
GAIA: Graph Classification Using Evolutionary
Computation

Ning Jin
University of North Carolina

at Chapel Hill

Chapel Hill, NC, USA

njin@cs.unc.edu

Calvin Young
University of North Carolina

at Chapel Hill

Chapel Hill, NC, USA

youngc@cs.unc.edu

Wei Wang
University of North Carolina

at Chapel Hill

Chapel Hill, NC, USA

weiwang@cs.unc.edu

ABSTRACT

Discriminative subgraphs are widely used to define the feature

space for graph classification in large graph databases. Several

scalable approaches have been proposed to mine discriminative

subgraphs. However, their intensive computation needs prevent

them from mining large databases. We propose an efficient

method GAIA for mining discriminative subgraphs for graph

classification in large databases. Our method employs a novel

subgraph encoding approach to support an arbitrary subgraph

pattern exploration order and explores the subgraph pattern space

in a process resembling biological evolution. In this manner,

GAIA is able to find discriminative subgraph patterns much faster

than other algorithms. Additionally, we take advantage of parallel

computing to further improve the quality of resulting patterns. In

the end, we employ sequential coverage to generate association

rules as graph classifiers using patterns mined by GAIA.

Extensive experiments have been performed to analyze the

performance of GAIA and to compare it with two other state-of-

the-art approaches. GAIA outperforms the other approaches both

in terms of classification accuracy and runtime efficiency.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications---data

mining; I.5.2 [Pattern Recognition]: Design Methodology---

Classifier design and evaluation; Feature evaluation and selection

General Terms
Algorithms, Experimentation, Performance

Keywords
Graph mining, graph classification

1. INTRODUCTION
Graphs can be used to represent complex structural information in

many scientific applications, including chemical compound

structures, 3-D protein structures, and program dependence graphs

and so on. There is a great need for building automated graph

classification models and identifying discriminative graph features

that separate different graph classes. For example, chemists want

to be able to predict which chemical compounds are toxic and

which components are characteristics of chemical toxicity

[Helma, 2004]; biologists are interested in studying which

proteins are able to bind certain ligands and which can be used to

treat diseases [Bandyopadhyay, 2006]; computer scientists seek to

find out how to locate bugs in programs by identifying

discriminative subgraphs in program flow graphs [Cheng, 2009].

Performing these classification tasks by hand is intractable

computationally, thus increasing attention has been devoted in

developing graph classification methods in recent years.

1.1 Related Work
Existing research often assumes a binary graph classification task

where a target graph set and a background graph set are given and

the objective is to construct a classification model for

distinguishing them. One straightforward solution [Deshpande,

2005; Bandyopadhyay, 2006] to graph classification is first

finding frequent subgraph patterns [Inokuchi, 2000; Kuramochi,

2001; Yan 2002; Huan 2003] in the target graph set and then

selecting as features those that rarely occur in the background set.

The subgraph features can be used to represent each graph as a

feature vector and the problem of graph classification thus

converts to classification of high dimensional data points. One

major drawback of this approach is that it can find an enormous

quantity of frequent subgraph patterns in the target set, which

inhibits its ability to handle large datasets.

To overcome this drawback, recent approaches search directly for

discriminative subgraph patterns that can better assist graph

classification rather than for frequent subgraph patterns which

may not necessarily be more discriminative. Leap [Yan, 2008] is a

pioneer in discriminative subgraph pattern mining. It looks for the

optimal subgraph pattern in terms of discrimination power with a

branch-and-bound technique, taking advantage of the fact that

structurally similar subgraphs tend to have similar discrimination

power. It also uses a technique called “frequency descending

mining” to exploit the correlation between subgraph frequency

and subgraph discrimination power. Another algorithm gPLS

[Saigo, 2008] adopts the powerful mathematical tool of partial

least squares regression for discriminative subgraph pattern

mining to collect informative subgraph patterns and build a

classifier directly. CORK [Thoma, 2009] proposes to use

correspondence to measure the discrimination power of subgraph

patterns and thereby achieves a theoretically near-optimal

solution. Given a set of subgraph patterns, the number of

correspondences is the total number of pairs of graphs that these

subgraphs cannot discriminate.

All three of these algorithms are theoretically sound and can

guarantee optimal or near-optimal solutions in some sense. They

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD’10, June 6–10, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06…$10.00.

outperform previous graph classification methods considerably

both in terms of speed and classification accuracy. However, the

pursuit of theoretical optimality led to relatively poor runtime

efficiency which became the focus of some more recent

algorithms such as graphSig [Ranu, 2009] and COM [Jin, 2009].

The major contribution of graphSig [Ranu, 2009] is that it

provides an efficient solution to mining discriminative subgraph

patterns with extremely low frequencies. It first converts graphs to

feature vectors by performing Random Walk with Restarts on

each node. Then it divides graphs into small groups such that

graphs in the same group have similar vectors. It mines frequent

subgraphs in each group with high frequency thresholds because

high similarity in vectors in the same group indicates that the

corresponding graphs in the group share highly frequent

subgraphs. It also proposes a k-NN classification method using

the frequent subgraphs. COM [Jin, 2009] makes use of a heuristic

subgraph exploration order to find discriminative patterns faster

and use them to prune redundant subgraph patterns. In addition to

subgraph patterns, it also takes into account co-occurrences of

subgraph patterns. Co-occurrences of small subgraph patterns are

often able to approximate large patterns and thereby significantly

reduce the mining time for large patterns. Moreover, there are

cases where co-occurrences of subgraph patterns are able to

discriminate graphs where individual subgraph patterns fail. COM

uses association rules as classifiers instead of Support Vector

Machine to improve the efficiency in classifier construction and

interpretability of the classifier. Both COM and graphSig are

much faster than Leap. GraphSig produces higher accuracy than

Leap in classifying chemical compounds. COM has comparable

classification accuracy to that of Leap for chemical compounds

but gives better accuracy for proteins.

In addition to the discriminative subgraph pattern mining

algorithms mentioned above, there is some other recent work

aiming at improving the efficiency of subgraph mining. [Hasan,

2009] proposes the idea of output space sampling in the domain of

frequent subgraph mining, which is a generic sampling approach

and can use different probability distributions to focus on different

types of subgraph patterns. One of its applications is to sample

discriminative subgraph patterns. It uses Ullmann’s subgraph-

isomorphism [Ullmann, 1976] algorithm to compute the support

of subgraph patterns instead of using embeddings of subgraph

patterns because it visits subgraph patterns randomly and

embeddings may be unavailable when it visits a pattern from its

super-pattern. As a result, its runtime efficiency is relatively poor.

In addition, as is mentioned in the paper, it is difficult to find a

probability distribution for discriminative subgraph pattern

sampling. Another recent frequent subgraph mining algorithm,

SUMMARIZE-MINE [Chen, 2009], attempts to solve the

problem that arises with large graph databases whose embedding

information requires more storage than is available in memory.

SUMMARIZE-MINE randomly merges some nodes with the

same labels into one node and compresses edges accordingly to

reduce the size of graph databases. It performs the ad-hoc

compression several times independently to reduce the probability

of false negatives.

