
SIGMOD RWE Review

”Towards Proximity Pattern Mining in Large Graphs”

Fabian Hueske, TU Berlin

June 26, 2010

1 Review

This document is a review report on the paper ”Towards Proximity Pattern
Mining in Large Graphs” by A. Khan, X. Yen, and K. Wu by Sigmod’s 2010
Repeatability and Workability Evaluation Committee.
In this section the provided resources (code, data sets, setup information)
and hardware setups of the authors and reviewers are discussed. Detailed
information on all experiments that the review conducted or tried to conduct
for repeatability or workability can be found in sections 2 and 3.

1.1 Provided resources

The authors provided the source code, binaries and data sets to repeat most
of the presented experiments. One data set (Intrusion Network data set) and
the corresponding source code were not provided. For some experiments the
appropriate source code was not included. Following the authors instructions,
the reviewer was able to modify the available code (commenting out code
lines or replacing constants). While the experiments for Figures 9a, 9b, and
10 could be (partly) successfully conducted, the reviewer failed to repeat
Figure 12. However, the author did not spend too much time on Figure
12, due to time restrictions. The experimental setup was well described.
Although some more automatism (scripts to execute the full pipeline and
collect results) would have eased the review.

1

1.2 Comparing Experimental Setups

The experiments of the paper were run on a server with a single-core Intel
Xeon CPU running at 2.5GHz and 32GB RAM.
The reviewer’s experiments were conducted on a server with two AMD Opteron
QuadCore CPUs running at 2.3GHz and 32GB RAM.
Both setups run Linux (Authors: Fedora 8, Reviewer: Ubuntu 8.04 LTS).
Both hardware configurations are quite similar. The provided source code
is single threaded and very memory consuming. Hence, the multiple cores
of the reviewers setup have no impact and both setup should have similar
restrictions on memory consumption.

1.3 Interaction with Authors

The authors were very helpful and responded fast to the reviewers questions.
All questions of the reviewer were satisfyingly answered.

2 Repeatability Evaluation

In this section detailed information on the experiments to repeat the result
presented in the paper are given. The reviewer ran all runtime experiments
three times and presents the average of those runs.

2.1 Table 3 & 4

Both tables could be exactly reproduced.

2.2 Table 5 & 6

Experiments could not be repeated due to the missing Intrusion Network
data set.

2.3 Table 7

The results of Table 7 could not be fully reproduced. However, the Top-5
interesting patterns presented in the paper are included in the Top-25 results
obtained from the reviewer’s experiment. The reviewer asked the authors to
comment on that: ”due to limited space in the paper, we tried to report top-5

2

No Pattern
1 Association, Rules, Mining
2 Distributed, Network
3 Network, Architecture
4 Architecture, Network
5 Sensor, Video, Network

Table 1: Repeated Table 7

patterns of different types. Therefore, instead of reporting the small patterns
of size 2 (where you have many repetitions of some label, i.e., 29 [Network], 5
[Architecture], 4 [Distributed] etc), we report the top patterns of size-3 from
the bottom of the result file. The smaller patterns are anyway not the closed
patterns
Also note that, this is a comparison result based on the randomized graph.
In the data submitted, we provide one randomized graph; however, when we
did the experiment before writing the paper; we ran the randomization code
and generate a separate random graph; so there might be slight difference
in the top-5 patterns. However, this difference should not be very abrupt.
For example, out of the top-5 that you reported for fpTree k proxy, I can see
two patterns of size 3, which are exactly same as the two mentioned in our
paper.”

2.4 Table 8

Table 2 shows the repeated results for Table 8. The reviewer observed longer
runtimes compared to the authors results. However, the ratio of the repeated
runtimes (percentages of total runtime) are consistent with the results pre-
sented in the paper.
The column with the intrusion data set could not be verified.

2.5 Figures 9a, 9b & 10

The authors provided (partly) incorrect source code for the experiments in
this section. Following the authors instructions, the reviewer had to exclude
some lines in one source code file and recompile the program.

3

Steps Last.fm DBLP
NmPA 2 305
FP-tree formation 11 117.6
Mining 8 380.6

Table 2: Repeated Table 8

Figs9

Page 1

100000 200000 300000 400000 500000 600000 684911

0

200

400

600

800

1000

1200

Fig 9a

D=1
D=2
D=3

Figure 1: Repeated Fig 9a

4

Figs9

Page 1

D=0 D=1 D=2 D=3 D=4

0

500

1000

1500

2000

2500

Fig 9b

400000
500000
600000
684911

Figure 2: Repeated Fig 9b

Figures 1 shows the results for the repeated experiments to obtain Figures
9a). Again the reviewers observed longer runtimes in general. The curves in
the figure have a similar behavior. Only the data point depth=3 and 680k
nodes is significantly different. The reviewer observed that the executing
machine ran out of memory and had to swap to disk which might be a
reason for the significantly lower performance. However, it is not clear why
this behavior can not be concluded from the authors figure 9a.

Figure 2 is the reconstruction of Figure 9b) from the paper. The reviewer
was not able to get runtime information for depth=4 and 680k nodes. The
program terminated because it was not able to allocate additional memory.
Although the repeated figure resembles the original figure from the paper.

