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ABSTRACT 

Discriminative subgraphs are widely used to define the feature 

space for graph classification in large graph databases. Several 

scalable approaches have been proposed to mine discriminative 

subgraphs. However, their intensive computation needs prevent 

them from mining large databases. We propose an efficient 

method GAIA for mining discriminative subgraphs for graph 

classification in large databases. Our method employs a novel 

subgraph encoding approach to support an arbitrary subgraph 

pattern exploration order and explores the subgraph pattern space 

in a process resembling biological evolution. In this manner, 

GAIA is able to find discriminative subgraph patterns much faster 

than other algorithms. Additionally, we take advantage of parallel 

computing to further improve the quality of resulting patterns. In 

the end, we employ sequential coverage to generate association 

rules as graph classifiers using patterns mined by GAIA. 

Extensive experiments have been performed to analyze the 

performance of GAIA and to compare it with two other state-of-

the-art approaches. GAIA outperforms the other approaches both 

in terms of classification accuracy and runtime efficiency. 

Categories and Subject Descriptors 
H.2.8 [Database management]: Database Applications---data 

mining; I.5.2 [Pattern Recognition]: Design Methodology---

Classifier design and evaluation; Feature evaluation and selection 

General Terms 
Algorithms, Experimentation, Performance 

Keywords 
Graph mining, graph classification 

1. INTRODUCTION 
Graphs can be used to represent complex structural information in 

many scientific applications, including chemical compound 

structures, 3-D protein structures, and program dependence graphs 

and so on. There is a great need for building automated graph 

classification models and identifying discriminative graph features 

that separate different graph classes. For example, chemists want 

to be able to predict which chemical compounds are toxic and 

which components are characteristics of chemical toxicity 

[Helma, 2004]; biologists are interested in studying which 

proteins are able to bind certain ligands and which can be used to 

treat diseases [Bandyopadhyay, 2006]; computer scientists seek to 

find out how to locate bugs in programs by identifying 

discriminative subgraphs in program flow graphs [Cheng, 2009]. 

Performing these classification tasks by hand is intractable 

computationally, thus increasing attention has been devoted in 

developing graph classification methods in recent years. 

1.1 Related Work 
Existing research often assumes a binary graph classification task 

where a target graph set and a background graph set are given and 

the objective is to construct a classification model for 

distinguishing them. One straightforward solution [Deshpande, 

2005; Bandyopadhyay, 2006] to graph classification is first 

finding frequent subgraph patterns [Inokuchi, 2000; Kuramochi, 

2001; Yan 2002; Huan 2003] in the target graph set and then 

selecting as features those that rarely occur in the background set. 

The subgraph features can be used to represent each graph as a 

feature vector and the problem of graph classification thus 

converts to classification of high dimensional data points. One 

major drawback of this approach is that it can find an enormous 

quantity of frequent subgraph patterns in the target set, which 

inhibits its ability to handle large datasets. 

To overcome this drawback, recent approaches search directly for 

discriminative subgraph patterns that can better assist graph 

classification rather than for frequent subgraph patterns which 

may not necessarily be more discriminative. Leap [Yan, 2008] is a 

pioneer in discriminative subgraph pattern mining. It looks for the 

optimal subgraph pattern in terms of discrimination power with a 

branch-and-bound technique, taking advantage of the fact that 

structurally similar subgraphs tend to have similar discrimination 

power. It also uses a technique called “frequency descending 

mining” to exploit the correlation between subgraph frequency 

and subgraph discrimination power. Another algorithm gPLS 

[Saigo, 2008] adopts the powerful mathematical tool of partial 

least squares regression for discriminative subgraph pattern 

mining to collect informative subgraph patterns and build a 

classifier directly. CORK [Thoma, 2009] proposes to use 

correspondence to measure the discrimination power of subgraph 

patterns and thereby achieves a theoretically near-optimal 

solution. Given a set of subgraph patterns, the number of 

correspondences is the total number of pairs of graphs that these 

subgraphs cannot discriminate.  

All three of these algorithms are theoretically sound and can 

guarantee optimal or near-optimal solutions in some sense. They 
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outperform previous graph classification methods considerably 

both in terms of speed and classification accuracy. However, the 

pursuit of theoretical optimality led to relatively poor runtime 

efficiency which became the focus of some more recent 

algorithms such as graphSig [Ranu, 2009] and COM [Jin, 2009]. 

