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ABSTRACT
Optimization of complex XQueries combining many XPath steps
and joins is currently hindered by the absence of good cardinality
estimation and cost models for XQuery. Additionally, the state-of-
the-art of even relational query optimization still struggles to cope
with cost model estimation errors that increase with plan size, as
well as with the effect of correlated joins and selections.

In this research, we propose to radically depart from the tradi-
tional path of separating the query compilation and query execution
phases, by having the optimizer execute, materialize partial results,
and use sampling based estimation techniques to observe the char-
acteristics of intermediates. The proposed technique takes as input
a Join Graph where the edges are either equi-joins or XPath steps,
and the execution environment provides value- and structural-join
algorithms, as well as structural and value-based indices.

While run-time optimization with sampling removes many of the
vulnerabilities of classical optimizers, it brings its own challenges
with respect to keeping resource usage under control, both with re-
spect to the materialization of intermediates, as well as the cost of
plan exploration using sampling. Our approach deals with these
issues by limiting the run-time search space to so-called “zero-
investment” algorithms for which sampling can be guaranteed to
be strictly linear in sample size. All operators and XML value in-
dices used by ROX for sampling have the zero-investment property.

We perform extensive experimental evaluation on large XML
datasets that shows that our run-time query optimizer finds good
query plans in a robust fashion and has limited run-time overhead.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Performance
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1. INTRODUCTION
One of the tasks of a database optimizer is to enumerate at com-

pile time several equivalent candidate execution plans and to iden-
tify the one to be executed based on its cost value. Several factors
such as size of input, selectivity and available resources affect the
cost of a given plan. The value of these factors is estimated by the
optimizer, hence the accuracy of the estimations is not guaranteed.

In the well-studied case of relational query optimization, there
exists three general dangers that undermine the accuracy of such
estimates, even if we assume the presence a reliable cost model. In
case of large query plans, the variance in estimation errors, while
originally small for an individual operator, propagates through the
plan in a multiplicative way, causing ever wider error variance [23].
Thus, the estimation precision of cost models exponentially deteri-
orates with query complexity. Further, it is still a common approach
for optimizers to assume value independence of attributes in a doc-
ument, while in real-life data often strong correlations exist. In
such cases, this wrong assumption creates strong estimation errors.
Finally, the available resources are crucial for plan efficiency; how-
ever the system load may change between query compilation and
query evaluation time, especially in case of query pre-compilation.

In the case of XQuery processing, two additional factors under-
mine the accuracy of static query optimization. First, XML cost
prediction, where rather than (foreign-key) equi-joins, structural
join predicates come into play, is still an open research area. So,
the earlier assumption of a working cost model does not hold in the
XML case. A second problem is that in XQuery, parametric queries
are more prevalent than in the relational case. A prominent exam-
ple of that is that in SQL the tables accessed by a query are always
known at compile time, while in XQuery data is accessed through
the fn:doc(url) and fn:collection(url) functions, which may
receive a run-time parameter. As the values of the parameters can
strongly affect the cost of the query, and in case of document ac-
cess can even prevent all access to data statistics, this is a serious
roadblock towards reliable compile-time optimization of XQueries.

1.1 Run-time Query Optimization
In this paper we suggest a new approach to run-time query opti-

mization. In contrast to dynamic query evaluation [16, 10], which
determines at compile time a few alternative execution plans and
decides at run-time based on a parametric comparison the one to
execute, our ROX approach limits static compilation to normaliza-
tion, simplification and the identification of so-called Join Graphs.
These Join Graphs cluster XML navigation, relational joins, and
structure and value predicates of an XQuery [18], and are subjected
to the ROX run-time optimization (e.g. ordering of steps and joins).



Although such a proposal of merging the optimization and evalua-
tion phases of a query falls into the category and can be compared
to Adaptive Query Processing [12] techniques suggested in the re-
lational case, it is the first in the context of XML and XQuery.

ROX executes the operations in the Join Graph one by one, fully
materializing partial results. By doing so, the properties of already
available intermediate data can be analyzed and used for determin-
ing the operators to execute next. This decision involves taking
a small sample from the already available partial results and pre-
executing different operators with that sample, taking note of both
execution time and the properties of the result. In order to climb
the hill and avoid a local optimum, we efficiently use deep “chain”
sampling to examine multiple routes of consecutive operators until
one route is designated as the most optimal for the next execution.

It is crucial to recognize, that ROX is not merely running a query
optimizer at run-time, but in fact intertwines and integrates query
optimization into the query evaluation procedure. This introduces
the risk of materializing too large results as well as spending too
much resources on the sampling-based optimization. Our extensive
tests show that ROX not only consistently finds good plans from
the XQuery search space even in the presence of correlated data,
but also keeps sampling and materialization cost low.

Contributions. We view our contributions as (i) ROX is one of the
very few techniques in the relational context and the first in XML
that goes beyond simply moving query optimization to run-time to
intertwining it with query evaluation. (ii) the chain-sampling tech-
nique that we propose provide the first generic and robust method
to deal with any type of correlated data; (iii) the resulting ROX op-
timizer clearly improves the state-of-the art in XQuery optimizers
both in plan quality as well as running time.

Outline. In Section 2 we introduce the basic building blocks for
ROX: the Join Graphs, the used physical indexing and query evalu-
ation algorithms, and our operator sampling method. Section 3 then
describes in detail the ROX query optimization and evaluation al-
gorithm. In Section 4 we extensively test ROX, showing that it can
robustly find for queries with different degree of correlation a near-
optimal plan, clearly beating a classical static query optimization
strategy. Finally, in Section 5 we cover related work, then discuss
future work in Section 6 before concluding in Section 7.

2. PRELIMINARIES
We now describe the foundations on which ROX builds: Join

Graph Isolation, the physical data structures and algorithms used
in the Join Graph evaluation, and the used sampling techniques.

2.1 Join Graphs
The main goal of ROX is to optimize at run-time the order in

which the joins and XPath steps are executed. Therefore, an order-
independent representation of all selection, join and step relation-
ships needs to be conveyed to the run-time environment as part of
the execution plan. We have chosen for an adapted form of a Join
Graph as our order-independent representation, since Join Graphs
have already been used in relational databases for similar purposes.

DEFINITION 1. A Join Graph G = (V,E) is defined as an
edge labeled graph where:

- a vertex v ∈ V represents a relation of XML nodes which are
input or output to join and path step operators of the query. A
vertex v can be annotated with:
• an element qualified name representing those XML element

nodes with a certain qualified name,
• a text node with possibly a range-selection predicate denot-

ing those text nodes with a certain value,

• an attribute node with possibly a range-selection predicate,
denoting those attribute nodes with a certain value,

Note that in principle, as Join Graphs can be surrounded by other
parts of the query plan, some vertices in the graph could be pre-
materialized input tables. For simplicity of presentation, we leave
these out of our examples.

- an edge e ∈ E represents a path step or join operator in the
query. We distinguish between:
• a step join, such as the staircase join described in Section 2.2,

and
• a relational join, which according to the XQuery semantics

computes a join using a value-based comparison of both in-
puts. Typically, the input vertices of such joins are text- or
attribute-nodes.