1.2 Our Contribution
In this paper, we propose a novel algorithm GAIA (Graph

clAssification with evolutIonary computAtion) to mine

discriminative subgraph patterns for graph classification. We

introduce a novel subgraph encoding method using the notion of

conditional canonical adjacency matrix. Given a graph database

and the embedding information of a subgraph pattern we are able

to calculate its canonical sequence representation in O (|V|2)

instead of the exponential time needed in previous methods,

where |V| is the number of nodes in the pattern. We also apply

evolutionary computation, which is a randomized searching

strategy for optimal solution which simulates biological evolution,

to look for discriminative subgraph patterns. To the best of our

knowledge, this is the first work to introduce evolutionary

computation to the field of discriminative subgraph mining. The

major difficulty of using evolutionary computation to find

discriminative subgraphs is that there is no existing subgraph

exploration method that can explore subgraph patterns randomly

and track such exploration in an efficient way. However,

randomized exploration order is essential to the success of

evolutionary computation. We overcome this difficulty by using

the novel subgraph encoding method. Using evolutionary

computation also enables us to take advantage of the more and

more widely available parallel computing resources. We improve

the quality of resulting subgraph patterns by running many

instances of the algorithm in parallel and then generate a

consensus result that has better discrimination power than any

resulting set from an individual execution.

1.3 Organization
The remainder of this paper is organized as follows. We introduce

the notion of conditional canonical adjacency matrix and the

subgraph encoding method in Section 2. Section 3 describes the

framework and mechanisms of the evolutionary computation used

in GAIA. Section 4 explains how we generate classifiers with

discriminative subgraph patterns and how we perform parallel

computing to improve the quality of resulting patterns.

Experimental results are given in Section 5. Section 6 concludes

the paper.

2. ENCODING SUBGRAPH PATTERNS

WITH CONDITIONAL CANONICAL

ADJACENCY MATRIX
DEFINITION 1 (Graph). A graph is denoted by g = (V, E),

where V is a set of nodes and E is a set of edges connecting the

nodes. Each graph in the graph database has a unique graph ID

starting from 1. In a graph, each node has a unique ID starting

from 1. Both nodes and edges may have labels.

For example, in Figure 1, there are two graphs in the graph

database and they have graph IDs 1 and 2 respectively. The text in

each node is in the form of (node ID : node label). Two nodes in a

graph may have the same label but they cannot have the same

node ID. Two nodes in two different graphs can have the same

node ID but they do not necessarily represent the same entity and

may have different labels. For simplicity, the presence or absence

of an edge can be encoded by a binary label (1 for presence and 0

for absence).

DEFINITION 2 (Subgraph Isomorphism). The label of a node

with node ID u is denoted as label(u) and the label of an edge (u,

v) is denoted as label((u, v)). For two graphs g and g’, if there is

an injection f: V(g) V(g’), such that for any node with node ID

u in V(g), label(u) = label(f(u)) and for any edge (u, v) in E(g),

label((u, v)) = label((f(u), f(v))), then g is a subgraph of g’ and g’

is a supergraph of g, or g’ supports g.

For example, in Figure 1, Pattern 1 is a subgraph of both Graph 1

and Graph 2.

DEFINITION 3 (Embedding). Given a subgraph isomorphism

injection f: V(g) V(g’), the node set {f(u) | u V(g)} is an

embedding of g in g’. g can have multiple embeddings in g’

because there may exist more than one injection. A sorted

embedding organizes the nodes in an embedding in increasing

order of their node IDs. An embedding code B is the

concatenation of the graph ID of g’ and the sorted embedding.

The first element in an embedding is the graph ID and the

remaining elements are node IDs.

For example, in Figure 1, Pattern 1 has two embeddings in Graph

1, which are {1, 2, 3} and {1, 5, 6} in the form of sorted

embeddings, and one embedding in Graph 2, which is {1, 2, 5}. In

total, Pattern 1 has three embedding codes: <1, 1, 2, 3>, <1, 1, 5,

6> and <2, 1, 2, 5>.

DEFINITION 4 (Adjacency Matrix). Given an embedding code

B of pattern p based on a subgraph isomorphism injection f, the

adjacency matrix M of p is a matrix, where V is the node

set of pattern p and each entry of M 1 satisfies:

 always exists Figure 2 shows the three adjacency matrices

corresponding to the three different embedding codes of pattern p.

DEFINITION 5 (Matrix Code). The matrix code of a subgraph

pattern p is the sequence formed by row-wise concatenation of the

lower triangle entries of an adjacency matrix M of p.

For example, the matrix codes corresponding to Matrices 1, 2, 3 in

Figure 2 are N1C01C, N0C11C and C1C10C, respectively.

DEFINITION 6 (Conditional Canonical Adjacency Matrix).
Given a graph database, where each graph has a unique graph ID,

the conditional canonical adjacency matrix of a subgraph pattern p

is the adjacency matrix corresponding to the lexicographically

smallest embedding code of p.

For example, in Figure 1, given the graph database composed of

Graph 1 and Graph 2, the conditional canonical adjacency matrix

of Pattern 1 is Matrix 1 in Figure 2.

It is “conditional” because only when a graph database is given

can the canonical adjacency matrix be defined and generated. It is

“canonical” because as long as a graph database is given, two

isomorphic subgraph patterns must have the same conditional

canonical adjacency matrix since two isomorphic subgraph

patterns must have the same embeddings and therefore the same

lexicographically smallest embedding code.

DEFINITION 7 (CCAM Code). Given a graph database, where

each graph has a unique graph ID, the CCAM Code of a subgraph

pattern p is the matrix code corresponding to the conditional

canonical adjacency matrix of p.

For example, in Figure 1, given the graph database composed of

Graph 1 and Graph 2, the CCAM code of Pattern 1 is N1C01C.

Given a graph database, two isomorphic subgraph patterns must

have the same CCAM code because they have the same

conditional canonical adjacency matrix.

1 All subscripts are indexed starting at 1.

Figure 1: an example of graph and subgraph pattern

Figure 2: three adjacency matrices of pattern C-C-N

Previous subgraph pattern encoding methods, such as minimum

DFS code [Yan, 2002] and CAM code [Huan, 2003], only look at

the structural information of the pattern, but do not take advantage

of the embedding information. The complexity of computing any

type of canonical code from a graph is NP-complete because it is

proven to be equivalent to solving subgraph isomorphism which is

NP-complete. However, in all efficient subgraph pattern mining

algorithms, such as FFSM [Huan 2003], SPIN [Huan 2004] and

COM [Jin, 2009], all embeddings of a pattern are actually already

maintained and sorted in increasing order of graph IDs by the

algorithms in order to calculate pattern frequency efficiently.

Therefore, the embedding information is available when a

subgraph pattern mining algorithm computes canonical codes.