The major contribution of graphSig [Ranu, 2009] is that it 

provides an efficient solution to mining discriminative subgraph 

patterns with extremely low frequencies. It first converts graphs to 

feature vectors by performing Random Walk with Restarts on 

each node. Then it divides graphs into small groups such that 

graphs in the same group have similar vectors. It mines frequent 

subgraphs in each group with high frequency thresholds because 

high similarity in vectors in the same group indicates that the 

corresponding graphs in the group share highly frequent 

subgraphs. It also proposes a k-NN classification method using 

the frequent subgraphs. COM [Jin, 2009] makes use of a heuristic 

subgraph exploration order to find discriminative patterns faster 

and use them to prune redundant subgraph patterns. In addition to 

subgraph patterns, it also takes into account co-occurrences of 

subgraph patterns. Co-occurrences of small subgraph patterns are 

often able to approximate large patterns and thereby significantly 

reduce the mining time for large patterns. Moreover, there are 

cases where co-occurrences of subgraph patterns are able to 

discriminate graphs where individual subgraph patterns fail. COM 

uses association rules as classifiers instead of Support Vector 

Machine to improve the efficiency in classifier construction and 

interpretability of the classifier. Both COM and graphSig are 

much faster than Leap. GraphSig produces higher accuracy than 

Leap in classifying chemical compounds. COM has comparable 

classification accuracy to that of Leap for chemical compounds 

but gives better accuracy for proteins. 

In addition to the discriminative subgraph pattern mining 

algorithms mentioned above, there is some other recent work 

aiming at improving the efficiency of subgraph mining. [Hasan, 

2009] proposes the idea of output space sampling in the domain of 

frequent subgraph mining, which is a generic sampling approach 

and can use different probability distributions to focus on different 

types of subgraph patterns. One of its applications is to sample 

discriminative subgraph patterns. It uses Ullmann’s subgraph-

isomorphism [Ullmann, 1976] algorithm to compute the support 

of subgraph patterns instead of using embeddings of subgraph 

patterns because it visits subgraph patterns randomly and 

embeddings may be unavailable when it visits a pattern from its 

super-pattern. As a result, its runtime efficiency is relatively poor. 

In addition, as is mentioned in the paper, it is difficult to find a 

probability distribution for discriminative subgraph pattern 

sampling. Another recent frequent subgraph mining algorithm, 

SUMMARIZE-MINE [Chen, 2009], attempts to solve the 

problem that arises with large graph databases whose embedding 

information requires more storage than is available in memory. 

SUMMARIZE-MINE randomly merges some nodes with the 

same labels into one node and compresses edges accordingly to 

reduce the size of graph databases. It performs the ad-hoc 

compression several times independently to reduce the probability 

of false negatives.  

1.2 Our Contribution 
In this paper, we propose a novel algorithm GAIA (Graph 

clAssification with evolutIonary computAtion) to mine 

discriminative subgraph patterns for graph classification. We 

introduce a novel subgraph encoding method using the notion of 

conditional canonical adjacency matrix. Given a graph database 

and the embedding information of a subgraph pattern we are able 

to calculate its canonical sequence representation in O (|V|2) 

instead of the exponential time needed in previous methods, 

where |V| is the number of nodes in the pattern. We also apply 

evolutionary computation, which is a randomized searching 

strategy for optimal solution which simulates biological evolution, 

to look for discriminative subgraph patterns. To the best of our 

knowledge, this is the first work to introduce evolutionary 

computation to the field of discriminative subgraph mining. The 

major difficulty of using evolutionary computation to find 

discriminative subgraphs is that there is no existing subgraph 

exploration method that can explore subgraph patterns randomly 

and track such exploration in an efficient way.  However, 

randomized exploration order is essential to the success of 

evolutionary computation. We overcome this difficulty by using 

the novel subgraph encoding method. Using evolutionary 

computation also enables us to take advantage of the more and 

more widely available parallel computing resources. We improve 

the quality of resulting subgraph patterns by running many 

instances of the algorithm in parallel and then generate a 

consensus result that has better discrimination power than any 

resulting set from an individual execution. 

1.3 Organization 
The remainder of this paper is organized as follows. We introduce 

the notion of conditional canonical adjacency matrix and the 

subgraph encoding method in Section 2.  Section 3 describes the 

framework and mechanisms of the evolutionary computation used 

in GAIA. Section 4 explains how we generate classifiers with 

discriminative subgraph patterns and how we perform parallel 

computing to improve the quality of resulting patterns. 

Experimental results are given in Section 5. Section 6 concludes 

the paper. 

2. ENCODING SUBGRAPH PATTERNS 

WITH CONDITIONAL CANONICAL 

ADJACENCY MATRIX 
DEFINITION 1 (Graph).  A graph is denoted by g = (V, E), 

where V is a set of nodes and E is a set of edges connecting the 

nodes. Each graph in the graph database has a unique graph ID 

starting from 1. In a graph, each node has a unique ID starting 

from 1. Both nodes and edges may have labels. 