A Join Graph, input to the ROX algorithm, is obtained as follows.
First, an initial relational query plan is generated from an XQuery
using the relational compilation and peep-hole driven optimization
described in [17]. This initial plan is statically optimized in such a
way that specific types of operators are grouped together forming
a Join Graph representation. The rewrite rules move numbering,
distinct and sort operations out of the way (either downwards or
upwards), creating a cluster of selection, projection, join and step
operators. The boundaries of those sections are then detected and
the clusters are replaced by corresponding Join Graphs. Doing so
seems as easy said as done, but in reality requires a finely tuned
set of optimization rules [18]. The execution plan with embedded
Join Graphs is conveyed to the run-time environment of ROX for
optimization, effectively deferring to run-time any decisions on the
execution order of the joins and steps in the Join Graph. Occasion-
ally, some operator constructs separating two groups of joins and
steps can not be pushed below or above the clusters, resulting in a
plan containing two isolated Join Graphs connected by the block-
ing operators. ROX will then optimize the different Join Graph
sub-plans, and this way allows us to support the entire XQuery lan-
guage while focusing on the optimization of the crucial order of
joins and steps, including non-tree patterns often excluded [22].

The semantics (“result”) of the Join Graph is a fully joined rela-
tion containing attributes of base relations. Subsequent projections
in the plan specify which part of the fully joined relation we are
interested in. Furthermore, the defined Join Graph does not guar-
antee the order and distinctness properties of the output as implied
by the XQuery semantics. Sort and Distinct operators are needed to
accomplish this. The static optimization rules have the effect that
Sort and Distinct operators form a tail connected to the Join Graph.
It may seem suboptimal to strictly separate the joins from these op-
erators in the tail, however; it is possible, after identifying the Join
Graph and during its run-time optimization, to push these opera-
tors, most crucially Distinct, between the joins. This is considered
as an extra optimization step and is left as future work.

Example Figure 1 shows an execution plan with the embedded
Join Graph of the following XQuery Q:

let $r := doc(“auction.xml”)
for $a in $r//open auction[./reserve]/bidder//personref,

$b in $r//person[.//education]
where $a/@person = $b/@id
return $a

The rectangle frames the Join Graph of the XQuery. The edges
specify all step and join relationships between index-selectable node
sets and attribute nodes. Without loss of generality, we limit our-
selves to equi-joins as the most important representatives of a re-
lational join. A relational join between two relations v1 and v2 is
depicted as v1 =— v2. A step join between two relations v1 and v2 is
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Figure 1: Corresponding Join Graph and tail of Q

depicted by an edge v1 ◦ax— v2 where the label ax defines the axis
of the step. The circle “◦” denotes the direction of the step, i.e.,
which of the two relations is the context node sequence of the step
join. Note that the direction is only a representational issue; the
algorithm may very well decide to execute the step in the reverse
direction. The semantics of the example query is a sequence of
personref nodes where the order and duplicates are determined by
both for-variables $a and $b bound respectively to personref and
person elements. Therefore, the tail of the plan consists of a projec-
tion on the attributes corresponding to the personref and person el-
ements, a distinct operator to remove duplicate (personref, person)
node pairs, a numbering operation τ which determines the correct
sort order of the resulting tuples (it sorts first by personref node
identity, then by person node identity), and finally a projection to
keep only the attributes corresponding to the personref nodes.

2.2 Algorithms and Index Structures
As ROX lives in a relational infrastructure, it applies to XQuery

systems that use a relational database back-end. We use the open-
source database system MonetDB/XQuery [4], that employs such
a form of pure relational (tabular) storage of schema-free XML.
That is, XML documents are shredded into tables, where informa-
tion on every XML node is stored in a separate relational tuple.
XML nodes are referred to using node identifiers, whose shape is
in principle independent of the ROX approach (often-used incarna-
tions are either from the family of variable-sized identifiers such as
Dewey numbers [27] or range-based). MonetDB/XQuery uses the
range-based pre/post relational node encoding, where pre, a vir-
tual generated number reflecting the order of opening tags in the
document, denotes the node identifier attribute in each tuple.

XML Extensions. The XQuery module of MonetDB provides a
number of extensions of the relational algebra that are specific for
XML. The most prolific of these are operators to shred XML into
tabular form, to serialize tabular data in XML, and the staircase
join [19] operator, a structural join which is defined as follows:

Dk/axis

(C, S) = {[c, s]|c∈C, s∈S :
kind(s.pre) = k ∧ s.pre ∈ axis(c.pre)} = R,

with: axis ∈ {anc,ancs,child,parent,desc,self
descs,foll,folls,prec,precs},

k ∈ {*,doc,elem,text,attr,comment,pi}

The staircase join is a structural join which can process a single
XPath step (axis::k) using as starting point the set of context nodes

C. It takes as second input either the entire document S = D∗,
or a kind restriction S = Dk on return node kind k, or any subset
S ⊂ D∗. It selects and returns all nodes in S that satisfy the re-
lation (axis::k) with any node in C. The result R returned by the
evaluation is a set of tuples (nodes), duplicate-free and in document
order (i.e. sorted on pre). Though defined here as a set, the imple-
mentation of the staircase algorithms expect both inputs C and S
to be tuple sequences sorted on pre.

Table 1 lists the relational operators used by ROX to process
join graphs, and some of their properties such as cost. It shows
that the staircase join is a highly efficient operator, in fact it can
evaluate with linear complexity all types of XPath axes by making
at most a single pass over the input S. Note that the ideas in ROX
do not only apply to staircase joins – the collection of physical
operators that ROX currently uses simply stems from the choice of
MonetDB/XQuery as evaluation platform.

Auxiliary Operators. Additionally, the MonetDB/XQuery run-
time module provides some relational procedures (similar to PL/SQL,
these map into normal relational subqueries) that help probe the
XML-specific indices. Various XML indexing structures have been
proposed, such as element indices [6], data guides [15], and various
kinds of structural synopses [14, 30].

Currently, in MonetDB/XQuery there is an element index and
a value index that covers the values of all text and attribute nodes
in the document. These indices can be seen as B-trees that store a
series of node identifiers in index order, thus a range lookup comes
down to determining the start and end boundaries of the selected
range. As part of that action, the exact count of selected nodes
already becomes available; therefore the cost of just counting the
number of qualifying tuples is independent of the result size |R| of

Relational Operators Cost
merge

1 (C, S)⇒ R min(|C|, |S|) + |R|
hash
1 (C, S)⇒ R |C|+ |S|+ |R|
nl
1 (C, S)⇒ R
×(C, S)⇒ R (no sampling allowed)
scan
σ (C, S)⇒ R |C|

Structural Join XPath predicate Cost
Dk/descs

(C, S)⇒ R //k |R|+ |C|, iff S = D
Dk/desc

(C, S)⇒ R descendant::k |R|+ log(max(|C|, |S|))∗
Dk/child

(C, S)⇒ R /k min(|C|, |S|), otherwise
Dk/anc

(C, S)⇒ R ancestor::k |C| ∗ log(|D|)
Dk/ancs

(C, S)⇒ R ancestor-or-self::k
Dk/foll

(C, S)⇒ R following::k |R|+ |C|
Dk/prec

(C, S)⇒ R preceding::k
Dk/folls

(C, S)⇒ R following-sibling::k |C|
Dk/precs

(C, S)⇒ R preceding-sibling::k
Dk/par

(C, S)⇒ R parent::k
Dk/self

(C)⇒ R self::k
Relational Sub-Queries for XML access Cost
Delt

��33 (qelt)⇒ R log(|D∗|) + |R|
Dtext

��33 (v)⇒ R
Dattr

��33 (v, qelt, qattr)⇒ R

Table 1: Physical Operators used by ROX



the index lookup. The result of an index lookup is a sequence of
node identifiers (pre), duplicate free and in document order.