Given embeddings of a pattern p in a graph database sorted by

graph IDs, the complexity of computing CCAM code of p can be

reduced to O (|V|2), where |V| is the number of nodes in p. The

computation can be completed in three steps:

1. Retrieve embeddings with the smallest graph ID

2. For each embedding, sort the node IDs in ascending order

and keep track of the lexicographically smallest embedding

code B

3. Construct the conditional canonical adjacency matrix

according to B and generate the CCAM code

The complexity of the first step can be considered as O (1)

because the embeddings are already sorted and the number of

embeddings with the smallest graph ID can be upper-bounded by

a small constant in most applications. The complexity of the

sorting step is O (|V|*lg |V|) where |V| is the number of nodes in p

because the number of embeddings from Step 1 is considered as a

constant. The complexity of the third step is O (|V|2) because the

size of the matrix is O (|V|2). Therefore, we can compute CCAM

code in O (|V|2) time by taking advantage of embedding

information that has been calculated already. This significant

improvement in time efficiency is essential to GAIA because

GAIA does not require a frequency threshold and therefore cannot

prune subgraph patterns based on frequency. Most other subgraph

N 1 0

1 C 1

0 1 C

N 0 1

0 C 1

1 1 C

C 1 1

1 C 0

1 0 N

Matrix 1:

<1, 1, 2, 3>

Matrix 2:

<1, 1, 5, 6>

Matrix 3:

<2, 1, 2, 5>

2:C

3:C

6:C

1:N

4:C

5:C

1:C

2:C

5:N

4:H

3:H

Graph 1 Graph 2

1:C

2:C

3:N

Pattern 1

mining algorithms, such as gSpan [Yan, 2002], FFSM [Huan,

2003], SPIN [Huan, 2004], Leap [Yan, 2008], gPLS [Saigo, 2008]

and COM [Jin, 2009], use a frequency threshold to limit the

examination to only frequent subgraph patterns. In addition, using

CCAM code allows arbitrary edge extensions to a subgraph

pattern while previous encoding methods only allows certain

types of edge extensions in order to maintain canonical codes of

patterns efficiently.

One potential challenge of this encoding method is that the

number of embeddings in Step 2 may be large especially when the

patterns are small. We solve this problem by encoding patterns

differently according to their sizes: one-edge patterns are encoded

with their minimum matrix codes and larger patterns are encoded

with their CCAM codes.

3. MINING DISCRIMINATIVE

SUBGRAPH PATTERNS WITH

EVOLUTIONARY COMPUTATION
The first goal of our work is to find a set of discriminative

patterns among which each positive graph can have at least one

representative pattern for graph classification and we achieve this

goal by exploring candidate patterns in a process resembling

biological evolution, a.k.a. evolutionary computation,

implementing some of the evolutionary mechanisms such as

competition and migration. Evolutionary computation can be

viewed as a generic search process for solutions of high quality or

fitness, which begins with a set of sample points in the search

space and gradually biases to regions of high fitness. In the

problem of discriminative pattern mining, we define a fitness

function to measure the potential classification power of a pattern

and larger patterns that can be generated by subgraph extension.

As a result, our evolutionary search process here is directed

toward subgraph patterns with high classification power.

3.1 Fitness Function
We use two types of scores to measure the fitness of a subgraph

pattern: log ratio score and score per edge.

DEFINITION 8 (Positive Frequency and Negative

Frequency). The positive (negative) frequency r+(p) (r-(p)) of a

subgraph pattern p is the ratio of the number of positive (negative)

graphs containing p to the total number of positive (negative)

graphs in the graph database.

DEFINITION 9 (Log Ratio Score). The log ratio score of a

subgraph pattern p is a function of the positive and negative

frequencies of p and is defined as:

The log ratio score is used to measure the fitness of patterns. Its

rationale is that if two patterns have the same positive frequency

(negative frequency) then the one with lower negative frequency

(higher positive frequency) is better for discriminating positive

graphs from negative graphs and is thus fitter to survive. To solve

the problem of denominator being zero, when calculating the

negative frequencies, we add an imaginary negative graph that has

all subgraph patterns. Thus, the negative frequency of any pattern

p is never zero.

This function is asymmetric w.r.t. positive and negative

frequencies. It focuses on subgraph patterns with high positive

frequency and low negative frequency rather than patterns with

low positive frequency and high negative frequency. In many

applications, such as structure-based protein and chemical

compound classification, positive graphs are much more likely to

share common discriminative subgraph patterns than negative

graphs. This is because that positive graphs typically have some

common characteristics (e.g. a biological function) while negative

graphs (e.g., those lacking a biological function) are often diverse.

However, even if negative graphs share some common

discriminative subgraph patterns, these patterns can be found

easily by switching the roles of positive graphs and negative

graphs.

DEFINITION 10 (Score per Edge). The score per edge of a

subgraph pattern p is a function of the positive frequency r+(p),

negative frequency r-(p) and number of edges m(p) and is defined

as:

The score per edge function is used to alleviate the risk of

potential overfitting. For patterns of competitive log ratio scores,

the score per edge function favors patterns containing fewer

edges. This is necessary in finding discriminative patterns for

graph classification because large patterns tend to have low

positive and negative frequencies and thus are likely to be useless

in classification. Spending time in finding such patterns is not

worthwhile if there exist some smaller patterns having similar log

ratio scores. Therefore, when we measure the fitness of a pattern

p, we consider not only its log ratio score but also its score per

edge. By doing this, we can avoid many seemingly discriminative

but useless patterns. This function is analogous to the Minimum

Description Length model in information theory in the sense that

we use the number of edges to measure the description length.

3.2 Framework of the Pattern Evolution:

Organization and Resources
For each graph gi in the positive graph set G+, we store a

representative subgraph pattern and a list of up to s candidate

subgraph patterns, where s is bounded (from above) by the

available memory space divided by the number of graphs. Figure

3 illustrates the organization of candidate patterns and

representative patterns. Only subgraphs of gi with positive log

ratio scores can be its representative or in its candidate list. The

representative pattern has the highest log ratio score among all

patterns that are subgraphs of gi found during pattern evolution.

Although one pattern can be subgraphs of several positive graphs,

each pattern can only be in one candidate list at any time. The

candidate lists are initialized with one-edge patterns. Whether and

where a pattern will be placed in candidate lists will be discussed

in Subsection 3.4.

The total number of subgraph patterns that the candidate lists can

hold at any time is the product of s and | G+|. The motivation of

the design of this framework is to cause selection pressure which

can significantly speed up the convergence of evolutionary search.

When the total size of candidate lists is less than the total number

of patterns that can be found in positive graphs, not all patterns

can be held in the candidate lists at the same time. As a result, one

resource that candidate patterns need to compete for is a slot in

candidate lists. In other words, patterns have to compete for

survival and not all patterns are considered in the search process.

Generally speaking, the larger the candidate lists are, the less

selection pressure there is and thereby the more patterns are

considered in the search. When the candidate lists are infinitely

large, the search process becomes an exhaustive search.

Another resource that candidate patterns compete for is the

opportunity to extend or, analogous to biological evolution, to

produce offspring. All subgraph pattern mining algorithms start

with small subgraph patterns and then extend them into larger

patterns. However, pattern extension is a costly operation and not

every pattern extension leads to a discriminative pattern. In an

evolutionary search process, candidate patterns compete for the

opportunity of pattern extension according to their fitness, which

enables the search process to focus on candidate patterns that are

more likely to lead to discriminative patterns. Although it does not

guarantee that it reaches the globally optimal solution faster

because of the existence of local optimal solutions, our

experiments show that in reality it has significant speed advantage

over other methods.