For example, in Figure 1, there are two graphs in the graph 

database and they have graph IDs 1 and 2 respectively. The text in 

each node is in the form of (node ID : node label). Two nodes in a 

graph may have the same label but they cannot have the same 

node ID. Two nodes in two different graphs can have the same 

node ID but they do not necessarily represent the same entity and 

may have different labels. For simplicity, the presence or absence 

of an edge can be encoded by a binary label (1 for presence and 0 

for absence). 

DEFINITION 2 (Subgraph Isomorphism). The label of a node 

with node ID u is denoted as label(u) and the label of an edge (u, 

v) is denoted as label((u, v)). For two graphs g and g’, if there is 

an injection f: V(g)  V(g’), such that for any node with node ID 

u in V(g), label(u) = label(f(u)) and for any edge (u, v) in E(g), 

label((u, v)) = label((f(u), f(v))), then g is a subgraph of g’ and g’ 

is a supergraph of g, or g’ supports g.  

For example, in Figure 1, Pattern 1 is a subgraph of both Graph 1 

and Graph 2. 



DEFINITION 3 (Embedding). Given a subgraph isomorphism 

injection f: V(g)  V(g’), the node set {f(u) | u  V(g)} is an 

embedding of g in g’. g can have multiple embeddings in g’ 

because there may exist more than one injection. A sorted 

embedding organizes the nodes in an embedding in increasing 

order of their node IDs. An embedding code B is the 

concatenation of the graph ID of g’ and the sorted embedding. 

The first element in an embedding is the graph ID and the 

remaining elements are node IDs. 

For example, in Figure 1, Pattern 1 has two embeddings in Graph 

1, which are {1, 2, 3} and {1, 5, 6} in the form of sorted 

embeddings, and one embedding in Graph 2, which is {1, 2, 5}. In 

total, Pattern 1 has three embedding codes: <1, 1, 2, 3>, <1, 1, 5, 

6> and <2, 1, 2, 5>. 

DEFINITION 4 (Adjacency Matrix). Given an embedding code 

B of pattern p based on a subgraph isomorphism injection f, the 

adjacency matrix M of p is a  matrix, where V is the node 

set of pattern p and each entry of M 1 satisfies:  

 

 always exists Figure 2 shows the three adjacency matrices 

corresponding to the three different embedding codes of pattern p.  

DEFINITION 5 (Matrix Code). The matrix code of a subgraph 

pattern p is the sequence formed by row-wise concatenation of the 

lower triangle entries of an adjacency matrix M of p. 

For example, the matrix codes corresponding to Matrices 1, 2, 3 in 

Figure 2 are N1C01C, N0C11C and C1C10C, respectively. 

DEFINITION 6 (Conditional Canonical Adjacency Matrix). 
Given a graph database, where each graph has a unique graph ID, 

the conditional canonical adjacency matrix of a subgraph pattern p 

is the adjacency matrix corresponding to the lexicographically 

smallest embedding code of p. 

For example, in Figure 1, given the graph database composed of 

Graph 1 and Graph 2, the conditional canonical adjacency matrix 

of Pattern 1 is Matrix 1 in Figure 2.  

It is “conditional” because only when a graph database is given 

can the canonical adjacency matrix be defined and generated. It is 

“canonical” because as long as a graph database is given, two 

isomorphic subgraph patterns must have the same conditional 

canonical adjacency matrix since two isomorphic subgraph 

patterns must have the same embeddings and therefore the same 

lexicographically smallest embedding code. 

DEFINITION 7 (CCAM Code). Given a graph database, where 

each graph has a unique graph ID, the CCAM Code of a subgraph 

pattern p is the matrix code corresponding to the conditional 

canonical adjacency matrix of p. 

For example, in Figure 1, given the graph database composed of 

Graph 1 and Graph 2, the CCAM code of Pattern 1 is N1C01C. 

Given a graph database, two isomorphic subgraph patterns must 

have the same CCAM code because they have the same 

conditional canonical adjacency matrix. 