Given a qualified name q (and URI) of an element, the element
index returns the list of all elements in document D satisfying q:

Delt

��33 (q) = {pre(e)|e ∈ Delt ∧ qname(e) = q}

The basic idea of the value index in MonetDB/XQuery is an or-
dered store of (val, qelt, qattr, pre) tuples. Such a structure can
be used to find element-, text- and attribute-nodes using equi- or
range-lookup on value. Depending on the node type, the lookup
query can include a restriction condition on element name qelt (for
element and attribute nodes), and additionally a restriction on at-
tribute name qattr (for attribute nodes). In our experiments, we
used the released version of MonetDB that supports a hash-based
index for string equality lookups on text and attribute nodes.

Given a value v, the text value index returns the list of all candi-
date text nodes in document D having a value v:

Dtext

��33 (v) = {pre(t)|t∈Dtext ∧ fn:data(t)=v}

Given a value v, the attribute value index returns the list of the
parent elements in documentD with qualified name qelt of all can-
didate attributes with qualified name qattr having a value v:

Dattr

��33 (v, qelt, qattr)={pre(e)|e∈Delt∧e@qattr=v∧qname(e)=qelt}

For each vertex in the Join Graph denoting a given element name,
a text or attribute node with an equality predicate, an index lookup
can be used to efficiently retrieve, as well as determine the count of,
all qualifying matches. It is also possible, given a set of values, to
probe the value index to evaluate any equi-join in the Join Graph.

2.3 Cut-Off Sampled Operators
The ROX algorithm intertwines operation execution with sampling-

based cost estimation, where it uses a new chain sampling tech-
nique to explore multiple operations ahead in order to decide upon
the next execution step. Operator sampling consists of executing
the operator with a sample of its input. In case of joins, it cor-
responds to joining one of the operator’s input to a sample drawn
from the second input. The start samples used by ROX are either a
synthetic single-tuple relation containing the root node of the docu-
ment, or a set of tuples sampled from indices. Efficient and reliable
sampling from indices, using techniques like partial sum trees is
well-known [26], and is achieved in case of the element indices in
MonetDB/XQuery. ROX then samples steps and joins by feeding
the obtained start samples into these operators.

Join sampling has been studied extensively, however the goal
in previous work usually was to obtain an unbiased sample of the
join result [7, 21]. In contrast, we use sampling to learn about
correlated relationships between tuple distributions in the joined
relationships, by monitoring sample tuples as they flow through
multiple sampled joins. Therefore, we are interested in an input
biased sample, that has the property that the join hit ratio of each
input tuple that makes it into the join result is accurately reflected
in the join sample. While this may sound complicated, it in fact
leads to a simple well-known sampling methodology, proposed in
index based join selectivity estimation [29], which takes a sample
of input tuples from the outer operand, and looks-up (efficiently,
using an index) all matching tuples in the inner operand.

In order to ensure efficient sampling, ROX restricts join sampling
to physical operators that have the “zero-investment” property with
respect to the sampled input. The zero-investment property means
that the complexity of the operator only depends on the cardinality

of that input. This rules out any algorithm that, prior to producing
results, makes an investment that is linear (or worse) with respect to
any other inputs. This condition is a generalization of the “index-
available” condition that is long known to simplify the issue of ef-
ficiently obtaining reliable join samples [29]. Equi-join algorithms
that have this property are merge join (only applicable if inner in-
put is ordered) and nested-loop index lookup. The latter operation
typically applies in our Join Graph when there is an equality edge
touching an attribute- or text-node (in which case the XML value
indices are used). Similarly, a crucial feature of the staircase joins is
that they also conform to the zero-investment property with regards
to their input C, which makes them fully applicable in the ROX
context. In fact, we observed that our Join Graphs can be fully
executed in MonetDB/XQuery with zero-investment operators.

Join operations can in principle return the Cartesian product, i.e.
their worst case complexity is quadratic. Though this certainly
is not typically the case, our run-time query optimization should
guarantee efficiency against high join hit ratios blowing up a result
sample. Therefore, rather than producing the full result of a join
sampling followed by reducing it, we prefer to do this in one step.
In particular, we enforce the operation OP (c, S) between sampled
input c and relation S to have cost linear in the size τ of the sam-
ple. This is currently simulated by cutting off the result generation
early. Consequently we need to observe the fraction f of c tuples
that were processed at this point, in order to extrapolate the size of
the full, unlimited, result r′ as |r′| = |r|

f . A simple way of doing so
is to make sure c carries a row-identifier, densely increasing from 1,
which is propagated in the output and computing f=max(r.rowid)

max(c.rowid)
.

For example, if we work with an average sample size τ = 1000,
and start with such a sample from relation A, and join that with the
full relation B (with, say, a join hit ratio h = 5), rather than taking
a uniform sample of 1000 from the 5000 hits, we prefer to conserve
the full join result for around 200A tuples, generating directly a re-
sult of 1000 tuples instead of 5000. Therefore to keep sample sizes
within a usable range, our approach is thus to cut-off the genera-
tion of join results, always taking note of the used reduction factor
f (e.g. f=0.2 here) to properly scale our cost estimations.

The sampling operation is denoted by �l, and can take two types
of input, a table T or an operator OP. The operation �l(T ) refers
to picking from T a random sample of size l, while �l(OP) rep-
resents a partial execution of the operator OP where the execution
stops as soon as the number of generated tuples reaches the limit
l. The output of �l is a table containing the result of the sampling
operation. In case of operator sampling, �l(OP) will additionally
return an estimation of the cardinality of the full execution of OP
using the observed reduction factor f as described earlier. Note
that the use of the limit l parameter in the sampling operation �l

introduces a statistical bias towards the tuples early in the sample.
As an alternative, a non front-biased cut-off sampled join would
observe the amount ht of outer tuple hits on the current inner (sam-
pled) tuple t, and after fully processing that outer tuple, would skip
the ht following outer tuples. This ensures that the join result stays
in line with the input without front bias. In our current version of
ROX, we accept the front bias risk and refrain from extending Mon-
etDB/XQuery with such new physical cut-off (step) join operators,
because our focus is on dynamic query optimization rather than on
new sampling methods, and the experiments have proved that ROX
performs well even in the presence of such a risk.

3. ALGORITHM
The join ordering problem boils down to analyzing the Join Graph

in search of a (near-)optimal join order from the entire search space



of possible execution orders. ROX interleaves optimization and ex-
ecution steps, exploring the search space by efficiently sampling
path segments (sequences of step and join operators). As soon as a
path segment is found to be superior to others, the sampling stops,
the associated step and join operators are executed, their results are
materialized, and the process of searching for the next superior path
segment starts, benefiting from the newly obtained data and more
accurate statistical knowledge.

We first define some needed notation. Given a Join Graph G =
(V,E), a vertex v ∈ V , and an edge e ∈ E
• T (v) represents a table with all XML nodes satisfying v.
• S(v) represents a table containing a random sample of XML

nodes satisfying v.
• card(v) is the estimated number of XML nodes satisfying v.
• edges(v) represents all outgoing un-executed edges of v.
• w(e) is the weight of e being an estimation of the cardinality

of the result of the step or join operator associated to e.
• exec(e, T1, T2) represents the result of the execution of the

operator associated with edge e on input tables T1 and T2.