Figure 3: organization of candidate patterns

3.3 Pattern Extension
All candidate patterns currently in the candidate lists have a non-

zero probability of being selected for pattern extension. To

perform pattern evolution, GAIA runs for n iterations, where n is

a parameter set by the user. During each iteration, we select one

pattern from each candidate list for extension. The probability of

pattern p in candidate list of gi to be selected for extension is

proportional to the log ratio score of p and is calculated as

follows:

The probability is always between 0 and 1 because only patterns

with positive log ratio scores are allowed in candidate lists as

described in Subsection 3.2. This selection method is commonly

used in evolutionary algorithms and an analysis on it can be found

in [De Jong, 2006]. The intuition here is that candidate patterns

with higher scores are more likely to be extended to patterns with

high scores because structurally similar subgraph patterns have

similar discrimination power [Yan, 2008]. Note that when s = 1,

each candidate list only holds 1 pattern. The probability of this

pattern being selected for extension is 1. When s > 1, multiple

patterns may be held in a candidate list. A random number

generator is used to determine which pattern is selected for

extension according to their probabilities.

For an extension operation of pattern p, GAIA generates a pattern

set X(p) and each pattern p’ in X(p) has one new edge attached to

p. This new edge is not present in p and it can be either between

two existing nodes in p or between one node in p and a new node.

Unlike many previous subgraph pattern mining algorithms that

only extend patterns with certain types of edges in order to

efficiently maintain their canonical codes, GAIA considers all

one-edge extensions of pattern p that occur in the positive graphs.

This difference in extension operation is essential to GAIA

because evolutionary computation is essentially a heuristic search

for optimal solution. This difference enables GAIA to explore the

candidate pattern space in any direction that appears promising.

Extensions of different patterns can produce the same pattern

because a pattern p with k edges can be directly extended from all

of its subgraphs with k-1 edges. Therefore, a lookup table is

needed by GAIA to determine whether a pattern has already been

generated to avoid repetitive examination of the same pattern. In

our implementation of GAIA, we use map in C++ STL to

implement the lookup table. The codes for pattern lookup are

generated by the encoding method described in Section 2.

If pattern p extends into pattern p’ and the log ratio score of p’ is

less than that of p, then the edge extension is undesirable since it

produces a “child” pattern that is less fit for survival than the

parent. We consider such a decline in log ratio score as a sign of

extending in a wrong direction and thus eliminate p’ from survival

and further extension. It is also possible that no extensions of p

have better log ratio scores. In fact we can estimate a loose upper-

bound of their scores before extending p. The log ratio score of

any extension p’ reaches its upper-bound when r+(p) = r+(p’) and

r-(p’)=0, where r+ and r- are positive and negative frequencies

respectively. If this upper-bound of log ratio score is no greater

than that of p, then we do not need to extend p.

In addition to the log ratio score, we also use the “score per edge”

measure to decide whether a new pattern should survive and have

further extension. Assume that pattern p extends into pattern p’.

Even if the log ratio score of p’ is greater than that of p, the score

per edge of p’ can still be less than that of p. If the score per edge

function decreases steadily during successive extensions, then we

want to prune these extensions. We quantify the change in score

per edge between a pattern and its extensions by a variable called

“momentum”. If the score per edge value of a pattern p’ is greater

than that of its parent pattern p, then the momentum value of p’ is

the momentum value of p added by 1; otherwise, the momentum

value of p’ is the momentum value of p subtracted by 1. All one-

edge patterns whose log ratio scores are positive have momentum

values being 1 (Patterns with non-positive log ratio scores are not

allowed in the candidate lists). If a new pattern has its momentum

value less than 0, this new pattern is pruned. We choose to prune

patterns with decreasing score per edge values rather than patterns

with low score per edge values because we consider a downward

trend in score per edge as a stronger sign of unpromising

extensions. In our experiments, using log ratio score to calculate

momentum can result in 2-4 times longer runtime than using score

per edge with the same classification accuracy because using log

ratio scores considers more unpromising extensions.

Candidate
list that

holds up to s
candidate

patterns

Candidate list

of graph 1

Candidate list

of graph 2
Candidate list

of graph 3
Candidate list
of graph |G+|

Representative

pattern of graph 1

Representative

pattern of graph 2

Representative

pattern of graph 3

Representative pattern

of graph |G+|

3.4 Pattern Migration and Competition
In most cases, an extension operation on one pattern generates

many new patterns and as a result the number of patterns found by

the algorithm grows. Sooner or later the number of patterns will

exceed the number of available positions in the candidate lists. It

is also possible that the number of one-edge patterns already

exceeds the number of available positions in the candidate lists at

the very beginning if s is small. Therefore some rules are needed

to determine which patterns should survive in the candidate lists

and which candidate list they should dwell in.

First, a pattern that has already been extended should not “live” in

the candidate lists any longer because it has served its role in

generating new patterns.

Second, some pattern in the candidate list may migrate to the

candidate list of another graph if such migration will increase its

chance of survival. Let p be the candidate pattern for migration

and G(p) be the set of graphs containing p. Let gi be the graph in

G(p) which has the lowest value of

 p will migrate

to the candidate list of gi. The rationale for this pattern migration

is that if a pattern wants to survive then it should go to a candidate

list with the least fierce competition. In GAIA, the fierceness of

competition of a candidate list is measured by the sum of log ratio

scores of patterns in the list.

If the candidate list of gi still has vacant positions, then p can

move into one vacant position directly. However, if the candidate

list is already full, then p has to compete with the “resident”

patterns in the list. One straightforward approach to let p compete

with “resident” patterns is to compare the log ratio score of p and

the minimum log ratio score among “resident” patterns. If the

score of p is greater than the minimum score among “resident”

patterns, then p takes the position of pattern p’ with the minimum

score and p’ no longer exists in any candidate list; otherwise, p

fails to survive and will not exist in any candidate list. The

disadvantage of this greedy approach is that it ignores the fact that

patterns with low log ratio scores may still have some potential to

extend into patterns with high log ratio scores and patterns with

high log ratio scores at the time may have reached their limits and

will never extend to better patterns. Therefore, GAIA adopts a

randomized method for pattern competition which is commonly

used by evolutionary algorithms. The score of p is compared

against the score of a pattern p’, which is randomly selected with

probability 1/s from the candidate list. If the score of p is higher,

then p’ is eliminated and p takes the position of p’; otherwise, p is

eliminated. By doing so, GAIA can at least have a chance to

protect some of the “weak” patterns and give them an opportunity

to extend into “strong” patterns. The benefit of this randomized

approach is more evident when s is reasonably large. Note that

when s = 1 the randomized strategy is essentially the same as the

greedy strategy.