                                                                 
1 All subscripts are indexed starting at 1. 

  

Figure 1: an example of graph and subgraph pattern 

 

 

Figure 2: three adjacency matrices of pattern C-C-N 

Previous subgraph pattern encoding methods, such as minimum 

DFS code [Yan, 2002] and CAM code [Huan, 2003], only look at 

the structural information of the pattern, but do not take advantage 

of the embedding information. The complexity of computing any 

type of canonical code from a graph is NP-complete because it is 

proven to be equivalent to solving subgraph isomorphism which is 

NP-complete. However, in all efficient subgraph pattern mining 

algorithms, such as FFSM [Huan 2003], SPIN [Huan 2004] and 

COM [Jin, 2009], all embeddings of a pattern are actually already 

maintained and sorted in increasing order of graph IDs by the 

algorithms in order to calculate pattern frequency efficiently. 

Therefore, the embedding information is available when a 

subgraph pattern mining algorithm computes canonical codes. 

Given embeddings of a pattern p in a graph database sorted by 

graph IDs, the complexity of computing CCAM code of p can be 

reduced to O (|V|2), where |V| is the number of nodes in p. The 

computation can be completed in three steps:  

1. Retrieve embeddings with the smallest graph ID 

2. For each embedding, sort the node IDs in ascending order  

and keep track of the lexicographically smallest embedding 

code B 

3. Construct the conditional canonical adjacency matrix 

according to B and generate the CCAM code 

The complexity of the first step can be considered as O (1) 

because the embeddings are already sorted and the number of 

embeddings with the smallest graph ID can be upper-bounded by 

a small constant in most applications. The complexity of the 

sorting step is O (|V|*lg |V|) where |V| is the number of nodes in p 

because the number of embeddings from Step 1 is considered as a 

constant. The complexity of the third step is O (|V|2) because the 

size of the matrix is O (|V|2). Therefore, we can compute CCAM 

code in O (|V|2) time by taking advantage of embedding 

information that has been calculated already. This significant 

improvement in time efficiency is essential to GAIA because 

GAIA does not require a frequency threshold and therefore cannot 

prune subgraph patterns based on frequency. Most other subgraph 
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mining algorithms, such as gSpan [Yan, 2002], FFSM [Huan, 

2003], SPIN [Huan, 2004], Leap [Yan, 2008], gPLS [Saigo, 2008] 

and COM [Jin, 2009], use a frequency threshold to limit the 

examination to only frequent subgraph patterns. In addition, using 

CCAM code allows arbitrary edge extensions to a subgraph 

pattern while previous encoding methods only allows certain 

types of edge extensions in order to maintain canonical codes of 

patterns efficiently. 

One potential challenge of this encoding method is that the 

number of embeddings in Step 2 may be large especially when the 

patterns are small. We solve this problem by encoding patterns 

differently according to their sizes: one-edge patterns are encoded 

with their minimum matrix codes and larger patterns are encoded 

with their CCAM codes. 

3. MINING DISCRIMINATIVE 

SUBGRAPH PATTERNS WITH 

EVOLUTIONARY COMPUTATION 
The first goal of our work is to find a set of discriminative 

patterns among which each positive graph can have at least one 

representative pattern for graph classification and we achieve this 

goal by exploring candidate patterns in a process resembling 

biological evolution, a.k.a. evolutionary computation, 

implementing some of the evolutionary mechanisms such as 

competition and migration. Evolutionary computation can be 

viewed as a generic search process for solutions of high quality or 

fitness, which begins with a set of sample points in the search 

space and gradually biases to regions of high fitness. In the 

problem of discriminative pattern mining, we define a fitness 

function to measure the potential classification power of a pattern 

and larger patterns that can be generated by subgraph extension.  

As a result, our evolutionary search process here is directed 

toward subgraph patterns with high classification power.  

3.1 Fitness Function 
We use two types of scores to measure the fitness of a subgraph 

pattern: log ratio score and score per edge.  

DEFINITION 8 (Positive Frequency and Negative 

Frequency). The positive (negative) frequency r+(p) (r-(p)) of a 

subgraph pattern p is the ratio of the number of positive (negative) 

graphs containing p to the total number of positive (negative) 

graphs in the graph database. 

DEFINITION 9 (Log Ratio Score). The log ratio score of a 

subgraph pattern p is a function of the positive and negative 

frequencies of p and is defined as: 

 

The log ratio score is used to measure the fitness of patterns. Its 

rationale is that if two patterns have the same positive frequency 

(negative frequency) then the one with lower negative frequency 

(higher positive frequency) is better for discriminating positive 

graphs from negative graphs and is thus fitter to survive. To solve 

the problem of denominator being zero, when calculating the 

negative frequencies, we add an imaginary negative graph that has 

all subgraph patterns. Thus, the negative frequency of any pattern 

p is never zero.  