The main algorithm of the run-time optimizer is shown in Algo-
rithm 1. It consists of two phases. The first phase initializes the
Join Graph. The second phase alternates search space exploration
and path segment execution until all edges have been executed.

Phase 1 (Algo1: lines 1-4). First for each vertex v, a sample of
size τ of tuples satisfying the annotated name and range-predicates
of v is materialized and the total number of satisfying tuples is es-
timated (lines 1-2). This is efficiently provided by an index lookup.
To keep the cost of this operation low, it is restricted to vertices
representing XML elements or text elements with an equality pred-
icate condition. Unless specified otherwise, we use, throughout the
algorithm, a default sample size of 100 (τ = 100).

Second, for each edge e = (v1, v2), a weight is computed by
linearly extrapolating the result of sampling e (lines 3-4). We define

EstimateCard(e) = card(v)
τ
× est

where (R, est) = �τ (exec(e, S(v), T (v′)))

and (v, v′) =

(
(v1, v2) if card(v1) < card(v2)

(v2, v1) otherwise

As described in Section 2.3, sampling e is done by picking a
sample from the input table of one of e’s vertices, followed by the
cut-off execution of e’s operator with the other vertex input table.
We choose to use the smallest vertex as input for sampling, because
a sample from a smaller table provides a more representative set of
the data, leading to a more accurate estimation of the cardinality of
the step or join result. An edge whose both vertices do not have a
materialized sample S(v), will stay unweighted for now. Since the
table T (v′) is still undefined at this stage, the execution of e will
instead be carried on the sample set S(v′).

Phase 2 (Algo1: lines 5-19). The second phase of the algorithm
alternates between exploring the search space for a superior path
segment and executing this path segment, until all operations in the
Join Graph are executed. The Join Graph exploration is performed
by the ChainSample function (line 6) described in detail in Sec-
tion 3.1. It analyses candidate path segments in the graph to iden-
tify the one that is superior. All edges along the chosen path seg-
ment are then executed (line 7-13), and the knowledge in the Join
Graph is updated (line 14-19). To execute an edge e = (v1, v2),
its input tables T (v1) and T (v2), if undefined yet, are initialized
to the complete result of the corresponding index lookup (line 8-
12). This operation is again restricted to vertices representing an

INPUT : Join Graph G = (V,E)

1 FOR each v ∈ V | v is an element with qname x or a text node with
predicate “= x” DO

2 (S(v), card(v))← �τ ( ��33 (x));

3 FOR each e = (v1, v2) ∈ E | S(v1) 6= null ∨ S(v2) 6= null DO
4 w(e) = EstimateCard(e);

5 WHILE there are more edges to execute DO
6 Path p← ChainSample();
7 FOR each edge e = (v1, v2) ∈ p DO
8 FOR v ∈ {v1, v2} DO
9 IF T (v) = null ∧ v is a root node THEN

10 T (v)← pre
1

;

11 ELSE IF T (v) = null ∧ v is an element with qname
x or a text node with predicate “= x” THEN

12 T (v)← ��33 (x);

13 exec(e, T (v1), T (v2));
14 FOR v ∈ {v1, v2} DO
15 UpdateTable(v);
16 S(v)← �τ ( T (v));
17 card(v)← |T (v)|;
18 FOR each e ∈ edges(v) DO
19 w(e) = EstimateCard(e);

Algorithm 1: Run-time Optimizer

XML element or a text element with an equality predicate condi-
tion. After e is processed, T (v1) and T (v2) are updated to include
only those tuples that satisfy the execution, and the sample set S(v)
and cardinality card(v) of both v1 and v2 are updated accordingly
(line 15-17). Consequently all remaining un-executed edges inci-
dent to v1 and v2 are sampled to compute their new weight (line 18-
19). Note that this also happens for previously computed weights;
these are thus re-sampled with a new sample taken from the up-
dated tables. This is a crucial feature of ROX: simply adjusting
the already computed weights by e.g. multiplying with the join hit
ratio of the executed path would not be enough as this implies an
independence assumption. By re-sampling, ROX is able to detect
arbitrary correlations between edges in the Join Graph.

3.1 Chain Sampling
The heuristic used by ROX is to execute the edge whose inter-

mediate result cardinality is smallest. Because the weight of an
edge represents an estimate of its intermediate result cardinality,
this seems a matter of simply choosing the edge with the small-
est weight. This may be, however, only a local minimum in the
search space due to correlations. The function ChainSample (see
Algorithm 2) invests a small amount of time to climb the hill to be
sure that another chain of operators (i.e., a path segment) would not
produce an intermediary result with smaller cardinality.

The algorithm samples a chain by using the output of sampling
one operator as input to the sampling of the next one. Since check-
ing all possible paths in the graph is too expensive, the algorithm
explores only those paths that branch from the edge with the small-
est weight. By sampling ahead in the branches, the algorithm may
discover that a branch due to correlations produces a result of much
lower or higher cardinality than the estimations (weights) initially
predicted, hence the branch proves superior or inferior to others.

Algo2: lines 2-5. Chain sampling first determines the edge e with
the smallest weight. If both its vertices are not branching, no chain
sampling is performed because all edges neighboring e are already
executed. In this case ChainSample returns e for execution. Other-



INPUT : Join Graph G = (V,E)

OUTPUT : Path p
1 e = (v1, v2) | e ∈ E ∧ w(e) = min

ei∈E
w(ei);

2 IF |edges(v1)| > 1 ∨ |edges(v2)| > 1 THEN
3 source← v | card(v) = min

vi∈{v1,v2}
card(vi);

4 ELSE
5 RETURN {e};

6 Path p← {};
7 StopV ertex(p)← source;
8 I(p)← S(source);
9 paths.insert(p);

10 cutoff← τ ;
11 WHILE ∃ more edges to sample DO
12 cutoff← cutoff + τ ;
13 FOR each p ∈ paths DO
14 v ← StopV ertex(p);
15 IF edges(v) > 0 THEN
16 paths.remove(p);

17 FOR each e = (v, v′) ∈ edges(v) DO
18 Path p′ ← p ∪ {e};
19 (I(p′), est)← �cutoff(exec(e, I(p), T (v′));
20 StopV ertex(p′)← v′;
21 cost(p′)← cost(p) + est ∗ card(source)÷ τ ;
22 sf (p′)← est÷ τ ;
23 paths.insert(p′);

24 FOR each pi ∈ paths DO
25 FOR each pj ∈ paths | i 6= j DO
26 IF cost(pi) + sf(pi) ∗ cost(pj) ≤ cost(pj) THEN
27 p = pi;

28 ELSE
29 p = null; break;

30 IF p 6= null THEN
31 RETURN p;

32 FOR each pi ∈ paths DO
33 FOR each pj ∈ paths | i 6= j DO
34 IF cost(pi)+sf(pi)∗cost(pj) ≤ cost(pj)+sf(pj)∗cost(pi)

THEN
35 p = pi;

36 ELSE
37 p = null; break;

38 IF p 6= null THEN
39 RETURN p;

Algorithm 2: Chain Sample

wise, it determines which of its vertices is the best starting point for
exploring neighboring un-executed branches, by choosing the one
with the smallest cardinality. We refer to this vertex as source.

Algo2: lines 6-37. The branches are explored in a breadth first
manner starting from the source vertex. Each round consists of
extending path segments (line 18) by sampling the next possible
edge in every branch (line 19). Note that additional path segments
may be created when other branching vertices are encountered.

