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ABSTRACT
Virtually all histograms store for each bucket the number
of distinct values it contains and their average frequency.
In this paper, we question this paradigm. We start out by
investigating the estimation precision of three commercial
database systems which also follow the above paradigm. It
turns out that huge errors are quite common. We then intro-
duce new bucket types and investigate their accuracy when
building optimal histograms with them. The results are am-
biguous. There is no clear winner among the bucket types.
At this point, we (1) switch to heterogeneous histograms,
where different buckets of the same histogram possibly are
of different types, and (2) design more bucket types. The
nice consequence of introducing heterogeneous histograms
is that we can guarantee decent upper error bounds while
at the same time heterogeneous histograms require far less
space than homogeneous histograms.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; G.1.2 [Numerical Analysis]: Approximation

General Terms
Algorithms,Experimentation,Performance

1. INTRODUCTION
The plan generator is an essential part of every query com-

piler. It is responsible for generating plan alternatives, eval-
uating them, and choosing the best one. In the evaluation
step, a cost model facilitates the assessment of plans. It
consists of two vital parts. Cardinality estimation allows to
estimate the size of intermediate results, and cost functions
for algebraic operators calculate the final cost estimate.

Whereas cost functions for algebraic operators are very
accurate (e.g. I/O cost estimations for different joins are
typically less than three percent off the true execution times
[4]) cardinality estimates still pose a real challenge.
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Three decades after their first introduction to databas-
es [9], histograms are still the prevailing means to provide
cardinality estimates. A histogram partitions the (active)
domain of an attribute into buckets. For each bucket, the
number of distinct values it contains (d) and their cumulat-
ed frequency (fc) are stored. This is true for virtually all
histograms (see Sec. 4.1 on related work). Especially, this is
true for those commercial DBMSs that we tested.

Sometimes, the average frequency (f) instead of the cu-
mulated frequency is recorded. However, since f = fc/d this
is equivalent. On the one hand, it is well known that the
average minimizes the l2 error, i.e., the sum of the squares
of the differences between the true values and the estimates.
On the other hand, the q-error, i.e. the factor by which the
estimate deviates from the true value, is much more relevant
for plan generation [11]. As a consequence, we challenge the
paradigm to keep fc and d.

After some preliminaries (Sec. 2), we start our investiga-
tion with an analysis of the q-error produced by three com-
mercial systems. The results are depressing. Although we
here concentrate on the simplest query kinds (exact match,
distinct value, and range queries), the commercial systems
produce estimates which are often several orders of magni-
tude off the true values (see Table 1).

The central goal of this paper is to find a way to produce
histograms which exhibit a reasonable maximal q-error (say
up to 2) while at the same time limiting space consumption
to a reasonable amount. In a first step towards this goal,
we design alternatives to the traditional bucket type, which
stores fc and d. We then construct q-optimal homogeneous
histograms (see Sec. 4) for the traditional and the new buck-
et types. In homogeneous histograms, all buckets are of the
same type, i.e. they store the same information. Q-optimal
histograms obey a given upper bound for the maximal al-
lowed q-error and consume the least space of all those who
satisfy the given error bound. The results are mixed. One
new bucket type will be superior to the traditional bucket
type in many, but not all cases. Thus, there is no single clear
winner for all datasets. Further, the space consumptions by
all homogeneous histograms are subsatisfactory.

We then draw the only possible consequence and switch
to heterogeneous histograms (Sec. 5). That is, histograms
may now contain buckets of different types. Additionally,
we add three more bucket types, which make sense only in
the context of heterogeneous histograms. Two of them will
use new results from approximation theory [11].

Heterogeneous histograms are not as simple to construct
as homogeneous ones. Thus, we provide two detailed algo-



rithms. One constructs q-optimal histograms but exhibits
exorbitant runtimes. The other is a heuristics with moder-
ate runtime but does not construct q-optimal histograms.
The conclusion will be that the central goal as stated above
can be met for almost all datasets.

Our whole investigation builds heavily on experiments
with around 50 different real data sets. Only a small frac-
tion of the results can be presented here. The results of all
experiments are presented in a technical report.

2. PRELIMINARIES
Let R be a relation, A one of its attributes, and {x1, . . . , xm}

= ΠD
A (R)1 the set of distinct values of A. Assume i <

j =⇒ xi < xj . We define the spread si as si = xi+1 − xi

[13]. The frequency density is a set of pairs (xi, fi) with
fi = |σA=xi(R)|, 1 ≤ i ≤ m. The cumulative frequency
distribution (CFD) is defined as a set of pairs (xi, ci) with
ci =

Pi−1
j=1 fi.

2.1 Query Templates
We define three query templates for exact match queries

(EMQ), distinct value queries (DCT) and range queries (RGE).

• EMQ(x) = |σA=x(R)|

• DCT(ub, lb) = |ΠD
A (σlb≤A<ub(R))|

• RGE(ub, lb) = |σlb≤A<ub(R)|

The basic estimation task solved by using a histogram is to
provide cardinality estimates for all three query templates
for all possible parameters.

2.2 Q-Error
We now define the q-error following the definition of [11].

For alternative but equivalent definitions, see [1, 3]. After-
wards, we repeat some of the arguments used in the above
papers to motivate the q-error.

For z ∈ R, we define the quotient functional

||z||Q =

8
<

:

∞ if z ≤ 0
1/z if 0 < z ≤ 1
z if 1 ≤ z.

For z > 0, this is the same as saying ||z||Q = max(z, 1/z).
For a vector z = (z1, . . . , zm)t ∈ Rm, we define

||z||Q =
m

max
i=1

||zi||Q. (1)

We denote || · ||Q by lq. However, be careful: lq is not a
norm. Subadditivity is the only one of the three properties
required by a norm, which is satisfied by lq .