Figure 3 repeats Figure 10 from the paper. The slope of curves of the
repeated figure are very similar to original figure. However, the repeated ex-
periments for depth=3 have significantly longer runtimes that the presented
results. The reviewer accounts this to the high memory requirement of the
experiment, again swap-space is used.

5

Fig10

Page 1

130 300 500 700

0

200

400

600

800

1000

1200

1400

1600

Fig 10

D=1
D=2
D=3

Figure 3: Repeated Fig 10

Steps aFP (approx.) pFP (exact)
FP-Tree Formation 0.3 High variance, min: 1, max: 42
Mining 8 High variance, min: 10, max: 300

Table 3: Repeated Table 10

2.6 Table 9 & 10

Table 9 from the paper was reproduced (not shown).
Table 3 shows the results for reproducing Table 10 of the paper. For the aFP
algorithm the results seem to support the presented results. However, the
runtimes of the pFP algorithm have very high variance. This issue might be
solved with help of the authors.

2.7 Figures 11 & 12

Figure 4 repeats Figure 11. Although the runtimes of the reviewer’s runs are
longer, the curves of both figures show identical behavior.
The reviewer was not able to conduct experiments to reproduce Figure 12.

6

Fig11

Page 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

50

100

150

200

250

300

350

400

AvgMining
AvgFP-Formation

Figure 4: Repeated Fig 11

7

First, the authors did not provide the source code necessary to conduct the
experiments. The author modified a source file by changing the values of
constants as instructed by the authors: ”Fig 12: As you have rightly figured
out, the two files lex sort.cpp and fpTree k proxy.cpp needs to be modified if
the number of labels vary. Also, it is not difficult to figure out what are places
where one needs to make changes. I provide the list of line numbers where the
changes should be made. Assume, the total no of labels after preprocessing
is L.” However, the reviewer was not able to run the reproduce the results,
because of the program’s termination. Although it should be mentioned,
that the reviewer did not spend too much effort in solving the issue due to
time restrictions.

3 Workability Evaluation

The reviewer conducted a workability experiment to see how the runtime
of the NmPA method depends on the number of edges. In the paper the
authors state that their NmPA algorithm’s complexity is the same as NPA’s.
NPA’s complexity is given as O(|V | ∗ dt ∗ s), where d is the is the average
degree of the nodes, t is the number of iterations (which depends on ε and
α), and s is the average number of labels of a node. The authors comment
the complexity with following statements:

• ”Since t << |V |, the complexity is almost linear in the number of
vertices. [...] In NPA, the probabilistic association value of a label at
distance t is given by e(− α ∗ t). Since we ignore the value less than ε,
t ≤ 1/α ∗ ln(1/ε)”. (Section 4.1)

• ”NmPA has the same complexity as NPA. However, in practice the
propagation decays much faster since we normalize the probabilistic as-
sociation with respect to the number of neighboring nodes at each iter-
ation.” (Section 4.2)

The reviewer generated a synthetic graph with the following properties:
100k nodes, 20 labels, labels are assigned randomly to nodes with an average
of 5 labels per node, edges are assigned randomly between nodes. The number
of nodes is varied from 1m to 5m. Hence, the average degree of nodes vary
from 20 to 100 (one edge increments the degree of two nodes). The reviewer
ran the experiments with the NmPA-code (normalizedI.cpp) provided for

8

varyEdges

Page 1

1000000 2000000 3000000 4000000 5000000

0

50

100

150

200

250

300

350

400

D=2
D=3

1000000 2000000 3000000 4000000 5000000

0

50

100

150

200

250

300

350

400

450

500

D=2
D=3
D=4

Figure 5: NmPA - Vary Edges

the dblp dataset. For varying the maximum depth (number of iterations)
the reviewer adapted ε constant in the code to allow maximum depths of 3
(ε = 0.03) and 4 (ε = 0.01).

Figure 5 shows the result of the experiment. For all depths the increase
of runtime is linear to the increasing number of edges. Looking at the stated
complexity of NmPA, the number of iterations (depth) should have a sig-
nificant impact in the runtime of NmPA. The linear increase indicates that
most labels are only propagated over one hop. An increasing number of edges
also increases the average degree of nodes which may leads to a smaller nor-
malization factor. Hence, the normalization factor significantly reduces the
propagation depth of labels.

The findings of the experiment to analyze NmPA’s dependency on the
number of edges support the statements of the authors. NmPA’s normal-
ization factor significantly reduces the propagation depth of labels such that
NmPA’s runtime becomes linear with respect to the number of nodes for
randomly generated graphs. Given a real-world graph where the labels are
not randomly assigned to nodes might lead to different results.

9

4 Conclusion

The reviewer was able to reproduce most results presented in the paper.
However, some experiments failed or could not be run due to a missing data
set, lack of available memory, or possibly wrong modifications of the source
code by the reviewer. In some cases the authors did not provide correct
source code to repeat the experiments. However, those issues were solved
when the reviewer asked the authors for help.
The reviewer conducted a workability evaluation to analyze NmPA’s com-
plexity with respect to the number of edges. The result is in line with the
author’s statements in the paper.

10