Each path segment p is associated with a number of properties:
• StopVertex(p) is the vertex from which p’s next sampling

round will start (line 20). It is initialized to source (line 7).
• I(p) is the sample set to use as input in the next sampling

round of p. It is initialized with a sample of size τ from the
source (line 8). In every subsequent round, it consists of the

output table of the previous sampling operation (line 19).
• cost(p) is the estimated combined cardinality of all interme-

diate results of path segment p. Each time p is extended with
an edge e, its cost is incremented with the estimated cardi-
nality of e (line 21).
• sf(p) is the scale factor of p. It represents the join hit ratio

( output size
input size

) resulting from executing p (line 22).

After each sampling round, the optimizer updates the properties
of the path segments (line 19-22), and compares them to check if
one proves to be superior (lines 24-29) allowing for an interleaving
with the execution of the superior path. The optimizer makes such a
decision by comparing the cost and sf of all pairwise combinations
of path segments using the following stopping condition (line 26):

cost(pi)| {z }
1©

+ sf(pi) ∗ cost(pj)| {z }
2©

≤ cost(pj)| {z }
3©

1© : cost of executing pi
2© : cost of executing pj using the new data

returned from the execution of pi
3© : cost of executing pj

The idea behind the equation is that, given two paths pi and pj ,
if the execution of pi followed by the execution of pj is cheaper
then executing pj alone, we can safely execute pi. For example, if
cost(pj) was estimated to be equal to 1000 and the execution of pi
will reduce the intermediate result by half (i.e. sf(pi) = 0.5), then
the cost of executing pj after pi is estimated to be equal to 500. If
pi happens to cost less than 500, thus satisfying the above condi-
tion, we can decide to stop chain sampling, because it is guaranteed
that pipjpk is cheaper to execute than pjpkpi for any extension pk
of the path segment pj . Therefore, if the above condition holds, we
stop chain sampling and interleave optimization with the execution
of pi. If the stopping condition is not satisfied at the end of a sam-
pling round, a further round of sampling is initiated until either the
stopping condition is satisfied or all branches are fully explored. In
this case, the algorithm picks the best candidate path segment based
on the equation in line 34.

We have previously noted that our simple cut-off technique used
while sampling indices and step/join operators to limit the size of
generated result, is biased towards the front input tuples. This can
become a problem in chain sampling as the bias accumulates over
subsequent executed operators. We now mitigate this problem, by
incrementing the sampling limit (referred to as cutoff ) with τ after
each round (line 12). We recognize that this solution is not ideal,
however, a better approach would require modifications inside the
steps and joins of MonetDB/XQuery (see the end of Section 2.3).

Example. We illustrate the chain sampling process with the exam-
ple Join Graph shown in Figure 2.1. The edge with the smallest
weight is (v2, v3). Suppose that the cardinality of v2 is smaller, so
we choose v2 as the source. Sampled edges are indicated with an
arrow and labeled with the path segment they belong to. In Figure
2.2, the stopping condition holds for i = 3 and j = [1, 2, 4]. There-
fore, the algorithm stops chain sampling although there is one more
edge (v6, v8) which can still be sampled. In this case, chain sam-
pling was able to detect an existing selective correlation between
the elements v2, v5 and v6, and as a result the optimizer will exe-
cute the edges in path p3 instead of executing edge (v2, v3) which
was found earlier to be the best.

3.2 The Power of the Run-time Optimizer
In this section, we present an example that illustrates the behav-

ior of our run-time query optimization algorithm on the following



v1 v2 v3 v4

v5

v6

v7

v8

p1 p2

p3

Paths = {p1, p2, p3}
StopVertex(Paths) = {v1, v3, v5}
[cost, sf ](p1) = [1500, 1.5]
[cost, sf ](p2) = [1000, 1]
[cost, sf ](p3) = [1200, 1.2]

2.1 The first round of chain sampling using v2 as source

v1 v2 v3 v4

v5

v6

v7

v8

p1 p2 p2

p3, p4

p3

p4

Paths = {p1, p2, p3, p4}
StopVertex(Paths) = {v1, v4, v6, v7}
[cost, sf ](p1) = [1500, 1.5]
[cost, sf ](p2) = [2000, 1]
[cost, sf ](p3) = [1300, 0.1]
[cost, sf ](p4) = [3200, 2]

2.2 The second round of chain sampling

Figure 2: Illustration of Chain Sampling
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3.1 Join Graph of Q1
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3.2 The third exploration step of the run-time algorithm
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3.3 The order of operators’ executed by ROX for Q1
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3.4 The order of operators’ executed by ROX for Qm1

Figure 3: XMark example

XQuery Q1:
let $d := doc(“xmark.xml”)
for $o in $d//open auction[.//current/text() < 145],

$p in $d//person[.//province],
$i in $d//item[./quantity = 1]

where $o//bidder//personref/@person = $p/@id and
$o//itemref/@item = $c/@id

return $a
Figure 3.1 shows the Join Graph of Q1 where the number la-

bel on each edge represents the initial weight computed by sam-
pling. The algorithm proceeds by picking the edge with the small-
est weight (current, text<145), and chain sampling. Figure 3.2
shows the Join Graph after two alternating exploration and exe-
cution steps. The circled numbers represent the order of execution.
The weight of the edges (open auction, itemref) and (open auction,
bidder) are recomputed using the new updated data in T (open auction),
where card(open auction) = 11.8K. The weights of other edges are
unchanged. The same figure presents the third exploration step: the
arrows on the edges indicate the chain sampling process using the
vertex open auction as source. Table 2(a) shows the (cost, sf) pair

of p1 and p2 after each round of sampling, where p1 is the path
segment going though the vertex bidder and p2 is the one travers-
ing the vertex itemref. Six sampling rounds are performed, and the
stopping condition after each iteration is never satisfied. At the end
of chain sampling, we have the following:
cost(p1) + sf(p1) ∗ cost(p2) = 154K + 0.5 ∗ 70.2K = 189.1K
cost(p2)+ sf(p2)∗ cost(p1) = 70.2K+0.94∗154K = 214.96K
which means that p1 should be executed before p2. The order of
execution of all edges in the Join Graph is shown in Figure 3.3.
Notice that the order of execution of the edges in path p1 is not the
same as the one followed during chain sampling. In fact, the algo-
rithm will treat this path as a separate Join Graph, optimize it and
execute its edges in the most optimal execution order found.

Suppose we modify the query by selecting the current elements
satisfying the condition text()>145. We refer to this query as Qm1 .
The first two exploration and execution steps ofQm1 are the same as
Q1. The updated data in the Join Graph is as follows: card(open auction)
= 12.1K, w(open auction, itemref) = 12.1K, and w(open auction,
bidder) = 80.9K. In Table 2(b), we present the (cost, sf) pair of
p1 and p2 estimated during the third chain sampling process. The
decision of the chain sampling is, contrary to Q1, to execute p2 be-



(a)

round p1 p2

current/text()< 145
1 (29.6k, 2.5) (11.8k, 1)
2 (59.2k, 2.5) (23.7k, 1)
3 (88.8k, 2.5) (35.5k, 1)
4 (118.5k, 2.5) (47.4k, 1)
5 (148k, 2.5) (59.2k, 1)
6 (154k, 0.5) (70.2k, 0.94)

(b)
p1 p2

current/text()> 145
(83.7k, 6.89) (12.1k, 1)
(167.4k, 6.89) (24.3k, 1)
(251.1k, 6.89) (36.4k, 1)
(334.8k, 6.89) (48.6k, 1)
(418.5k, 6.89) (60.7k, 1)
(438.2k, 1.6) (72k, 0.94)

Table 2: value of (cost, sf) of p1 and p2 after each round of
chain sampling

fore p1 as shown in Figure 3.4. Note that descendant edges from
the root, in both queries, are ignored since these are not necessary
to execute to produce the correct result.