This function is asymmetric w.r.t. positive and negative 

frequencies. It focuses on subgraph patterns with high positive 

frequency and low negative frequency rather than patterns with 

low positive frequency and high negative frequency. In many 

applications, such as structure-based protein and chemical 

compound classification, positive graphs are much more likely to 

share common discriminative subgraph patterns than negative 

graphs. This is because that positive graphs typically have some 

common characteristics (e.g. a biological function) while negative 

graphs (e.g., those lacking a biological function) are often diverse. 

However, even if negative graphs share some common 

discriminative subgraph patterns, these patterns can be found 

easily by switching the roles of positive graphs and negative 

graphs.  

DEFINITION 10 (Score per Edge). The score per edge of a 

subgraph pattern p is a function of the positive frequency r+(p), 

negative frequency r-(p) and number of edges m(p) and is defined 

as: 

 

The score per edge function is used to alleviate the risk of 

potential overfitting. For patterns of competitive log ratio scores, 

the score per edge function favors patterns containing fewer 

edges. This is necessary in finding discriminative patterns for 

graph classification because large patterns tend to have low 

positive and negative frequencies and thus are likely to be useless 

in classification. Spending time in finding such patterns is not 

worthwhile if there exist some smaller patterns having similar log 

ratio scores. Therefore, when we measure the fitness of a pattern 

p, we consider not only its log ratio score but also its score per 

edge. By doing this, we can avoid many seemingly discriminative 

but useless patterns. This function is analogous to the Minimum 

Description Length model in information theory in the sense that 

we use the number of edges to measure the description length.   

3.2 Framework of the Pattern Evolution: 

Organization and Resources 
For each graph gi in the positive graph set G+, we store a 

representative subgraph pattern and a list of up to s candidate 

subgraph patterns, where s is bounded (from above) by the 

available memory space divided by the number of graphs.  Figure 

3 illustrates the organization of candidate patterns and 

representative patterns. Only subgraphs of gi with positive log 

ratio scores can be its representative or in its candidate list. The 

representative pattern has the highest log ratio score among all 

patterns that are subgraphs of gi found during pattern evolution. 

Although one pattern can be subgraphs of several positive graphs, 

each pattern can only be in one candidate list at any time. The 

candidate lists are initialized with one-edge patterns. Whether and 

where a pattern will be placed in candidate lists will be discussed 

in Subsection 3.4.  

The total number of subgraph patterns that the candidate lists can 

hold at any time is the product of s and | G+|. The motivation of 

the design of this framework is to cause selection pressure which 

can significantly speed up the convergence of evolutionary search. 

When the total size of candidate lists is less than the total number 

of patterns that can be found in positive graphs, not all patterns 

can be held in the candidate lists at the same time. As a result, one 

resource that candidate patterns need to compete for is a slot in 

candidate lists. In other words, patterns have to compete for 

survival and not all patterns are considered in the search process. 



Generally speaking, the larger the candidate lists are, the less 

selection pressure there is and thereby the more patterns are 

considered in the search. When the candidate lists are infinitely 

large, the search process becomes an exhaustive search. 

Another resource that candidate patterns compete for is the 

opportunity to extend or, analogous to biological evolution, to 

produce offspring. All subgraph pattern mining algorithms start 

with small subgraph patterns and then extend them into larger 

patterns. However, pattern extension is a costly operation and not 

every pattern extension leads to a discriminative pattern. In an 

evolutionary search process, candidate patterns compete for the 

opportunity of pattern extension according to their fitness, which 

enables the search process to focus on candidate patterns that are 

more likely to lead to discriminative patterns. Although it does not 

guarantee that it reaches the globally optimal solution faster 

because of the existence of local optimal solutions, our 

experiments show that in reality it has significant speed advantage 

over other methods. 

Figure 3: organization of candidate patterns 

3.3 Pattern Extension  
All candidate patterns currently in the candidate lists have a non-

zero probability of being selected for pattern extension. To 

perform pattern evolution, GAIA runs for n iterations, where n is 

a parameter set by the user. During each iteration, we select one 

pattern from each candidate list for extension. The probability of 

pattern p in candidate list of gi to be selected for extension is 

proportional to the log ratio score of p and is calculated as 

follows: 

 

 

The probability is always between 0 and 1 because only patterns 

with positive log ratio scores are allowed in candidate lists as 

described in Subsection 3.2. This selection method is commonly 

used in evolutionary algorithms and an analysis on it can be found 

in [De Jong, 2006]. The intuition here is that candidate patterns 

with higher scores are more likely to be extended to patterns with 

high scores because structurally similar subgraph patterns have 

similar discrimination power [Yan, 2008]. Note that when s = 1, 

each candidate list only holds 1 pattern. The probability of this 

pattern being selected for extension is 1. When s > 1, multiple 

patterns may be held in a candidate list. A random number 

generator is used to determine which pattern is selected for 

extension according to their probabilities. 