Let "a and "b be two vectors in Rm, where bi > 0. Define
"a/"b = !a

!b
= (a1/b1, . . . , an/bn)T. Then, we define the q-error

of an estimation b̂ of b as

||̂b/b||Q.

As l∞, lq produces valid, symmetric bounds for individual
estimates. Define q = ||̂b/b||Q. Then,

(1/q)fi ≤ f̂i ≤ qfi.

1ΠD denotes projection with duplicate elimination.

Assume we have an estimate f̂i for every fi, 1 ≤ i ≤ m,
and ||f̂i/fi||Q ≤ q for all i. Then

1/q
mX

i=1

fi ≤
mX

i=1

f̂i ≤ q
mX

i=1

fi. (2)

Thus, adding estimates bounded by a q-error results in an
estimate of the sum bounded by the same q-error. As usual,
subtraction can be bad, as we will see below.

Besides these nice features, [11] presents several convinc-
ing arguments that the q-error is truly relevant in the con-
text of query optimization. For the first time, they prove a
connection between errors in cardinality estimates and plan
costs. We present one important theorem. It gives an upper
bound for the factor the optimal plan can be better than
the plan produced by the plan generator under cardinality
estimation errors.

Theorem 2.1. Let C = CSMJ or C = CGHJ be the cost
function of the sort-merge or the Grace hash join. For a
given query in n relations, let P be the optimal plan under
the true cardinalities, P̂ be the optimal plan under the esti-
mated cardinalities, C(P ) be the true costs under C of the
optimal plan, and C(P̂ ) be the true costs under C of the plan
produced under the estimated cardinalities. Then

C(P̂ ) ≤ q4C(P ),

where q is defined as

q = max
x⊆X

||ŝx/sx||Q,

with X being the set of relations to be joined, and sx (ŝx)
is the true (estimated) size of the join of the relations in x.
That is, q is the maximum estimation error taken over all
intermediate results.

This bound is rather tight, as shown in [11].
Although the q-error should be the error metrics of choice,

it is rarely used in the literature. The exceptions are [1, 3,
11]. These papers provide more good arguments for using
the q-error. Thus, it is our error metrics of choice.

3. THE COMMERCIAL STATE OF THE ART
In this section, we take a look at the estimation quality of

three commercial database systems.

3.1 Data Sets
For our experiments, we decided to use real data instead

of generated data, since we feel that generated data tends
to be easier to approximate than real data. Further, for real
data one cannot argue that they are unrealistic.

Let us briefly describe the datasets used and their prove-
nance. By citeseer (cs), we denote a 2006 instance of the
citeseer database of the 10.000 most cited computer science
authors. The number of citations is the only attribute we
consider here. By ecb_usdeur (ecb), we denote the exchange
rates between Euro and US Dollar as fixed daily by the Eure-
opean Central Bank (www.ecb.de). By uniprot, we denote
the swiss protein database (www.uniprot.org). Here, we con-
sider two numerical attributes: the protein length measured
in the number of amino acids (uniprotAA, AA) and the pro-
tein’s molecular weight (uniprotMW, MW). By weather, we
denote the database of weather measurements of all stations



over the world provided by the World Meteorological Orga-
nization (www.ncdc.naoa.gov). It provides measurements
from 1929-2009. From this relation, we take the attributes
sea level pressure (wtrslp, slp) and temperature (wtrtmp,
tmp).

We experimented with about 50 datasets which exhibit
different degrees of difficulty difficulty to approximate them.
The samples presented in this paper were choosen because
they cover this range. However, the chosen datasets are
not representative, but are biased towards the difficult end.
The results for all datasets are represented in a technical
report [10].

3.2 Database Management Systems
We loaded the datasets into three commercial systems.

We named them System X, System Y and System Z. We ran
the statistics collection without sampling. That is, we told
the systems to do a full scan, since we wanted to avoid the
additional hazard often introduced by sampling [1]. All three
systems use (different kinds of) histograms. However, they
have one thing in common: for each bucket, they store the
number of distinct values and their cumulative frequencies.
For details, see Sec. 4.1. Two of the three systems have a
comparable built-in upper limit for the number of buckets
in their histograms. The third database system provides a
tuning knob for it. We chose the parameter such that it
equals the one of the others having the higher upper limit
for the number of buckets.

The maximal space consumption for one of the commer-
cial systems could be easily determined. It is around 3,200
Bytes. We will use this number subsequently to formulate
some of the questions and to discuss some of the results.

3.3 Queries and Estimates
For all data sets, we generated all possible exact match

queries (EMQ) and asked the commercial database systems
to estimate their result cardinalities. This was done via
their explain utitilities. For each dataset, we systematically
generated all possible ranges by pairing all lb < ub pairs
taken from the attribute’s active domain. For large domains,
this results in too many queries, since the slowest of the
commercial database systems could process only 5-7 queries
per second. In these cases, we stopped the process if a couple
of million queries were generated. Thereby, we left out larger
ranges, since these are typically easier to approximate than
smaller ones. Even though we limited the number of queries,
the slowest system needed a couple of weeks to process them.

For every range, we generated two queries: one returning
the distinct values within the range (DCT) and the other
returning the tuples with an attribute value within the range
(RGE).

3.4 Results
We ran all queries and compared the estimate calculated

by a commercial system with the true value. In order to
do so, we calculated the q-error of every query. Then, for a
given data set, we counted the number of queries of a certain
kind for which a given system produced a q-error less than
or equal to 2, 3, 4, 5, or larger than 5. Additionally, we
calculated the maximal q-error occuring for a given dataset,
query kind, and commercial system. The results are shown
in Table 1.