As can be seen, the cardinality of open auction elements in both
Q1 and Qm1 after two execution steps are almost equal (11.8K and
12.1K respectively); however, the estimated number of descendant
elements of type bidder in Qm1 is much bigger (80.9K compared
to 31.1K). This is logical and to be expected knowing that the big-
ger the current price of an item, the higher the number of bidders
participating in the bid. A compile time optimizer, with the help
of statistics, can estimate the cardinality of open auction elements
in the two different queries. But it will definitely miss detecting
the correlation between the current element values and the num-
ber of bidder elements and therefore miss-estimate the cardinality
of the step operator between the open auction and bidder vertices
resulting in an order of execution that is not optimal.

4. EXPERIMENTS
Given its public availability in open-source and the fact that its

Pathfinder XQuery compiler can provide us with an isolated Join
Graph [18] as input for ROX, we chose the “Jun2008” release of
MonetDB/XQuery1 as platform for our prototypical implementa-
tion of ROX. We implemented our ROX approach in Java; it ex-
tracts the Join Graphs that Pathfinder generates from an XQuery,
and passes these to its runtime optimization and execution engine.

For all experiments presented here, we use a PC equipped with
two 2 GHz dual-core AMD Opteron 270 processors, 8 GB RAM
and a RAID-0 disk system. The machine is running 64-bit Fedora 8
(Linux 2.6.24). MonetDB/XQuery is configured with optimization
enabled and compiled with GNU gcc 4.1.2.

4.1 Dataset and Sample Query
The XMark example in Section 3 is very suitable to illustrate

the principles and potentials of ROX in particular concerning data
correlations. However, it represents only one specific case with
very limited potential for variation. The goal of our quantitative
assessment of ROX is not only to demonstrate its benefits in such
particular circumstances. Rather, we want to assess its stability and
robustness in a large variety of different constellations.

To achieve this, we use for our experiments the DBLP XML
dataset2, and split it up into ∼4500 single XML documents, one
for each journal and conference series covered by DBLP. On this
dataset, we use the following XQuery template that asks for authors
that have published in 4 different journals and/or conference series:
for $a1 in doc(“DOC1.xml”)//author,

$a2 in doc(“DOC2.xml”)//author,
$a3 in doc(“DOC3.xml”)//author,

1http://monetdb.cwi.nl/XQuery/
2http://dblp.uni-trier.de/xml/

$a4 in doc(“DOC4.xml”)//author
where $a1/text() = $a2/text() and

$a1/text() = $a3/text() and
$a1/text() = $a4/text()

return $a1
The Join Graph for the above query template is depicted in Fig-

ure 4. The solid edges arise from the original Join Graph as ex-
tracted by the Pathfinder compiler from the XQuery query. The
dotted lines denoting join equivalences are added by ROX to allow
for more flexibility to find a (near-)optimal plan. During a chain
sampling phase, ROX explores up to 15 different path segments
with a length ranging between 2 and 4 edges.

root
DOC1.xml

root
DOC2.xml

root
DOC3.xml

root
DOC4.xml

author author author author

text() text() text() text()

// // // //

/ / / /

=

=
=

= =
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Figure 4: Join Graph of the DBLP Query

The idea is that by choosing the 4 documents from one or mul-
tiple research areas, we can vary the degree of correlation in the
query. It is in general more likely that authors publish in various
journals and/or conferences of one research area, than that an au-
thor publishes in multiple different research areas.

The original DBLP dataset consists of a ∼450 MB XML docu-
ment covering ∼4500 journals and conference series, each ranging
from 300 B to 4.8 MB in size. Even when choosing the 4 largest
journals/conferences, ROX + MonetDB/XQuery manage to evalu-
ate our query in less than 50 milliseconds. To achieve more reli-
able performance measurements, we scale the complete dataset to
4.5 GB, and 45 GB by replicating each article n ∈ {10, 100} times,
respectively. To avoid duplicates and to maintain the original data
distribution and correlation, we suffix the titles and author names
of each replicated article with a serial number from [0, . . . , n].

Since it is not possible to use all 4500 documents in our exper-
iments, let alone all 409515972723000 combinations of 4 docu-
ments, we select 23 “representative” documents from 5 research
areas with a total size of 15 MB (original) to 1.5 GB (scaled 100x).
Table 3 lists the documents and some of their characteristics.

4.2 Query plans
In order to assess the quality of query plans generated by ROX,

we implemented a small tool that enumerates all plans that ROX
could potentially consider. The tool varies the order of equi-joins,
the placement of location steps among the equi-joins, the direction
of path steps, the use of indices, and the join- and step-algorithms
and their implementations. In this way, it enumerates a total of
88880 different physical plans for our 4-way join DBLP query.
Obviously, we cannot compare the ROX-generated plans to each
of the 88880 alternatives. Hence, we introduce a two-level cate-
gorization of the plans. The first and most significant level is the
equi-join order. For brevity, we use the term ‘join’ to refer to the
equi-joins only. For our DBLP query, there are 18 different join
orders as listed in the legend of Figure 5. We assume that indi-
vidual joins are (logically/semantically) symmetric, but we distin-
guish linear and bushy plans. Parentheses in the join order nota-



journal / conference research # author tags document size
name area(s)3 × 1 × 100 × 1 × 100

Fuzzy Logic in AI AI 62 6200 12 KB 1.2 MB
AI in Medicine AI 2264 226400 332 KB 33 MB
AAAI AI 6832 683200 1.1 MB 105 MB
CANS AI BI 214 21400 32 KB 3.1 MB
BMC Bioinform. BI 3547 354700 440 KB 44 MB
Bioinformatics BI 15019 1501900 2.1 MB 205 MB
BIOKDD DM BI 139 13900 22 KB 2.1 MB
MLDM DM 575 57500 99 KB 9.9 MB
ICDM DM 2205 220500 348 KB 35 MB
KDD DM 3201 320100 460 KB 46 MB
WSDM DM IR 95 9500 13 KB 1.2 MB
INEX IR 342 34200 54 KB 5.4 MB
SPIRE IR 724 72400 124 KB 13 MB
TREC IR 2541 254100 304 KB 31 MB
SIGIR IR 4584 458400 811 KB 81 MB
ICME IR 5757 575700 828 KB 83 MB
ICIP IR 7935 793500 1.2 MB 113 MB
CIKM DB IR 3684 368400 629 KB 63 MB
ADBIS DB 947 94700 294 KB 29 MB
EDBT DB 1340 134000 389 KB 39 MB
SIGMOD DB 5912 591200 1.8 MB 173 MB
ICDE DB 6169 616900 1.7 MB 163 MB
VLDB DB 6865 686500 2.1 MB 204 MB

Table 3: Research areas, documents and their characteristics

tion indicate precedence, and hence bushiness. The second cate-
gorization level is the placement of steps among the joins. In to-
tal, there are 804 different ways to place the author/text()
steps among the joins. For our experiments, we limit our considera-
tions to 3 canonical plans each exhibiting a specific step placement:
SJ=SaSbScSdJaJbJcJd means that the steps for all 4 documents are
executed before the joins in the same order of the joins execution;
JS=SaJaJbJcJdSbScSd means that one step is executed first to pro-
vide the initial input for the join sequence, then all joins are evalu-
ated, and the remaining 3 steps are executed last; S J=SaJaJbSbJcScJdSd
means that after the initial step and join, a step corresponding to
a certain document is executed right after the document has been
joined to the already generated intermediate result.

