/$i && cd $build/$i && $source/$i/configure
—-prefix=$prefix Sconf && make && make install

cd S$source/$i && ./de-bootstrap

- cd S$source/S$i && ./bootstrap && cd $build/S$i && make && make
install

Compilation: multi-version setup

* Sources:

- .../Stable/source/*/

- .../Current/source/*/

* Builds:

- .../Stable/build.DBG/*/
- .../Stable/build.OPT/*/
- .../Current/build.DBG/*/
- .../Current/build.OPT/*/

* Prefixes:

- .../Stable/prefix.DBG/
- .../Stable/prefix.OPT/
- .../Current/prefix.DBG/
- .../Stable/prefix.OPT/

Background & Goals

Correctness
Stability
Portability

Compatibility between MonetDB and its add-ons

Contents
* “Testing” includes (“by hand” or “automatically”):

— Single-platform compilation

— Single-platform functionality testing (“Mtest.py”)

— Adding & maintaining tests and their “stable” output

— Multi-platform compilation

— Multi-platform functionality testing

— Gathering & “aggregation” of multi-platform results

— Checking/monitoring multi-platform results

— Maintaining/extending/improving Mtest.py/Mapprove.py

— Maintaining the “TestTools” for multi-platform testing

Single-platform compilation

Bootstrap
* Configure
* Make

Make install

Cetero Censeo code must compile successfully on at least one platform before being checked-in!

Single-platform compilation

* Bootstrap * Bootstrap
* Configure * Configure
* Make * Make

. * Make check
. * Make html
. * Make dist
. * Make rpm
* Make install * Make install

Cetero Censeo code must compile successfully on at least one platform before being checked-in!

Single-platform compilation

* Bootstrap * Bootstrap * Bootstrap
* Configure * Configure * Configure
* Make * Make * Make

. * Make check * Make check
. * Make html * Make doc
. * Make dist * Make dist
. * Make rpm * Make rpm
* Make install * Make install * Make install

* Make install doc

Cetero Censeo code must compile successfully on at least one platform before being checked-in!

Single-platform Functionality Testing

* Mtest.py: “handy” tool to run tests

Execute test
Collect output (stdout & stderr) in files

Filter output through Mfiltexpy to mark-up
known/expected variations (paths, time, date, ...)

Compare created output to stored “stable” (correct)
output (Mdiff)

Mark-up difference (Mdiff)

Build web-page for all tests run

Cetero Eenlgercpéé@%%@rté’yg@s&&géﬁllygh @ﬁe@s@gm ;FP&%HH% before being checked-in!

Single-platform Functionality Testing

* What are “tests”?

— Arbitrary executable file TST (with 'x'-bit set): TST
>TSTtest.out 2>TSTtest.err

— MIL script: TSTmilS/ TSTmilC
Mserver <TSTmil$S (Mserveré&) ;
MapiClient <TSTmilC; Mshutdown

- SQL query: TST'sqgl

— Xquery query: TSTxqg

— See MonetDB/src/testing/README for details

Cetero Censeo code must be tested successfully on at least one platform before being checked-in!

Single-platform Functionality Testing

* What Mtest.py cannot do for you:

— Create initial stable output for new tests
— Verify correctness of output
— Tell the origin/cause of differences

— Tell, whether differences were expected/intended or rather
iIndicate bugs

Cetero Censeo code must be tested successfully on at least one platform before being checked-in!

Adding & maintaining tests and their “stable”
output

* See demo
* Mapprove.py:

— Install (“approve”) output of last Mtest.py run as new
stable output

— Removes error messages ('*...") unless explicitely asked
to keep them (“-f”)

* Do always read Mapprove.py's output carefully!

ceerySianspaciic stalle vastRul on at least one platform before being checked-in!

Nightly Multi-platform Testing

* /ufs/monet/repository/TestTools

— Collection of bash scripts
* 1 “server’/’master”, several “clients”/"slaves”
* Server:

— “cvs update” the code

— Scp code (as tar-files) to clients

— Start testing on clients via ssh

- Collect results from clients

— Build “TestWeb”

— Send nasty mails

Pre-Check-In Tasks (Everybody!)

make sure your code compiles (at
least on your platform)

run Mtest

see Mtest output and generated webpage to check the impact
of your code/test changes

fix your code and/or fix/update the stable output where
necessary

re-run Mtest

use “cvs diff” to verify what you are about to checkin

Post-Check-In Tasks (Everybody!)

check testing result mails to

— see whether your changes did compile and test well on
other platforms

— your changes to MonetDB might have impact on any
(known/tested) add-on

check TestWeb for details
fix code that does not compile/work properly

add system-specific stable output where necessary

(Daily!??) Tasks for Project-Maintainers

* Check/monitor multi-platform results (mails & TestWeb)
* Notify developers of changes / bugs / problems due to their latest
checkins