First, we note that System X provides relatively good es-
timates on the first two datasets for all estimation tasks.
Still, a worst case error of 7 or 11 is unbearable. Remember
that the q-error is multiplicative. Hence, between the true
cardinality and estimated cardinality lies a factor of 11 for
the worst estimate provided by System X for range queries
on citeseer. We observe still higher errors like 66, 282, 4446,
and 108488. Remember that the factor between the costs of
the plan generated due to cardinality estimation errors and
the optimal plan can be bound by the q-error taken to the
power of 4. This bound is relatively tight. Taking 5 to the
power of 4 already yields 625, for 10 we get 10,000.

Q-errors of this magnitude essentially make plan genera-
tion a random process. This might be the reason vendors
strive to incorporate a syntax for plan hints into their SQL
parser. However, we cannot see how this helps. The chances
are that the user makes equal errors in estimating the car-
dinalities and, hence, provides the wrong plan hints.

3.5 Goal
Now, we can state the goal of the paper. After seeing these

subsatisfactory results, we asked ourselves whether it would
be possible to limit the maximal q-error for all EMQ, DCT,
and RGE queries to 2 and at the same time restrict the his-
togram size to 3,200 Bytes. We used this number as commer-
cial vendors are clearly willing to spend that much memory
for statistics on single attributes. The answer will be that for
some datasets we can, for others we cannot (yet?). We thus
relax the memory constrained after some cost calculations
in Sec. 4.4.

Given a maximal q-error of 2, we call a dataset simple if
this goal can be achieved. We call it tractable if its histogram
needs less than 10KB of memory and challenging otherwise.

4. HOMOGENEOUS HISTOGRAMS

4.1 Related Work
There are many kinds of histograms, for example, variable-

range histograms (equi-depth) [9, 8], variable-count (equi-
width) histograms [9, 8], variable-range & variable-count
histograms [9], quantile-based histograms [12], serial his-
tograms [5, 6], v-optimal histograms [7], end-biased his-
tograms [6], maxdiff histograms [13], and so on. They all
have one thing in common: for every bucket they store the
number of distinct values occurring in the bucket and their
average frequency.

There is one notable exception to this rule. König and
Weikum proposed to approximate the frequencies in a buck-
et by a polynomial of degree one derived by linear regression.
However, this approach cannot guarantee a low q-error [11],
which is not surprising because linear regression minimizes
l2. The same is true for all the other histogram types.

The histogram implementations of commercial systems al-
so store per bucket the number of distinct values occurring in
it and their average (or, equivalently, cumulative) frequency.
However, one commercial system implements a very appeal-
ing idea: it also stores the precise frequencies of the bucket
boundaries. This appears to be attractive in the presence of
outliers if they happen to coincide with a bucket boundary.

The core of Moerkotte et al. [11] consists of a method
to find best approximations with minimal q-error. Howev-
er, their paper is very weak on experiments, and does not
discuss how to construct full-fledged histograms. We reme-



System X System Y System Z
EMQ DCT RGE EMQ DCT RGE EMQ DCT RGE

cs
≤ 2 1818 829883 829716 523 262121 829942 894 259367 829657
≤ 3 86 705 821 379 176602 575 898 177422 638
≤ 4 10 134 165 70 160427 183 107 162303 175
≤ 5 1 54 73 863 189378 74 17 189856 85
> 5 1 59 60 81 42307 61 0 41887 280
max 6 11 11 9.2 27 12 4.2 166667 166667
ecb
≤ 2 2031 571406 571187 408 5184 568664 1989 564369 565174
≤ 3 30 498 647 0 235209 1176 65 2270 1393
≤ 4 3 73 120 1635 322792 274 8 377 567
≤ 5 0 9 26 1 5068 121 2 418 227
> 5 0 1 7 20 1999 17 0 4553 4626
max 4 6 7 20 18 8.3 4.6 1449 3009
AA
≤ 2 2301 1078271 1079142 364 155603 1016976 628 158638 1015302
≤ 3 154 21974 20074 182 106318 65084 218 108486 59132
≤ 4 35 25137 25856 196 89312 28379 133 90961 21648
≤ 5 18 5207 4777 238 122671 9690 138 122722 10891
> 5 14 2640 3380 1542 659325 13100 1405 652422 26256
max 18 41.5 52 62 282 66 33.6 3451 24159
MW
≤ 2 64700 4199819 4178481 67009 3872563 4213096 34254 3824543 4200265
≤ 3 6642 35406 52547 4602 337455 41805 37612 377724 50356
≤ 4 906 7807 11003 772 33510 7856 653 38917 9526
≤ 5 203 5066 5632 121 9195 2846 0 9728 3319
> 5 68 28694 29129 15 24069 11189 0 25880 13326
max 13 102.5 102.5 8.5 39 71.5 3.8 3448 5172
slp
≤ 2 784 771454 478694 158 93222 452840 232 102426 453939
≤ 3 101 0 43469 91 86278 33607 94 93432 32403
≤ 4 88 0 26517 76 64070 23726 59 70201 22629
≤ 5 62 0 17590 60 35725 16545 47 41115 15706
> 5 762 0 205184 1412 492159 244736 1365 464280 246777
max 1046 2 1383 46349 346 108488 8074 342 695929
tmp
≤ 2 1443 990831 769040 309 174292 769182 429 173920 773043
≤ 3 119 137 43524 293 158315 44080 176 158163 41818
≤ 4 86 26 26755 393 203644 27104 153 202554 26412
≤ 5 75 11 21253 111 26210 21514 203 27643 21547
> 5 514 9 130442 1131 428553 129134 1276 428734 128194
max 543 8 4446 49458 145 24729 31524 102 14928

Table 1: Errors produced by commercial histograms



dy these deficiencies. In particular, they do not treat DCT
queries. For RGE queries, they propose to use an approxi-
mation of the cumulated frequency distribution (CFD). The
latter approach undermines our goal to minimize the q-error,
as we next illustrate with a simple example.