For an extension operation of pattern p, GAIA generates a pattern 

set X(p) and each pattern p’ in X(p) has one new edge attached to 

p. This new edge is not present in p and it can be either between 

two existing nodes in p or between one node in p and a new node. 

Unlike many previous subgraph pattern mining algorithms that 

only extend patterns with certain types of edges in order to 

efficiently maintain their canonical codes, GAIA considers all 

one-edge extensions of pattern p that occur in the positive graphs. 

This difference in extension operation is essential to GAIA 

because evolutionary computation is essentially a heuristic search 

for optimal solution. This difference enables GAIA to explore the 

candidate pattern space in any direction that appears promising. 

Extensions of different patterns can produce the same pattern 

because a pattern p with k edges can be directly extended from all 

of its subgraphs with k-1 edges. Therefore, a lookup table is 

needed by GAIA to determine whether a pattern has already been 

generated to avoid repetitive examination of the same pattern. In 

our implementation of GAIA, we use map in C++ STL to 

implement the lookup table. The codes for pattern lookup are 

generated by the encoding method described in Section 2. 

If pattern p extends into pattern p’ and the log ratio score of p’ is 

less than that of p, then the edge extension is undesirable since it 

produces a “child” pattern that is less fit for survival than the 

parent. We consider such a decline in log ratio score as a sign of 

extending in a wrong direction and thus eliminate p’ from survival 

and further extension. It is also possible that no extensions of p 

have better log ratio scores. In fact we can estimate a loose upper-

bound of their scores before extending p. The log ratio score of 

any extension p’ reaches its upper-bound when r+(p) = r+(p’) and 

r-(p’)=0, where r+ and r- are positive and negative frequencies 

respectively. If this upper-bound of log ratio score is no greater 

than that of p, then we do not need to extend p. 

In addition to the log ratio score, we also use the “score per edge” 

measure to decide whether a new pattern should survive and have 

further extension. Assume that pattern p extends into pattern p’. 

Even if the log ratio score of p’ is greater than that of p, the score 

per edge of p’ can still be less than that of p. If the score per edge 

function decreases steadily during successive extensions, then we 

want to prune these extensions. We quantify the change in score 

per edge between a pattern and its extensions by a variable called 

“momentum”. If the score per edge value of a pattern p’ is greater 

than that of its parent pattern p, then the momentum value of p’ is 

the momentum value of p added by 1; otherwise, the momentum 

value of p’ is the momentum value of p subtracted by 1. All one-

edge patterns whose log ratio scores are positive have momentum 

values being 1 (Patterns with non-positive log ratio scores are not 

allowed in the candidate lists). If a new pattern has its momentum 

value less than 0, this new pattern is pruned. We choose to prune 

patterns with decreasing score per edge values rather than patterns 

with low score per edge values because we consider a downward 

trend in score per edge as a stronger sign of unpromising 

extensions. In our experiments, using log ratio score to calculate 

momentum can result in 2-4 times longer runtime than using score 

per edge with the same classification accuracy because using log 

ratio scores considers more unpromising extensions. 
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3.4 Pattern Migration and Competition 
In most cases, an extension operation on one pattern generates 

many new patterns and as a result the number of patterns found by 

the algorithm grows. Sooner or later the number of patterns will 

exceed the number of available positions in the candidate lists. It 

is also possible that the number of one-edge patterns already 

exceeds the number of available positions in the candidate lists at 

the very beginning if s is small. Therefore some rules are needed 

to determine which patterns should survive in the candidate lists 

and which candidate list they should dwell in.   

First, a pattern that has already been extended should not “live” in 

the candidate lists any longer because it has served its role in 

generating new patterns. 

Second, some pattern in the candidate list may migrate to the 

candidate list of another graph if such migration will increase its 

chance of survival. Let p be the candidate pattern for migration 

and G(p) be the set of graphs containing p.  Let gi be the graph in 

G(p) which has the lowest value of 

 p will migrate 

to the candidate list of gi. The rationale for this pattern migration 

is that if a pattern wants to survive then it should go to a candidate 

list with the least fierce competition. In GAIA, the fierceness of 

competition of a candidate list is measured by the sum of log ratio 

scores of patterns in the list. 