Again, the exhaustive extension operation is of great importance

to allow pattern competition and elimination. When we eliminate

a pattern p, the real loss is not only this pattern but also the

patterns generated by extending p. In previous subgraph pattern

mining algorithms, such as gSpan [Yan, 2002] and FFSM [Huan,

2003], a pattern p can only be extended from one of its

subpatterns, p’. If p’ is lost, then the algorithms will never find p.

As a result, for these algorithms, allowing pattern elimination will

surely lose many patterns, some of which are discriminative

patterns. But in GAIA, eliminating p’ does not necessarily lead to

the loss of p because the exhaustive extension operation allows p

to be extended from many different patterns. As a result, the risk

of missing discriminative patterns is much lower than other

subgraph mining algorithms.

Figure 4 is an algorithmic description of pattern evolution in

GAIA. The inputs are the positive graph set G+, the negative

graph set G-, the (optional) maximum size of each candidate list,

and the (optional) maximum number of iterations. The output is

the representative patterns of the positive graphs.

Figure 4: algorithm of pattern evolution

Figure 5: algorithm of pattern migration

4. GENERATING ASSOCIATION RULES

FOR GRAPH CLASSIFICATION
Given a set of discriminative subgraph patterns, the second goal

of our work is to generate a classifier to predict positive graphs

and negative graphs. We choose association rule as the model of

classifiers because of its success in COM [Jin, 2009] and its

simplicity in computation and interpretation. However, different

from COM, in each resulting association rule we only use one

subgraph pattern instead of a combination of several patterns

because (1) estimating combinations of disconnected patterns is

time-consuming and (2) GAIA can locate large discriminative

patterns far more efficiently than previous algorithms and thus

does not need to approximate large patterns by combinations of

small patterns.

Algorithm: Migrate (p, T)

p: a pattern

T: candidate lists

1. g =

2. if (the candidate list of g has vacant positions)

3. insert p into the candidate list of g

4. else

5. randomly select a pattern p’ in the candidate list of g

6. if (log_ratio_score (p) > log_ratio_score (p’))

7. replace p’ with p

Algorithm: Pattern_Evolution (G+, G-, n = INT_MAX,

s = available_space/number_of_positive_graphs)

G+: positive graph set

G-: negative graph set

s: maximum size of each candidate list,

 by default equal to available_space/number_of_positive_graphs

n: maximum number of iterations,

 by default the maximum interger value in the system

T: all candidate lists

H: lookup table of patterns that have already been found

1. D = {all edges that occur in G+}

2. for each edge e in D

3. Migrate (e, T)

4. for k = 1:n

5. if (all candidate lists are empty)

6. break

7. for each g in G+

8. randomly select a pattern p in the candidate list of g

9. X (p) = {all patterns in G+ with one more edge attached to p}

10. for each pattern p’ in X (p)

11. if (CCAM code of p’ is in H)

12. continue

13. insert p’ into H

14. Migrate (p’, T)
15. update representative patterns

4.1 Association Rules
DEFINITION 11 (Association Rule). In this paper, an

association rule is defined as a classification rule in the form of p

 L, where p is a subgraph pattern and L is the class label. If an

object has the subgraph pattern p, then it is classified as L. The

output of GAIA is an association rule set A.

When the graph dataset only has two class labels, positive and

negative, L is always positive since we only look for patterns

whose positive frequencies are higher than their negative

frequencies (see Subsection 3.1) and thus a graph g having the

patterns in association rules indicates g is a positive graph. When

we use association rules generated by GAIA to classify a new

graph g, as long as g has any pattern in the association rules, we

predict g as positive. If g does not have any pattern in the

association rules, we predict it as negative.

DEFINITION 12 (Sensitivity, Specificity and Normalized

Accuracy).

Given the representative subgraph patterns from pattern evolution,

we generate association rules by sequential coverage. First we sort

the representative patterns by their log ratio scores in decreasing

order. Then we traverse all representative patterns in the sorted

order (that is we visit patterns with higher log ratio scores first).

For each representative pattern p, we evaluate whether inclusion

of a new association rule p positive in the resulting association

rule set A can increase the normalized accuracy of classification of

the training set. The new rule p positive is to be included in A if

and only if the normalized accuracy increases. The generation

algorithm terminates when all representative patterns have been

tested. The algorithmic description is shown in Figure 6.

Figure 6: algorithm of generating association rules from

representative patterns

4.2 Generating Consensus Model with

Parallel Computing
Because GAIA is a randomized algorithm (when s > 1), each

single run of pattern evolution may generate different

representative patterns and consume varying amount of CPU time.

Some runs of pattern evolution may find better representative

patterns than others and thus lead to classifiers with higher

normalized accuracy. Therefore, if we run many instances of

pattern evolution in parallel and generate an association rule set

based on all representative patterns found by these instances of

pattern evolution, it is very likely that we can build a better

classifier than using representative patterns from one instance of

pattern evolution alone. Therefore, by generating a consensus

model based on many parallel instances of pattern evolution and

only using the fastest instances of pattern evolution, we can

improve the classification accuracy and expected response time by

taking advantage of parallel computing. We choose to start

association rule generation before all instances complete because,

if we wait for all the pattern evolution instances, the runtime of

GAIA will be determined by the runtime of the slowest instance

(The time for sequential coverage is trivial). Let c be the number

of parallel instances of pattern evolution, which is a user specified

parameter. We start generating association rules as soon as

instances of pattern evolution have terminated and only use the

representative patterns found by these instances. The

association rule set is generated by the same algorithm

Sequential_Coverage described in Figure 6 with all representative

patterns found by the fastest instances as input R.

5. EXPERIMENTS
The algorithm was implemented in C++ and compiled with g++.

The experiments were performed on a 2.20 GHz dual core and 3.7

GB memory PC running Ubuntu Linux 9.10. We analyze the

performance from two perspectives: runtime efficiency and

normalized accuracy in graph classification applications. We

evaluate two versions of GAIA: single-GAIA (when c=1) only

performs one instance of pattern evolution to generate association

rules and parallel-GAIA (when c>1 and s>1) runs in parallel c

instances of pattern evolution, where c is a user-specified

parameter, to generate association rules. For single-GAIA, we

report the runtime of pattern evolution as the runtime of GAIA

because the time for sequential coverage is trivial. For parallel-

GAIA, we report the longest runtime of the first instances of

pattern evolution as the runtime of parallel-GAIA because it starts

generating association rules as soon as instances complete.

We use protein datasets and chemical compound datasets in our

experiments. The protein datasets consist of protein structures

from Protein Data Bank 2 classified by SCOP 3 (Structural

Classification of Proteins). We use 16 protein datasets generated

from all the large SCOP families with more than 25 members

(listed in Table 1). In each dataset, protein structures in a selected

family are taken as the positive set. Unless otherwise specified,

we randomly select 256 other proteins (i.e., not members of the 16

families) as a common negative set used by all protein datasets.