Assume for some i < j and the cumulative frequency dis-
tribution (xi, ci), we have ci = 540 and cj = 660. Assume
the maximal q-error of the approximation is 1.1 and the es-
timates for ci and cj are ĉi = 594 and ĉj = 600. Then,
using the difference of the CFD results in a true value for
the cardinality of RGE(xi,xj) = 120. The difference of the
estimates gives 6. Thus, the q-error becomes 20, which is
far worse than the 1.1 we started with. Hence, using CFD
(as is done in [11]) is no option.

4.2 Bucket Types
We call a bucket containing the number of distinct values

and their cumulated frequency (or, equivalently, average) a
traditional bucket and denote its type by T-. If it addition-
ally stores the boundary frequency of its lower boundary, we
denote its type by T-B.

Assume we have a set of frequencies F for the distinct
values in a bucket. How can we minimize the q-error if we
have to approximate F by a single number? The answer
is simple, we only have to return the q-middle of F , which
is defined as

p
min(F ) max(F ) [11]. To see this, remember

that the q-error is multiplicative in nature. Thus, instead of
storing the cumulated frequency, we can store the q-middle
of the frequencies. This gives bucket type -Q-. Adding the
boundary frequencies yields bucket type -QB.

For an exact match query or small range queries, the usage
of the q-middle is favorable. However, with larger ranges,
the q-error produced by the average converges against the
minimal value of 1. Thus, it might make sense to store both
the cumulated frequency and the q-middle of the frequencies.
In this case, one must add a threshold for a range width, in-
dicating which approach to use for cardinality estimation.
This results in bucket type TQ-. Adding the boundary fre-
quency yields bucket type TQB.

Additionally, all the above bucket types store the number
of distinct values they contain.

4.3 Histogram Construction
For a given bucket type and a maximal allowed q-error q,

we say a histogram is q-optimal if the following conditions
hold:

1. For every EMQ, DCT, RGE query the maximal q-error
produced by the histogram is at most q.

2. Among all histograms satisfying condition one, it uses
the smallest number of buckets.

Note that since in a homogeneous histogram all buckets have
the same size, minimizing the number of buckets is equiva-
lent to minimizing space usage.

We now sketch an efficient algorithm to construct q-optimal
homogeneous histograms. The idea of this algorithm was al-
ready presented in [11]. The main observation that led to
this idea is that the q-error produced by a bucket for the
various estimation tasks increases monotonically with the
number of distinct values it contains. The general algorithm
starts with the smallest distinct value of the attribute’s ac-
tive domain and then finds the largest number of consecutive

distinct values which still meet the given error bound. The
smallest unprocessed domain value then becomes the start
of the next bucket. The process proceeds until all domain
values are covered. The largest bucket which still satisfies
the given q-error bound can be found by a binary search.

4.4 Evaluation
For all four bucket types, we generated the q-optimal ho-

mogeneous histogram for all datasets. According to our goal,
we used an upper bound of 2 for the maximal allowed q-
error. The results are summarized in Table 2. It contains
the number of bytes consumed by the q-optimal homoge-
neous histograms constructed for a certain bucket type and
dataset.

We can make the following observations:

1. The bucket type -Q- is superior to T- in all cases but
one.

2. There is no way to meet the 3,200 Byte boundary while
at the same time requiring a maximum q-error of 2.

3. No single bucket type used in a q-optimal homogeneous
histogram is superior in all cases.

The last observation has motivated us to consider histograms
which may contain different bucket types at the same time.
We call these heterogeneous histograms. The resulting sizes
are shown in column HetHeu. They are the topic of the next
section.

Note that the histograms mentioned in Sec. 4.1 on related
work, which store for each bucket the number of distinct val-
ues and their cumulated (average) frequency, cannot be bet-
ter than the q-optimal homogeneous histograms with bucket
type T-.

5. HETEROGENEOUS HISTOGRAMS
Heterogeneous histograms possibly contain buckets of dif-

ferent types. This, of course, requires a bucket descriptor,
which holds the bucket’s type. Some buckets need addition-
al parameters. As a consequence, bucket descriptors are 1-2
bytes long.

The bucket types described in the previous section can all
be contained in a heterogeneous histogram. However, they
do not suffice. Hence, we introduce three more bucket types
in Sec. 5.1. Sec. 5.2 discusses two algorithms to construct
heterogeneous histograms. The first one produces q-optimal
heterogeneous histograms but is prohibitively expensive, the
other one is a heuristics. Sec. 5.3 presents the experiment
findings.

5.1 Bucket Types
We use the verb “ to approximate” in the context of a set

of pairs S = {(xi, yi)} of numbers to denote the construction
of the best approximation of S under lq by either a polyno-
mial or a function ep for some polynomial p, whichever is
better. To derive the best approximation, we use the algo-
rithm presented in Appendix A, which is faster and easier
to understand than the one from [11].

The problem the first two bucket types will solve is the
following. Any estimation for queries of type DCT or RGE
essentially have two input parameters: the lower bound of
the range and the upper bound of the range. Since the ap-
proximation methods developed in [11] only provide one-



dataset T- T-B -Q- -QB TQ- TQB HetHeu
citeseer 6318 7565 5143 5698 8736 9875 1125
ecb usdeur 9217 12818 10127 11411 14952 18100 7639
uniprotAA 5837 6698 4735 5137 8127 8925 952
uniprotMW 289809 329477 226746 251048 393120 428700 39277
wtrslp 6929 4080 6578 8470 10395 12425 4039
wtrtmp 6708 5695 6617 8137 10605 11975 5210

Table 2: Sizes of q-optimal homogeneous histograms

dimensional approximations, we need to reduce the two-
dimensional problem to a one-dimensional one. Each new
bucket type builds on one reduction method.