In addition to the enumerated and categorized plans, we also as-
sume a “classical” compile time optimizer equipped with an accu-
rate cardinality estimation module. This means that, in our DBLP
example, the optimizer can correctly estimate the result size of an
operator executed in the context of a single document, but will be
unable to estimate the cardinality of operations joining two differ-
ent documents. In the latter case, the optimizer falls back on a sim-
ple “smallest-input-first” heuristic to determine an appropriate join
order. This results in a linear join order such that the two smallest
sets of author/text() value are joined first, which is then joined with
the second largest set, and finally joined with the largest one.

4.3 Performance for Different Plan Classes
Our first experiment is a simple demonstration how join orders

influence (intermediate) join result sizes (and hence execution costs).
We select 4 conferences — VLDB, ICDE, ICIP, & ADBIS; ICIP
from IR, the others from DB — and calculate the sum of all (in-
cluding intermediate) join result sizes for all join plans. Figure 5
shows the results for the × 100 scaled dataset. Due to the correla-
tion among the 3 DB conferences, all join orders that consider the
IR conference ICIP only at the end, need to process considerably
(up to 3 orders of magnitude) larger intermediate data volumes than
those join orders that start with ICIP. ROX manages to find the join
order that creates the smallest size of intermediates, while the clas-
sical optimizer is not able to recognize and avoid the correlation.

 100

 1000

 10000

 100000

 1e+06

C
um

ul
at

iv
e 

(in
te

rm
ed

ia
te

) 
jo

in
 r

es
ul

t c
ar

di
na

lit
y

Documents: 1=VLDB, 2=ICDE, 3=ICIP, 4=ADBIS (x100)

classical opt ROX join orders:

(2-1)-(3-4)
(2-1)-3-4
(2-1)-4-3
(2-4)-1-3 <= c
(2-4)-(3-1)
(2-4)-3-1
(3-1)-(2-4)
(3-1)-2-4
(3-1)-4-2
(3-2)-1-4
(3-2)-(4-1)
(3-2)-4-1
(3-4)-1-2
(3-4)-(2-1)
(3-4)-2-1 <= R
(4-1)-2-3
(4-1)-(3-2)
(4-1)-3-2

Figure 5: Impact of join order on intermediate result sizes

In our second experiment, we assess the elapsed execution time of
different plans for a large variety of document combinations. We
form the following 3 groups of document combinations: group 2:2
contains all combinations of 4 documents such that there are two
pairs of documents from two different research areas; group 3:1
has 3 documents from the same area and one from a different area;
group 4:0 has all documents from the same area. The idea is that
these groups roughly cluster the document combinations according
to their anticipated correlation. Omitting document combinations
that yield empty results with our sample query, group 2:2 contains
469 combinations, group 3:1 contains 337 combinations, and group
4:0 contains 25 combinations. We calculate for each of the 831
combinations of 4 documents a “correlation” measure which rep-
resents the standard deviation of the join selectivity of all pairs of
documents. For the document combination D = {d1, d2, d3, d4},
the correlation C is computed as follows:

js(di, dj) =
|di 1 dj | ∗ 100

max{|di|, |dj |}
mean = avg{js(di, dj)}

diff(di, dj) = (js(di, dj)− mean)2

C = avg{diff(di, dj)}
for all di, dj ∈ D ∧ i < j

For all 831 combinations, we identify 4 join-order classes to
compare with: the join order that yields the smallest cumulative
intermediate result size, the join order that yields the largest cumu-
lative intermediate result size, the join order chosen by the classi-
cal optimizer, and the join order chosen by ROX. For each of these
classes, we compare the performances of the SJ, JS, S J “canoni-
cal” plans to the ROX plan. Note that the plans considered from the
ROX join-order class are not the same as the ROX plan, because,
although the executed join order is equal, the execution order of the
XPath steps (and choice of step direction) follows the “canonical”
forms, and hence is not optimized adaptively, as the “real” ROX
does. Figure 6 presents the elapsed time for the different join-order
classes and the ROX plan normalized to the fastest plan, for each of
the 831 document combinations. In the plot, the document combi-
nations are clustered by the considered area distributions 2:2, 3:1,
4:0, (separated by vertical dotted lines), and within each cluster as-
cendingly ordered according to their computed correlation valueC.
For each join-order class, except the largest, the normalized execu-
tion time of only the fastest of the SJ, JS, and S J plans is plotted.
For the largest join-order class, the time of slowest plan is drawn.
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Figure 6: Elapsed Time of ROX vs Four Plan Classes

The reader of this plot should not try to examine specific cases but
should observe the trend in the performance of the compared plans.
The almost straight line of triangles at the bottom of the scatter
plot shows that the plan found by ROX (“pure plan”) is almost in-
variably the fastest plan. By comparing the circles with the trian-
gles, that is, the ROX time including sampling with the pure plan,
we also see that on average the overhead imposed by sampling is
around 30%, and almost always lower than a factor two. Note that
ROX behaves roughly the same across the various types of queries
(2:2, 3:1 and 4:0) showing that it is insensitive to correlation. The
classical plan on the other hand shows strong variation, it frequently
exceeds the optimum by an order of magnitude or more, reaching
even two orders of magnitude with high correlation in group 3:1.
On average, the classical plan exceeds the ROX results by a fac-
tor 3.4 in group 2:2, factor 6 in group 3:1, and even factor 7.9 in
group 4:0. The latter is rather unexpected, and obviously related to
the unexpectedly high correlation in the 4:0 group. The ROX join-
order plans (i.e. the right equi-join order, but “canonical” order of
XPath steps), shown with empty squares, are in general very close
to ROX, but for certain document combinations where apparently
the XPath steps matter, the performance is much worse. Overall,
our ROX optimizer counters the unexpected correlation effectively,
demonstrating its robustness and reliability.

4.4 Scaling Document Sizes
While focusing on the ×100 scaled dataset in the previous ex-

periments, we now scale the dataset size to analyze the impact of
the document sizes on the performance of ROX. The hypotheses is
that the overhead of sampling might become more visible with less
data, while the plan quality should stay the same.

Again, we compared the ROX full run plan (incl. sampling) and
the ROX-generated plan (excl. sampling) to the plans correspond-
ing to the smallest, largest and classical join-order classes on the
same 831 document combinations. As before, the plan used in the
experiment for both the smallest and classical join-order classes
corresponds to the fastest canonical step placements (SJ, JS, S J),

while we use the slowest for the largest class. Figure 7 shows
the relative cost of each of the 5 plans compared to the optimal
plan on three dataset, the original DBLP set (scale ×1), as well as
scale ×10 and scale ×100. While the plain ROX generated plan is
close to optimal, the full ROX run is almost twice as slow for small
documents. With larger documents the sampling overhead shrinks
considerably. In fact in the ×1 dataset, the most expensive query
executes in 50 milliseconds, therefore less time should be spent on
optimization as almost any plan from the search space would run
sufficiently fast. This adaptive decision on the time spent on opti-
mization is considered as a future extension to ROX.