To generate a protein graph, each graph node denotes an amino

acid, whose location is represented by the location of its alpha

carbon. There is an edge between two nodes if the distance

between the two alpha carbons is less than 11.5 angstroms. Nodes

are labeled with their amino acid type and edges are labeled with

the distances between the alpha carbons. On average, each protein

graph has 250 nodes and 2700 edges. The chemical compound

datasets consist of chemical compound structures from PubChem4

classified by their biological activities, listed in Table 2. These are

2 http://www.rcsb.org/pdb/

3 http://scop.mrc-lmb.cam.ac.uk/scop/

4 http://pubchem.ncbi.nlm.nih.gov

Algorithm: Sequential_Coverage (R, G)

R: a set of representative patterns from pattern evolution

G: training set

A: the resulting association rule set

1. A is empty

2. sort patterns in R by log ratio scores in decreasing order

3. for i = 1 : |R|

4. p = R[i]

5. A’ A

6. A’

7. t = normalized accuracy of classification on G using A

8. t’ = normalized accuracy of classification on G using A’

9. if (t’ > t)

10. A

all the bioassays used in [Yan, 2008] and [Ranu, 2009]. Each

compound can be either active or inactive in a bioassay. Unless

otherwise specified, for each bioassay, we randomly select 400

active compounds as the positive set and 1600 inactive

compounds as the negative set. The graph representation of

compounds is straightforward. Each atom is represented by a node

labeled with the atom type and each chemical bond is represented

by an edge labeled with the bond type. On average, each

compound graph has 55 nodes and 57 edges.

Table 1: list of selected SCOP families

SCOP ID Family name
Number of

selected proteins

46463 Globins 51

47617 Glutathione S-transferase (GST) 36

48623 Vertebrate phospholipase A2 29

48942 C1 set domains 38

50514 Eukaryotic proteases 44

51012
alpha-Amylases, C-terminal beta-

sheet domain
26

51487 beta-glycanases 32

51751 Tyrosine-dependent oxidoreductases 65

51800
Glyceraldehyde-3-phosphate

dehydrogenase-like
34

52541 Nucleotide and nucleoside kinases 27

52592 G proteins 33

53851 Phosphate binding protein-like 32

56251 Proteasome subunits 35

56437 C-type lectin domains 38

88634 Picornaviridae-like VP 39

88854 Protein kinases, catalytic subunit 41

Table 2: list of selected bioassays

Assay

ID
Tumor description

Total number

of actives

Total

number of

inactives

1 Non-Small Cell Lung 2047 38410

33 Melanoma 1642 38456

41 Prostate 1568 25967

47 Central Nerv Sys 2018 38350

81 Colon 2401 38236

83 Breast 2287 25510

109 Ovarian 2072 38551

123 Leukemia 3123 36741

145 Renal 1948 38157

167 Yeast anticancer 9467 69998

330 Leukemia 2194 38799

For each experiment, we run GAIA (for both single-GAIA and

parallel-GAIA) 5 times and report the average normalized

accuracy and average runtime of the 5 runs. Note that GAIA is a

randomized algorithm and each run may have slightly different

classification accuracy and runtime even though the standard

deviations are very small. For chemical datasets, standard

deviations of normalized accuracies are less than 0.01 and

standard deviations of runtimes are usually less than 1 second for

single-GAIA and less than 0.1 second for parallel-GAIA. For

protein datasets, standard deviations of normalized accuracies are

usually less than 0.03 and standard deviations of runtimes are less

than 0.1 seconds. Therefore, we only report the average in the

following analysis.

5.1 GAIA Performance Analysis
In this subsection, we study the performance of GAIA with

respect to three parameters: s (maximum number of positions in a

candidate list), n (maximum number of iterations) and c (number

of instances of pattern evolution).

First, we run single-GAIA (c = 1) with different s and n on the

unbalanced chemical datasets and show the average normalized

accuracy and average runtime in Table 3 and Table 4. In Table 3,

n is fixed at 4 and we can see the normalized accuracy is generally

insensitive to the variation in s. When n is large enough, larger s

enables GAIA to perform a more extensive search for

discriminative patterns because it allows more candidate patterns

to be stored in candidate lists and visited in the search process,

which is why when the value of s increases from 1 to 7 the

normalized accuracy also increases. When the value of s further

increases, the normalized accuracy starts to decrease because

although the size of candidate lists allows GAIA to perform a

more exhaustive search, GAIA only runs for n iterations and thus

fails to take advantage of the large candidate lists. It can also be

seen that although n is fixed, the average runtime varies and is

correlated with the normalized accuracy. This is because,

generally speaking, the more discriminative a pattern is the more

frequent and larger it is and thus the more time it takes to compute

all of its embeddings and perform extensions. In Table 4, we fix s

at 10 and study the performance of single-GAIA with respect to n.

means that pattern evolution terminates when all candidate lists

are empty. We observe that increasing n can effectively improve

normalized accuracy when n is small but only has marginal effect

when n is large. When n is small, pattern evolution is far from

convergence after n iterations and larger n can make the result

closer to convergence. When n is sufficiently large, pattern

evolution is already near convergence and further increase in n

has little effect. Similarly, Table 4 also shows that larger n results

in longer runtime due to more iterations. We provide n as an

optional parameter for applications in which speed is crucial.

Table 3: Normalized accuracy and average runtime of single-

GAIA with different values of s, where n = 4 (unbalanced

chemical datasets)

s Normalized accuracy Average runtime (sec)

1 0.7295 2.3398

3 0.7329 2.7545

5 0.7310 2.8725

7 0.7330 2.8705

10 0.7298 2.7444

30 0.7311 2.4278

50 0.7300 2.4080

70 0.7293 2.4207

Table 4: Normalized accuracy and average runtime of single-

GAIA with different values of n, where s = 10 (unbalanced

chemical datasets)

n Normalized accuracy Average runtime (sec)

1 0.7050 1.4192

2 0.7198 1.8795

4 0.7320 2.8066

8 0.7325 4.0611

 16 0.7363 5.7075

32 0.7368 8.8772

Then we study the effect of c to the performance of GAIA. Figure

7 and Figure 8 show the average normalized accuracies of running

GAIA with different c on chemical datasets and protein datasets

respectively. Both figures illustrate that increasing c can result in

higher average normalized accuracy. This positive correlation is

due to the randomization in pattern evolution. Each instance of

pattern evolution finds different representative patterns. One

instance may be able to find a good representative pattern for gi

but fail to find one for gj while another instance returns a good

pattern for gj but not for gi. Therefore when the representative

patterns from different instances are merged together, the average

quality of representative patterns can be improved. Generally, the

larger the value of c, the better the normalized accuracy of GAIA.

Figure 9 and Figure 10 show the average runtime of GAIA with

different c on chemical datasets and protein datasets respectively.

Both figures show the same trend of average runtime as c

increases: runtime starts to converge when c is large. The runtime

of GAIA is the sample median of the running times of c pattern

evolution instances. When c is large enough, the runtime (sample

median) should converge to the theoretical median of the runtime

of all possible pattern evolution instances. Therefore, larger c

leads to more stable runtime.

Figure 7: average normalized accuracy vs. c (unbalanced

chemical datasets)

Figure 8: average normalized accuracy vs. c (unbalanced

protein datasets)

Figure 9: average runtime vs. c (unbalanced chemical

datasets)

Figure 10: average runtime vs. c (unbalanced protein

datasets)

Figure 11 and Figure 12 demonstrate the scalability of GAIA for

chemical datasets as the number of positive graphs and number of

negative graphs increase. In Figure 11, the number of negative

graphs is fixed at 1600 and the number of positive graphs varies.