There are two simplifications we apply to all (old and new)
bucket types.2 If the domain is integer and the bucket con-
tains all possible integers, we call it dense. For dense buck-
ets, we do not need to take any measures for RGE and DCT,
since they can be derived from the EMQ information. If in
a bucket all frequencies equal one, we do not need to take
any measures for EMQ and RGE, since these are derivable
from the DCT information. To capture these situations, we
reserve two bits in the bucket descriptor.

5.1.1 Width-Based Approximation
We introduce width-based approximation buckets. Every

bucket of this type contains at most three approximations:
one for each of EMQ, DCT, RGE. To handle the EMQ case,
the frequency density is approximated. Assume the bucket
to be build spans the interval [xi, xj [.

The general idea of this kind of bucket is to approximate
for a range [lb, ub[ contained in the bucket the number of
distinct values and their cumulative frequency by a function
in the range query’s width ub − lb. This approximation
can be constructed as follows. Imagine a sliding window of
width w, which moves over all x ∈ [xi, xj [ which additionally
satisfy x+w ≤ xj . Fix w and let x take every possible value.
Then, we can take the minimum and maximum value over
all x of the number of distinct values and their cumulated
frequency. For every window width w, we can therefore
calculate the q-middle of the number of distinct values (dw)
occurring in a range of width w and the cumulated frequency
of these distinct values (cw). Since dw and cw only depend
on w, we can build functions f̂DCT : w → dw and f̂RGE :
w → cw. Of course, considering all possible x is unfeasible
for non-integer domains. Therefore, we use only those xi

which occur in a bucket.
Let [xi, xj [ be the interval for which we want to construct

a bucket. Define the set of widths

W = {xl − xk|i ≤ k < l ≤ j}.

Then, width-based approximation buckets hold approxima-
tions of the following two sets for DCT and RGE:

{(wk, q-middle(SDCT))|1 ≤ k ≤ n}

and

{(wk, q-middle(SRGE))|1 ≤ k ≤ n}

2These simplifications were also applied during the construc-
tion of q-optimal homogeneous histograms.

where

SDCT = {DCT(xl, xl + wk)|i ≤ l < j, xl + wk < xj}
SRGE = {RGE(xl, xl + wk)|i ≤ l < j, xl + wk < xj}.

Let us illustrate this definition by a simple example. Con-
sider the frequency distribution

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)

and the bucket [1, 5[. We see that W = {1, 2, 3, 4}. The fol-
lowing table contains for every wk ∈ W the set DCT(xl, xl+
wk) and the q-middle:

wk DCT(xl, xl + wk) q-middle
1 {1, 2, 3, 4} 2
2 {3, 5, 7}

√
21

3 {6, 9}
√

54
4 {10} 10

The last step is to find the best approximation under lq for
the set

{(1, 2), (2,
√

21), (3,
√

54), (4, 10)},
using the methods presented in [11].

5.1.2 Bucklet-Based Buckets
Every bucket of this type contains at most three approx-

imations: one for each of EMQ, DCT, RGE. To handle the
EMQ case, the frequency density is approximated. Assume
the bucket to be built spans the interval [xi, xj [.

For a fixed width w, imagine a window which starts at
position x ∈ [xi, xj [ and for which x + w <= xj holds.
We call such a window a bucklet. For each bucklet [x, x +
w[, we calculate the number of distinct values dx and their
cumulated frequency cx. Since w is fixed, these numbers
only depend on the position x. The idea of bucklet-based
buckets is to approximate the set of pairs (x, dx) and (x, cx)
for some positions x.

We define a series of bucklets of width w as [xl, xl+w[ such
that i ≤ l ≤ j and xl + w ≤ xj . For each bucklet, we calcu-
late DCT(xl, xl+w) and RGE(xl, xl+w). Then, we approxi-
mate the sets {(xl, DCT(xl, xl+w))} and {(xl, RGE(xl, xl+
w))}. This results in two approximation functions f̂DCT and
f̂RGE. These functions can then be used to approximate the
cardinality of a DCT/RGE query. For a given range [lb, ub[,
we sum up the terms

f̂DCT/RGE(al) ∗ w/(bl − al)

for all intersections [al, bl[ of [lb, ub[ with some bucklet [xl, xl+
w[.

Let us illustrate the construction by a simple example.
Consider again the frequency distribution

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)



BestBucket(i,j,q,T)
Input: indices i,j,

maximal q-error q,
set of bucket types T

Output: bucket or 0
r = 0; // will be result bucket or 0
for all t ∈ T
b = bucket of type t for [xi, xj [
if (b.qerror <= q and // for all of EMQ, DCT, RGE
(0 == result or b.size < r.size))
r = b;

return r;

Figure 1: Procedure BestBucket

and the bucket [1, 5[. For a bucket width w = 2, we see that
the (x, dx) pairs are

(1, 3), (2, 5), (3, 7).

For this set, we calculate the best approximation f̂DCT under
lq , using the methods presented in [11].

For our experiments, we have used five times the minimal
spread found in the bucket as w.

5.1.3 Q-Compression Buckets
In many datasets, there are parts which are not approx-

imable such that the given error bound is met. Assume
the maximal allowed q-error is 2 and we limit the degree
of the approximating polynomial to 2. Consider the three
datapoints (1, 1), (2, 18), and (3, 3), which we would like to
approximate for the EMQ case. The best linear approxi-
mation under lq for these data points is f(x) = 3x, which
results in a q-error of 3.