4.5 Impact of Sample Size
In our next experiment, we analyze the impact of the sample size

on the sampling costs during the ROX query evaluation.
We run ROX on the 831 document combinations as before, using

the×100 dataset and sample sizes of 25, 100, and 400 tuples. With
R denoting the execution time of the full ROX run (incl. sampling)
and r denoting the execution time excluding the sampling cost, we
define the relative sampling overhead in % as 100∗(R−r)/r. Fig-
ure 8 shows for each sampling size the average overhead per doc-
ument group. As expected, the overhead increases with the sample
size. The difference between 25 and 100 is marginal, while sam-
ples of 400 tuples cause significantly more overhead as samples of
100 tuples. This observation supports our initial intuitive choice of
using sample size 100 in the previous experiments.

5. RELATED WORK
Accurate estimation of the cardinality of intermediate query re-

sults (for optimization purposes) has been extensively researched.
Focusing on XML context, while several techniques have been de-
veloped [1, 8, 13, 14, 28, 30, 31], these still do not cover the
full problem of XQuery intermediate result size estimation. These
works all propose to build a synopsis and/or histogram for each
XML document that captures the document structure and element
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values (in various forms). Some techniques cover the cardinality
estimation of only a subset of the XPath language, others do not
support queries with value constraints, and some can not efficiently
handle updates to the document or recursive data. Moreover and
generally speaking, cardinality estimation techniques, are based on
the attribute value independence heuristic, which assumes indepen-
dence between the values of different attributes and elements.

The independence assumption has originally been made in the
relational domain, and overcoming it has become an active topic
in query optimization research. The proposed solutions range from
keeping and exploiting statistics over query expressions [5] or keep-
ing table samples [3]. A related approach is to monitor query plan
performance and use the resulting information as query optimizer
feedback [20]. These efforts all fall under the umbrella of improv-
ing optimizer robustness. In this more general area, there have also
been proposals to exploit cost model error distributions to direct
the query optimizer not necessarily to the minimum cost plan, but
instead look for a plan whose lower-bound performance (with the
worst-case error) is minimum [3, 9].

The use of run-time techniques to mitigate the above problems
has led to various proposals in the area of Adaptive Query Process-
ing, where the general principle is that the query plan is determined,
or can be changed, while the query is executing. A good survey of
this area is [12], where each of the described techniques has its
own limitations. For example, conditional plans [11] only protect
against a priori known correlations, and can not detect them. Fur-
ther, unlike ROX, those “switch-plans” can only cover a handful of
alternatives. Another more popular proposal is Eddies [2], where
operators in the query evaluation plan are reordered on a tuple-by-
tuple basis. This is achieved by routing arriving tuples into the
most efficient sequence of operators. Several tuple routing policies
have been proposed, and each has its own shortcomings. Further,
Eddies present two main drawbacks: they need to maintain query
execution states which can become expensive, and they rely on only

symmetric operators which makes them restrictive in the number of
candidate plans considered for optimization.

Dynamic (also known as parametric) query evaluation optimizes
the query at compile time into several candidate plans. Each such
plan is optimal for a set of possible values that certain parameters
can take at run-time. When at run-time the values of these parame-
ters are known, the appropriate optimal plan is picked and executed.
This technique was first proposed in [16] where a choose-plan op-
erator is introduced to connect the candidate plans and choose the
one to execute. One step further is to re-run the optimizer at run-
time when the current plan, due to unexpected data selectivities or
changing system resources, is no longer optimal. This Mid-Query
Re-Optimization approach [24] triggers re-optimization when query
execution is delayed by more than re-optimization time. A follow-
up proposal [25] computes validity ranges which trigger re-optimization
when the real observed cardinalities exceed these ranges. These
approaches, however, take action depending on a comparison of
observed with predicted cardinalities, with a cost model that does
not necessarily anticipate correlations. ROX goes beyond these ap-
proaches by continually intertwining optimization and execution,
and effectively basing all decisions on observed (sampled) cardi-
nalities rather than a cost model, making it much less vulnerable to
cost estimation errors and correlations.

6. FUTURE WORK
We finally sketch future directions to extend and enhance the

ROX algorithm.
First, since ROX intertwines (sampling-based) query optimiza-

tion work with query evaluation, it becomes possible to strike a
balance between these two query evaluation cost factors. Static
query optimization always runs the risk of spending too much time
on optimization, such that it would have been faster to go with a
maybe slightly worse plan that was found early, or spending too lit-
tle time on optimization failing to avoid a very bad plan. A future
adaptation of ROX can decide to invest more or less resources in
chain sampling depending on the execution cost observed so far.

Second, while the algorithm described here only looks at the re-
sult sizes of the sampled operators, an alternative is to also measure
the execution time of the sampled operators. To a limited extent,
such functionality is already present in the current ROX prototype,
which after deciding to execute an edge, tries all applicable physi-
cal operators on a sample to see which one is fastest. In XML query
processing, depending on the document structure, there may be sig-
nificant differences in running e.g. a child or parent staircase
join. A future adaptation of ROX may use the actual execution time
of a sample in the calculation of the weight of an edge, such that de-
ciding which path segment to execute naturally takes into account
many more characteristics of operator execution.



Third, while the current approach of fully materialized execution
of edges fits the chosen MonetDB experimental framework, it does
carry the risk of large and unnecessary intermediate result material-
ization, even though current RAM sizes allow materializing strate-
gies on many of today’s “large” problems. A possible extension of
ROX could identify, while chain sampling, path segments that gen-
erate large intermediates, and run such sub-chains in a pipelined
fashion, thus improving scalability. Another approach would be to
run ROX with samples instead of the complete data, therefore ma-
terializing small sizes of intermediates. Preliminary experiments
have proven this to be a promising idea.

Fourth, it is possible to incorporate into ROX the use of physical
operators that do not conform to the ”zero investment” policy (see
Section 2.3). In fact, the algorithm does so, and at times executes
an edge with materialized ends using e.g. a hash-join; however
it currently does not sample such an operator in advance. By ex-
ploiting some of the more advanced proposed sampled (join) query
processing techniques (e.g. [7]) it should become possible to extend
the physical operator collection supported by ROX.

Finally, as mentioned in Section 2.1 we want to study efficient
ways of integrating operators like Sorting, Distinct and Grouping
into the Join Graph and the runtime optimization and evaluation en-
vironment of ROX. This extension would make the ROX algorithm
applicable to areas such as SPARQL4 and generic SQL processing.

7. CONCLUSION
In this paper, we have described ROX, a new XQuery processing

approach that intertwines run-time query optimization with partial
query evaluation. ROX uses a new adaptive chain-sampling mech-
anism which does not depend on a particular cost model. As such it
does not suffer from the deficiencies of the current state-of-the-art
in XQuery cost estimation, and additionally addresses a problem,
also widely recognized in the relational context, of data correla-
tions and their adverse affect on optimizer decisions. Further, the
use of Join Graphs as part of a bigger execution plan gives ROX the
possibility to handle a large class of XQuery queries.

We illustrate the power of the ROX optimizer both on XMark
example queries as well as using extensive experimentation on the
DBLP dataset. These latter experiments give us good indications
that ROX sustainably achieves significantly better query execution
plans than classical query optimizer approaches when data corre-
lations come in to play, while its strict control over sampling effi-
ciency keeps the optimization and sampling overhead low.

In future work, we plan to improve the ROX algorithm further
by enhancing the sampling and indexing techniques on which it
depends and making the algorithm even more robust to correlations
and amendable to pipelining.
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