If the candidate list of gi still has vacant positions, then p can 

move into one vacant position directly. However, if the candidate 

list is already full, then p has to compete with the “resident” 

patterns in the list. One straightforward approach to let p compete 

with “resident” patterns is to compare the log ratio score of p and 

the minimum log ratio score among “resident” patterns. If the 

score of p is greater than the minimum score among “resident” 

patterns, then p takes the position of pattern p’ with the minimum 

score and p’ no longer exists in any candidate list; otherwise, p 

fails to survive and will not exist in any candidate list. The 

disadvantage of this greedy approach is that it ignores the fact that 

patterns with low log ratio scores may still have some potential to 

extend into patterns with high log ratio scores and patterns with 

high log ratio scores at the time may have reached their limits and 

will never extend to better patterns. Therefore, GAIA adopts a 

randomized method for pattern competition which is commonly 

used by evolutionary algorithms. The score of p is compared 

against the score of a pattern p’, which is randomly selected with 

probability 1/s from the candidate list.  If the score of p is higher, 

then p’ is eliminated and p takes the position of p’; otherwise, p is 

eliminated. By doing so, GAIA can at least have a chance to 

protect some of the “weak” patterns and give them an opportunity 

to extend into “strong” patterns. The benefit of this randomized 

approach is more evident when s is reasonably large. Note that 

when s = 1 the randomized strategy is essentially the same as the 

greedy strategy. 

Again, the exhaustive extension operation is of great importance 

to allow pattern competition and elimination. When we eliminate 

a pattern p, the real loss is not only this pattern but also the 

patterns generated by extending p. In previous subgraph pattern 

mining algorithms, such as gSpan [Yan, 2002] and FFSM [Huan, 

2003], a pattern p can only be extended from one of its 

subpatterns, p’. If p’ is lost, then the algorithms will never find p. 

As a result, for these algorithms, allowing pattern elimination will 

surely lose many patterns, some of which are discriminative 

patterns. But in GAIA, eliminating p’ does not necessarily lead to 

the loss of p because the exhaustive extension operation allows p 

to be extended from many different patterns. As a result, the risk 

of missing discriminative patterns is much lower than other 

subgraph mining algorithms.  

Figure 4 is an algorithmic description of pattern evolution in 

GAIA. The inputs are the positive graph set G+, the negative 

graph set G-, the (optional) maximum size of each candidate list, 

and the (optional) maximum number of iterations. The output is 

the representative patterns of the positive graphs. 

Figure 4: algorithm of pattern evolution 

Figure 5: algorithm of pattern migration 

4. GENERATING ASSOCIATION RULES 

FOR GRAPH CLASSIFICATION 
Given a set of discriminative subgraph patterns, the second goal 

of our work is to generate a classifier to predict positive graphs 

and negative graphs. We choose association rule as the model of 

classifiers because of its success in COM [Jin, 2009] and its 

simplicity in computation and interpretation. However, different 

from COM, in each resulting association rule we only use one 

subgraph pattern instead of a combination of several patterns 

because (1) estimating combinations of disconnected patterns is 

time-consuming and (2) GAIA can locate large discriminative 

patterns far more efficiently than previous algorithms and thus 

does not need to approximate large patterns by combinations of 

small patterns. 

Algorithm: Migrate (p, T) 

p: a pattern 

T: candidate lists 

1. g =  

2. if (the candidate list of g has vacant positions) 

3.     insert p into the candidate list of g 

4. else 

5.     randomly select a pattern p’ in the candidate list of g 

6.     if (log_ratio_score (p) > log_ratio_score (p’)) 

7.         replace p’ with p 

Algorithm: Pattern_Evolution (G+, G-, n = INT_MAX,  

s = available_space/number_of_positive_graphs) 

G+: positive graph set 

G-: negative graph set 

s: maximum size of each candidate list,  

    by default equal to available_space/number_of_positive_graphs 

n: maximum number of iterations,  

    by default the maximum interger value in the system 

T: all candidate lists 

H: lookup table of patterns that have already been found 

1. D = {all edges that occur in G+} 

2. for each edge e in D 

3.     Migrate (e, T) 

4. for k = 1:n  

5.     if (all candidate lists are empty) 

6.         break 

7.     for each g in G+ 

8.         randomly select a pattern p in the candidate list of g  

9.         X (p) = {all patterns in G+ with one more edge attached to p} 

10.             for each pattern p’ in X (p) 

11.                 if (CCAM code of p’ is in H) 

12.                     continue 

13.                 insert p’ into H 

14.                 Migrate (p’, T) 
15.                 update representative patterns 



4.1 Association Rules 
DEFINITION 11 (Association Rule). In this paper, an 

association rule is defined as a classification rule in the form of p 

 L, where p is a subgraph pattern and L is the class label. If an 

object has the subgraph pattern p, then it is classified as L. The 

output of GAIA is an association rule set A. 