The average runtime grows approximately linearly as the number

of positive graphs increases. In Figure 12, the number of positive

graphs is fixed at 400 and the number of negative graphs varies.

We can see that the average runtime is linear to the number of

negative graphs.

Figure 11: average runtime vs. number of positive graphs

(chemical datasets, number of negative graphs=1600)

0.7000

0.7050

0.7100

0.7150

0.7200

1 2 4 8 16 32

A
ve

ra
ge

n

o
rm

al
iz

ed
 a

cc
u

ra
cy

c

0.75

0.77

0.79

0.81

0.83

1 2 4 8 16 32

A
ve

ra
ge

n

o
rm

al
iz

ed
 a

cc
u

ra
cy

c

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1 2 4 8 16 32

A
ve

ra
ge

 r
u

n
ti

m
e

(s
ec

)

c

1.95

2

2.05

2.1

2.15

1 2 4 8 16 32

A
ve

ra
ge

 r
u

n
ti

m
e

(s
ec

)

c

0

0.5

1

1.5

2

2.5

100 200 300 400 500A
ve

ra
ge

 r
u

n
ti

m
e

(s
ec

)

Number of positive graphs

Figure 12: average runtime vs. number of negative graphs

(chemical datasets, number of positive graphs=400)

5.2 Comparison with Other Methods

5.2.1 Parallel-GAIA
We first compare parallel-GAIA (denoted as GAIA in this

subsubsection for simplicity) with two other state-of-the-art graph

classification methods: COM [Jin, 2009] and graphSig [Ranu,

2009], both of which claim to outperform Leap [Yan, 2008] in

terms of runtime with competitive classification accuracy. COM

also outperforms gPLS for the protein datasets. For GAIA, we use

the parameters that give the best trade-off between runtime

efficiency and classification accuracy. For COM and graphSig, we

set the parameters that deliver the best results as suggested in [Jin,

2009] and [Ranu, 2009] respectively. The parameters for the three

methods are summarized in Table 5. To compare with graphSig,

we use the eleven chemical datasets and randomly sample 400

actives and 400 inactives from each dataset to form the training

sets, because graphSig is implemented for balanced datasets. We

also generate balanced protein datasets (number of negative

graphs = number of positive graphs) to evaluate graphSig. We do

not compare with Leap because graphSig outperforms Leap in

chemical datasets and COM outperforms Leap in protein datasets

with both faster speed and higher accuracy.

Table 5: summary of parameters/environment

Parameters for chemical

datasets

Parameters for protein

datasets

GAIA s=10, n=4, c=32 s=100, n=10, c=32

COM tp=1%, tn=0.4% tp=30%, tn=0%

graphSig
maxPvalue=0.1,

minFreq=0.1%

maxPvalue=0.1,

minFreq=0.1%

Figure 13 shows the normalized accuracy comparison between

graphSig, GAIA and COM for balanced chemical datasets. GAIA

delivers better normalized accuracy than graphSig on most

datasets though not all of them. The average normalized accuracy

of GAIA is 2.2% higher than that of graphSig. COM generally has

lower normalized accuracy than GAIA and graphSig.

Figure 13: normalized accuracy comparison for balanced

chemical datasets between GAIA, COM and graphSig

Figure 14 compares the runtime of graphSig, GAIA and COM for

the balanced chemical datasets. GAIA demonstrates a huge

advantage in runtime performance. For all datasets, GAIA is

20.44 times faster than graphSig on average. In addition, GAIA

also outperforms COM considerably for every chemical dataset in

terms of speed (on average 2.83 times faster).

Figure 14: runtime comparison for balanced chemical

datasets between GAIA, COM and graphSig

Figure 15: normalized accuracy comparison for balanced

protein datasets between GAIA, COM and graphSig

Figure 15 and Figure 16 compare the normalized accuracy and

average runtime performance respectively between graphSig,

GAIA and COM. GraphSig is not comparable in processing

protein datasets. Its speed is 2 orders of magnitude slower and its

normalized accuracy is close to 0.5. This is mainly because

graphSig is specifically designed and optimized for chemical

compound datasets. Between GAIA and COM, GAIA is on

average about 1.2 times faster and has a normalized accuracy

5.7% higher than that of COM.

0

1

2

3

4

5

6

7

8

9

1600 3200 4800 6400 8000

A
ve

ra
ge

 r
u

n
ti

m
e

(s
ec

)

Number of negative graphs

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

N
o

rm
al

iz
ed

 a
cc

u
ra

cy

Chemical datasets

GAIA

COM

graphSig

0.1

1

10

100

R
u

n
ti

m
e

(s
ec

)

Chemical datasets

GAIA

COM

graphSig

0.4

0.5

0.6

0.7

0.8

0.9

1

46
463

47
617

48
623

48
942

50
514

51
012

51
487

51
751

51
800

52
541

52
592

53
851

56
251

56
437

88
634

88
854

N
o

rm
al

iz
ed

 a
cc

u
ra

cy

Protein datasets

GAIA

COM

graphSig

Figure 16: runtime comparison for balanced protein datasets

between GAIA, COM and graphSig

Figure 17: normalized accuracy comparison for unbalanced

chemical datasets between GAIA and COM

Figure 18: normalized accuracy comparison for protein

datasets between GAIA and COM

Since both GAIA and COM can handle unbalanced datasets, we

use the unbalanced chemical datasets and unbalanced protein

datasets described at the beginning of this section to provide

additional comparison. Figure 17 and Figure 18 show the

normalized accuracy comparison. For chemical datasets,

normalized accuracy of GAIA is 6.86% higher than that of COM

on average. For protein datasets, normalized accuracy of GAIA is

2.7% higher than that of COM on average.

Figure 19: runtime comparison for unbalanced chemical

datasets between GAIA and COM

Figure 20: runtime comparison for unbalanced protein

datasets between GAIA and COM

Figure 19 and Figure 20 compare the runtimes of the two methods

for chemical datasets and protein datasets respectively. On

average, GAIA is 3.8 times faster than COM for chemical datasets

and 1.5 times faster than COM for protein datasets.

5.2.2 Single-GAIA
Considering that parallel-GAIA demands more computation

resources than COM and graphSig when outperforming them, we

also compare single-GAIA with the other two methods to further

demonstrate the advantage of GAIA. Table 6 summarizes the

average runtime and average normalized accuracy comparisons

between single-GAIA, parallel-GAIA, COM and graphSig using

the datasets used in Subsubsection 5.2.1. The parameters are the

same as listed in Table 5 except that for single-GAIA c=1. It can

be seen in Table 6 that even without parallel computing, single-

GAIA can excel COM and graphSig in terms of both average

runtime and normalized accuracy. The only exception is that the

average normalized accuracy of single-GAIA for the unbalanced

protein datasets is 3.27% lower than that of COM.