For unapproximable parts, we could use exact buckets,
which store the precise frequency density (xi, fi) for all xi

falling into the bucket. However, we can do better. For a
given maximal allowed q-error q, any number in the interval
[q2l, q2(l+1)] can be approximated by q2l+1, since

||q2l+1/x||Q ≤ q

for all x ∈ [q2l, q2(l+1)]. Thus, if fmax is the maximal oc-
curring frequency, and fmax ≤ q2(k+1) for some k, then
)log2(k)* bits suffice to encode the frequency. Q-compression
buckets do exactly this.

5.2 Histogram Construction
Before we discuss the two algorithms to construct het-

erogeneous histograms, we introduce the simple procedure
BestBucket (see Fig. 1) to construct the best bucket for a
given range [xi, xj [. It is parameterized with the maximal
allowed q-error (q) and a set of bucket types (T). The lat-
ter is necessary since T will differ in the two construction
algorithms. Note that it returns 0 if no bucket type in T
can meet the given error bound. Meeting the error bound
means that for all queries of all types EMQ, DCT, RGE the
q-error is less than or equal to q.

5.2.1 Optimal Heterogeneous Histograms
The algorithm to construct optimal heterogeneous his-

tograms (see Fig. 2) implements a simple memoization strat-
egy [2]. The map BestHistogram holds for every bucket

HetOpt(i, j, q, Topt)
Input: indices of histogram boundaries i, j

maximal q-error q,
set of bucket types Topt

Output: optimal heterogeneous histogram
if (0 == BestHistogram(i,j))

BestHistogram(i,j) = BestBucket(i,j, q, Topt);
for (k = i+1; k ≤ j; ++k)
left = HetOpt(i,k, q, Topt);
right = HetOpt(k,j, q, Topt);
if (left.size + right.size <

BestHistogram(i,j).size)
BestHistogram(i,j) = left ◦ right;

return BestHistogram(i,j);

Figure 2: Construction of optimal heterogenous his-
tograms

[xi, xj [ the best (smallest in size) histogram under the given
maximal q-error q. It is filled recursively by considering (1)
a single bucket over the whole range and then (2) all possi-
ble splits of the range into two parts. For each part (left,
right) the optimal heterogeneous histogram is constructed
recursively. The best alternative is kept by concatenating
the histograms. (We assume that a histogram is a sequence
of buckets and denote the concatenation of histograms by
’◦’.) The set of bucket types Topt contains all bucket types
except exact buckets. Since q-compression buckets always
meet a given error bound, no BestBucket call in HetOpt ever
returns 0. The top-level call is HetOpt(1,m,q,Topt), where
m is the number of pairs of the frequency density. The per-
formance of HetOpt will be discussed below.

5.2.2 Heuristics
The heuristics HetHeu to construct heterogeneous histograms

uses the subroutine FindLargest (Fig. 3). Its main idea is
the same as the one of the procedure presented in Sec. 4.3.
For a given lower bucket boundary xi, it tries to construct
the largest bucket that still meets the given q-error bound
q. However, we must be careful, since exact buckets and q-
compression buckets always meet the error bound but grow
in size with the number of distinct values they contain.
Thus, the set of bucket types Theu considered by Find-
Largest excludes these two bucket types.
HetHeu iteratively calls FindLargest to find the bucket of

a type in Theu which still meets the given error bound and
consumes the least space among them. This bucket is then
appended to the histogram. Its upper bound becomes the
lower bound of the bucket to be constructed next.

For some badly approximable buckets, it might be ben-
eficial to introduce q-compression buckets. Whenever this
leads to space savings, we replace sequences of buckets in
the histogram constructed so far by a q-compression buck-
et. This is done by Compactify, which is called at the end
of HetHeu. Its implementation is quite simple. It system-
atically looks for subsequences in the histogram, which can
beneficially be replaced by a q-compression bucket.

5.3 Evaluation
The maximal degree of the polynomials used for approx-

imations in width-based and bucklet-based buckets is a pa-



citeseer
q-err #bkts size bits cpu

1.7 15 1373 6 11.337
2 27 1125 5 15.797

2.3 29 901 4 22.533
2.5 25 824 3 26.862
2.7 25 746 3 42.775

3 26 635 3 47.375
3.3 21 546 2 57.808
3.5 21 489 2 74.129
3.7 21 471 2 80.049

4 25 420 2 83.233
4.5 19 314 1 82.101

5 14 220 1 112.431

ecb usdeur
q-err #bkts size bits cpu

1.7 402 8558 33 12.5
2 467 7639 30 14.6

2.3 421 6558 25 13.0
2.5 348 5636 22 11.3
2.7 299 4861 19 10.5

3 224 3867 15 10.0
3.3 176 3156 12 10.5
3.5 147 2678 10 12.0
3.7 128 2336 9 15.2

4 95 1820 7 20.8
4.5 63 1242 5 36.6

5 49 919 4 58.8
uniprotAA

q-err #bkts size bits cpu
1.7 26 1261 4 18.9

2 28 952 3 33.9
2.3 25 917 3 49.8
2.5 32 791 3 53.8
2.7 33 702 2 67.1

3 29 626 2 67.8
3.3 24 555 2 74.5
3.5 23 521 2 78.2
3.7 20 476 2 78.8

4 19 450 1 75.0
4.5 18 392 1 104.2

5 21 376 1 106.7

uniprotMW
q-err #bkts size bits cpu

1.7 270 50504 6 346
2 692 39277 4 309

2.3 805 33984 4 371
2.5 974 29585 3 652
2.7 821 23826 3 1456

3 689 18996 2 2167
3.3 649 16893 2 2648
3.5 625 15883 2 2802
3.7 596 14657 2 3757