Table 6: summary of comparison between single-GAIA,

parallel-GAIA, COM and graphSig

Single-
GAIA

Parallel-
GAIA

COM graphSig

Balanced

chemical
datasets

Runtime

(sec)
1.296 1.210 3.430 24.73

Accuracy 0.7029
5
 0.6988 0.6428 0.6768

Balanced

protein
datasets

Runtime

(sec)
0.5996 0.5748 0.6788 51.13

Accuracy 0.7665 0.7855 0.7285 0.5250

Unbalanced

chemical

datasets

Runtime

(sec)
2.807 2.752 10.44 N/A

Accuracy 0.7320 0.7368 0.6682 N/A

Unbalanced

protein

datasets

Runtime
(sec)

2.047 2.028 3.059 N/A

Accuracy 0.7605 0.8202 0.7932 N/A

5 Most of the time parallel-GAIA has higher accuracy than single-

GAIA, but single-GAIA may have slightly higher accuracy

when single-GAIA alone can already produce high accuracy and

thus parallel computing cannot improve it.

0.1

1

10

100

4
6

4
6

3

4
7

6
1

7

4
8

6
2

3

4
8

9
4

2

5
0

5
1

4

5
1

0
1

2

5
1

4
8

7

5
1

7
5

1

5
1

8
0

0

5
2

5
4

1

5
2

5
9

2

5
3

8
5

1

5
6

2
5

1

5
6

4
3

7

8
8

6
3

4

8
8

8
5

4

R
u

n
ti

m
e

 (
se

c)

Protein datasets

GAIA

COM

graphSig

0.5

0.55

0.6

0.65

0.7

0.75

0.8

N
o

rm
al

iz
ed

 a
cc

u
ra

cy

Chemical datasets

GAIA

COM

0.5

0.6

0.7

0.8

0.9

1

46463

47617

48623

48942

50514

51012

51487

51751

51800

52541

52592

53851

56251

56437

88634

88854

N
o

rm
al

iz
ed

 a
cc

u
ra

cy

Protein datasets

GAIA

COM

1

10

100

R
u

n
ti

m
e

(s
e

c)

Chemical datasets

GAIA

COM

0
1
2
3
4
5
6
7
8
9

4
6

4
6

3

4
7

6
1

7

4
8

6
2

3

48942

5
0

5
1

4

5
1

0
1

2

5
1

4
8

7

5
1

7
5

1

5
1

8
0

0

5
2

5
4

1

5
2

5
9

2

5
3

8
5

1

5
6

2
5

1

5
6

4
3

7

8
8

6
3

4

8
8

8
5

4

R
u

n
ti

m
e

(s
ec

)

Protein datasets

GAIA

COM

6. CONCLUSIONS
In this paper, we investigate the problem of efficiently finding

discriminative subgraph patterns in graph databases for graph

classification. We propose an efficient subgraph encoding

approach that makes use of embedding information and supports

arbitrary subgraph extensions. By using this encoding approach,

we are able to adopt evolutionary computation in discriminative

subgraph mining which explores candidate subgraph patterns

efficiently in a randomized fashion. We also use parallel

computation to further improve the quality of the resulting

discriminative patterns by integrating the results from independent

instances of pattern evolution. Experiments show that GAIA runs

much faster and offers competitive or better classification

accuracy than the state-of-the-art discriminative subgraph mining

algorithms no matter whether with or without parallel

computation, even when running on the datasets that the

competitor algorithms are optimized for. In addition, GAIA shows

linear scalability with respect to the size of graph database.

7. ACKNOLEDGMENTS
We thank Sayan Ranu for making implementation of graphSig

available.

8. REFERENCES
1. D. Bandyopadhyay, J. Huan, J. Liu, J. Prins, J. Snoeyink,

W.Wang, and A. Tropsha. Structure-based function inference

using protein family-specific fingerprints, Protein Science,

vol. 15, pp. 1537-1543, 2006.

2. C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X.

Yan, J. Han. Mining Graph Patterns Efficiently via

Randomized Summaries, in Proceedings of the 35th

International Conference on Very Large Data Bases

(VLDB’09), 2009.

3. H. Cheng, D. Lo, Y. Zhou, X. Wang and X. Yan, Identifying

Bug Signatures Using Discriminative Graph Mining,

Proceedings of the 2009 International Symposium on

Software Testing and Analysis (ISSTA 09), Chicago, IL,

July 2009.

4. K. A. De Jong, Evolutionary Computation: A Unified

Approach. Cambridge, MA, USA: MIT Press, 2006, p 71-

113, p 130-132.

5. M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis.

Frequent Sub-structure Based Approaches for Classifying

Chemical Compounds. IEEE Trans. Knowl. Data Eng.

17(8): 1036-1050, 2005.

6. M. A. Hasan and M. J. Zaki. Output Space Sampling for

Graph Patterns, in Proceedings of the 35th International

Conference on Very Large Data Bases (VLDB’09), 2009.

7. C. Helma, T. Cramer, S. Kramer, and L.D. Raedt. Data

mining and machine learning techniques for the

identification of mutagenicity inducing substructures and

structure activity relationships of noncongeneric compounds.

J. Chem. Inf. Comput. Sci., 44:1402-1411, 2004.

8. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent

subgraph in the presence of isomorphism, Proceedings of the

3rd IEEE International Conference on Data Mining (ICDM),

pp. 549-552, 2003.

9. J. Huan, W. Wang, J. Prins, J. Yang. SPIN: Mining maximal

frequent subgraphs from graph databases, in Proceedings of

the 10th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (SIGKDD), pp. 581-

586, 2004.

10. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based

algorithm for mining frequent substructures from graph data.

In Proc. of 2000 European Symp. Principle of Data Mining

and Knowledge Discovery, pages 13-23, 2000.

11. N. Jin, C. Young and W. Wang, Graph Classification Based

on Pattern Co-occurrence, in Proceedings of the ACM 18th

Conference on Information and Knowledge Management

(CIKM), Hongkong, 2009.

12. M. Kuramochi and G. Karypis. Frequent subgraph discovery.

In Proc. of ICDM, pages 313-320, 2001.

13. S. Ranu and A. K. Singh. GraphSig: A Scalable Approach to

Mining Significant Subgraphs in Large Graph Databases, in

Proceedings of the 25th International Conference on Data

Engineering (ICDE), April, 2009.

14. H. Saigo, N. Kraemer and K. Tsuda: Partial Least Squares

Regression for Graph Mining, In Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD2008), 578-586, 2008.

15. M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A.

Smola, L. Song, P. Yu, X. Yan, K. Borgwardt. "Near-optimal

supervised feature selection among frequent subgraphs", In

SDM 2009, Sparks, Nevada, USA.

16. J. R. Ullmann. An algorithm for Subgraph Isomorphism.

Journal of ACM, 23(1):31-42, 1976.

17. X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant

graph patterns by leap search. In Proceedings of the ACM

SIGMOD International Conference on Management of Data,

pages 433–444, 2008.

18. X. Yan and J. Han. gSpan: graph-based substructure pattern

mining. In Proceedings of the 2002 IEEE International

Conference on Data Mining, pages 721–724. IEEE

Computer Society, 2002.