4 636 13475 1 3951
4.5 578 10673 1 4802

5 466 8118 1 6674
wtrslp

q-err #bkts size bits cpu
1.7 370 5838 26 4.6

2 227 4039 18 5.4
2.3 130 2041 9 11.6
2.5 13 255 1 68.7
2.7 11 220 1 66.0

3 10 194 1 59.0
3.3 41 574 3 30.9
3.5 8 149 1 115.8
3.7 32 459 2 40.4

4 27 367 2 43.4
4.5 21 288 1 56.8

5 18 241 1 84.7

wtrtmp
q-err #bkts size bits cpu

1.7 457 6949 25 5.2
2 357 5210 19 5.9

2.3 136 2390 9 19.5
2.5 87 1515 5 36.6
2.7 69 1180 4 57.4

3 51 830 3 94.2
3.3 40 609 2 106.6
3.5 34 490 2 145.8
3.7 31 456 2 167.1

4 26 381 1 168.2
4.5 21 308 1 188.6

5 18 264 1 189.9

Table 3: Detailed results for heterogeneous profiles (Sizes in bytes, CPU in seconds)



FindLargest(i, q, Theu)
Input: index i of lower bucket boundary

maximal q-error q,
set of bucket types Theu

Output: highest index j for upper boundary
by binary search
find largest j > i such that
b = BestBucket(i,j, q, Theu) succeeds

return j, b;

HetHeu({xi, fi)}, q, Theu)
Input: frequency density (xi, fi), 1 ≤ i ≤ m
Output: a heterogeneous histogram

j = 0;
h is empty histogram;
for (i = 1; j ≤ m)
j, b = FindLargest(i, q, Theu);
append b to h;
i = j;

return Compactify(h);

Figure 3: Heuristics to construct heterogenous his-
tograms

rameter we still have to fix. We ran experiments varying
the maximal degree from 0 to 4 (see technical report). In-
creasing the degree from 0 to 1 can result in considerable
space savings. For example, the space consumption of the
histogram for another weather data attribute called station
pressure drops from 14710 to 5076 bytes, for a maximal q-
error of two. Increasing the degree beyond 1 results in at
most 10% space savings for our datasets, which we think is
not worth while. Thus, we fix the maximal degree to 1 and
only give results for this case.

Table 3 contains the results for HetHeu. It contains a
small table for each dataset considered here. The first col-
umn contains the maximal q-error given as a parameter to
HetHeu. The other columns contain the number of buckets
of the histogram constructed, the size of the histograms in
bytes, the number of bits needed for a single distinct value
(i.e. )size ∗ 8/m*, where m is the number of distinct val-
ues), and the CPU time (in seconds) needed to construct
the histogram.

We can make the following observations. Slight increases
of the maximal q-error typically result in a significant drop of
the histogram’s size. Sometimes, space consumption increas-
es with higher q-error bounds (see wtrslp). This is obviously
due to the fact that HetHeu is a heuristics. Some datasets
(e.g. ect_usdeur, wtrtmp) seem to be difficult to approxi-
mate, since the number of bits they need for each entry of
the frequency density is quite high. Others (e.g. uniprotMW)
are difficult to approximate due to their sheer number of
distinct values (72519 in this case). We also observe that
the histogram construction times are quite reasonable. By
far the most time is needed by uniprotMW, which for a max-
imal q-error of 2 needs about five minutes to construct the
histogram. However, we are not worried about that, as the
code has not been tuned for efficiency but flexibility, and we
know several points where it can be significantly improved.

Taking a look at Table 2, we see the following. Het-
erogeneous histograms always outperform homogeneous his-

Dataset HetOpt HetHeu HetOpt
Size/bytes Size/bytes CPU/h

citeseer 831 1125 88
ecb usdeur 6587 7639 126
uniprotAA 806 952 39
wtrslp 2908 4039 34
wtrtmp 3536 5210 65

Table 4: Comparison of HetOpt and HetHeu

Bucket Type %
T-? 44.8
-Q? 8.2
TQ? 1.0
bucklet-based 5.8
width-based 15.3
q-compression 23.8

Table 5: Bucket type distribution for HetHeu

tograms. Depending on the dataset, the differences can be
very large (e.g. for citeseer, UniprotMW) or quite small (e.g.
wtrslp, wtrtmp).

To see how close the heterogenous histograms’ sizes con-
structed by HetHeu are to the minimal possible sizes, take a
look at Table 4. The first column denotes the dataset. The
second and third column show the sizes of the histograms
constructed by HetOpt and HetHeu. We see that the optimal
heterogenous histograms are at most about a third smaller
than those constructed by HetHeu. Thus, the heuristics does
not exploit the full potential of heterogeneous histograms.
The fourth column contains the runtime of HetOpt in hours.
Clearly, the runtimes are much too high and render HetOpt
useless for any practical purpose.

We present some statistics over the bucket types occurring
in histograms constructed by HetHeu with a maximal q-error
of 2. Table 5 gives for each bucket type the percentage of
its occurrence.

Note that we cannot draw any conclusion about the rel-
evance of a bucket type from these numbers. A small per-
centage of occurrence does not mean the bucket type is less
useful than others, since the sizes of the buckets of differ-
ent types may differ vastly. About 31% of all buckets keep
the boundary frequency, where not significance exists with
respect to the bucket type.

Let us now step back and compare the results for heteroge-
nous histograms with those of commercial systems. Remem-
ber that commercial systems virtually have no upper bound
on the error they produce. Factors of 100 and more seem
to be quite common. In contrast, we can limit the max-
imal error to an arbitrary number but may pay for it in
terms of memory consumption. Commercial systems are
clearly willing to spend 3200 bytes. Some allow the user to
specify arbitrary upper bounds for memory consumption. If
we are willing to spend 10KB of memory, the histograms
for five of our six datasets have a maximal q-error of 1.7
and one 5.0. The cost of 10KB of main memory is about
0.0002 cent. Thus, for a hundred relations with a hundred
attributes each, some being simple, some tractable or chal-
lenging, we need about a dollar of main memory to store



histograms which guarantee an upper q-error of two. We
believe that this dollar is well invested.

6. CONCLUSION
We have seen that commercial systems create huge er-

rors when estimating the cardinalities of the different query
types EMQ, DCT, and RGE. Thus, to show a possibility
to limit the q-error to 2 or even below for all query types
simultaneously is a major achievement of this paper. This
advancement over the state of the art was only possible by
giving up the restriction that in every bucket the number of
distinct values it contains and their cumulated frequency is
stored. In fact, only heterogeneous histograms are able to
guarantee low error bounds while at the same time keeping
space consumption at a reasonable level.

Future work has to be done to further improve the achieve-
ments. As we have seen, the q-optimal heterogeneous his-
tograms sometimes occupy 30% less storage than those con-
structed by the heuristics. Besides, inventing more bucket
types may help to further reduce memory consumption. A
larger and more interesting challenge will be to construct
multi-dimensional histograms, which can be built simulta-
neously over two or more attributes. This is an important
issue, since correlations between attributes still pose a major
problem in the context of cardinality estimation.
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APPENDIX
A. ALGORITHM FOR BEST APPROXIMA-

TION UNDER LQ

We review a basic algorithm to solve the best approxi-
mation problem under lq. One such algorithm is described
in [11]. The one we present here is faster and easier to
understand. The presented algorithm is applicable to best
approximation problems under lq by any polynomial. But,
for simplicity, we only review the algorithm for best linear
approximations under lq.

Before we start describing the algorithm, we need some
preliminaries. A linear polynomial is uniquely determined
by a (solvable) system of two equations with two variables,
say α and β. We add a third variable λ, which denotes the
q-error under which a given set of three points can be best
approximated under lq. As shown in [11], this approximation
always exists and is unique.

In order to build a system with three equations and three
variables, we make use of a theorem from [11] saying that
the errors alternate in sign. That is, for any three points
(xi, yi) (1 ≤ i ≤ 3) such that xi < xi+1 (1 ≤ i < 3) and
the best approximation f̂ under lq of these three points, we
either have

y1 ≤ f̂(x1) ∧ y2 ≥ f̂(x2) ∧ y3 ≤ f̂(x3)

or

y1 ≥ f̂(x1) ∧ y2 ≤ f̂(x2) ∧ y3 ≥ f̂(x3).

Thus, as we can have λ ≥ 1 or λ ≤ 1, solving the following
system of three equations gives us the coefficients α and β

of the best linear approximation as well as λ:

1
λ

(α + βx1) = y1

λ(α + βx2) = y2

1
λ

(α + βx3) = y3

Thus, for any three points, we can solve the problem.
In order to generate a solution for an arbitrary set of

points, we need another theorem from [11]. Let X = {(xi, yi)}
be the set of points, we want to approximate. Then, the the-
orem says that there exists an extremal subset containing
three points of X. This means that there exist three points,
such that their best approximation under lq is the same as
the best approximation of the whole set X under lq.

Roughly, the algorithm finds these three points as follows.
It starts with an arbitrary subset of X that contains three
points. Then, it calculates their best approximation under
lq. This approximation is then used, to find the point in X
for which the approximation generates the largest q-error.
This point is then exchanged with one of those contained in
the original set of three points. From here, the algorithm
iterates, until the q-error cannot be increased by any ex-
change. In detail, we have

1. Choose arbitrary i1, i2, i3 with xi1 < xi2 < xi3 .

2. Calculate the solution for the system of equations.
This gives us an approximation function f̂(x) = α+βx
and λ.

3. Find an xk for which the deviation ||f̂ (xk)/yk||Q is
maximized. Call this maximal deviation λmax.

4. If λmax − λ > ε for some small ε
then apply the exchange rule (see below) using xk and
go to step 2.
(The ε is mainly needed for rounding problems with
floating point numbers. If they were non-existant, one
could choose λmax .= λ as the criterion.)

5. Return α, β, λ.

What is left to be done, is to specify the exchange rule.
For given i1, i2, i3 with xi1 < xi2 < xi3 and derived α, β, λ,
we try to find new indices j1, j2, j3 by exchanging one of the
ij with k such that λ will be increased. Assume the deviation
of the (current) estimate f̂ is maximized at some k. Then,
we will exchange one of the i1, i2, i3 by k according to the
following exchange rule. Define f̂i = α+βxi. Depending on
the position of xk in the sequence i1, i2, i3 and the sign of
the residual, we determine the ij to be exchanged with k:

• xk < xi1

if (sign(yk − f̂k) == sign(yi1 − f̂i1))
then j1 = k, j2 = i2, j3 = i3
else j1 = k, j2 = i1, j3 = i2

• xi1 < xk < xi2

if (sign(yk − f̂k) == sign(yi1 − f̂i1))
then j1 = k, j2 = i2, j3 = i3
else j1 = i1, j2 = k, j3 = i2

• xi2 < xk < xi3

if (sign(yk − f̂k) == sign(yi2 − f̂i2))
then j1 = i1, j2 = k, j3 = i2
else j1 = i1, j2 = i2, j3 = k



• xk > xi3

if (sign(yk − f̂k) == sign(yi3 − f̂i3))
then j1 = i1, j2 = i2, j3 = k
else j1 = i2, j2 = i3, j3 = k
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