When the graph dataset only has two class labels, positive and 

negative, L is always positive since we only look for patterns 

whose positive frequencies are higher than their negative 

frequencies (see Subsection 3.1) and thus a graph g having the 

patterns in association rules indicates g is a positive graph. When 

we use association rules generated by GAIA to classify a new 

graph g, as long as g has any pattern in the association rules, we 

predict g as positive. If g does not have any pattern in the 

association rules, we predict it as negative. 

DEFINITION 12 (Sensitivity, Specificity and Normalized 

Accuracy).  

 

 

 

Given the representative subgraph patterns from pattern evolution, 

we generate association rules by sequential coverage. First we sort 

the representative patterns by their log ratio scores in decreasing 

order. Then we traverse all representative patterns in the sorted 

order (that is we visit patterns with higher log ratio scores first). 

For each representative pattern p, we evaluate whether inclusion 

of a new association rule p  positive in the resulting association 

rule set A can increase the normalized accuracy of classification of 

the training set. The new rule p  positive is to be included in A if 

and only if the normalized accuracy increases. The generation 

algorithm terminates when all representative patterns have been 

tested. The algorithmic description is shown in Figure 6. 

Figure 6: algorithm of generating association rules from 

representative patterns 

4.2 Generating Consensus Model with 

Parallel Computing 
Because GAIA is a randomized algorithm (when s > 1), each 

single run of pattern evolution may generate different 

representative patterns and consume varying amount of CPU time. 

Some runs of pattern evolution may find better representative 

patterns than others and thus lead to classifiers with higher 

normalized accuracy. Therefore, if we run many instances of 

pattern evolution in parallel and generate an association rule set 

based on all representative patterns found by these instances of 

pattern evolution, it is very likely that we can build a better 

classifier than using representative patterns from one instance of 

pattern evolution alone. Therefore, by generating a consensus 

model based on many parallel instances of pattern evolution and 

only using the fastest instances of pattern evolution, we can 

improve the classification accuracy and expected response time by 

taking advantage of parallel computing. We choose to start 

association rule generation before all instances complete because, 

if we wait for all the pattern evolution instances, the runtime of 

GAIA will be determined by the runtime of the slowest instance 

(The time for sequential coverage is trivial). Let c be the number 

of parallel instances of pattern evolution, which is a user specified 

parameter. We start generating association rules as soon as   

instances of pattern evolution have terminated and only use the 

representative patterns found by these  instances. The 

association rule set is generated by the same algorithm 

Sequential_Coverage described in Figure 6 with all representative 

patterns found by the fastest  instances as input R. 

5. EXPERIMENTS 
The algorithm was implemented in C++ and compiled with g++. 

The experiments were performed on a 2.20 GHz dual core and 3.7 

GB memory PC running Ubuntu Linux 9.10. We analyze the 

performance from two perspectives: runtime efficiency and 

normalized accuracy in graph classification applications. We 

evaluate two versions of GAIA: single-GAIA (when c=1) only 

performs one instance of pattern evolution to generate association 

rules and parallel-GAIA (when c>1 and s>1) runs in parallel c 

instances of pattern evolution, where c is a user-specified 

parameter, to generate association rules. For single-GAIA, we 

report the runtime of pattern evolution as the runtime of GAIA 

because the time for sequential coverage is trivial. For parallel-

GAIA, we report the longest runtime of the first  instances of 

pattern evolution as the runtime of parallel-GAIA because it starts 

generating association rules as soon as  instances complete. 

We use protein datasets and chemical compound datasets in our 

experiments. The protein datasets consist of protein structures 

from Protein Data Bank 2  classified by SCOP 3  (Structural 

Classification of Proteins). We use 16 protein datasets generated 

from all the large SCOP families with more than 25 members 

(listed in Table 1). In each dataset, protein structures in a selected 

family are taken as the positive set. Unless otherwise specified, 

we randomly select 256 other proteins (i.e., not members of the 16 

families) as a common negative set used by all protein datasets. 

To generate a protein graph, each graph node denotes an amino 

acid, whose location is represented by the location of its alpha 

carbon. There is an edge between two nodes if the distance 

between the two alpha carbons is less than 11.5 angstroms. Nodes 

are labeled with their amino acid type and edges are labeled with 

the distances between the alpha carbons. On average, each protein 

graph has 250 nodes and 2700 edges. The chemical compound 

datasets consist of chemical compound structures from PubChem4 

classified by their biological activities, listed in Table 2. These are 

                                                                 
2 http://www.rcsb.org/pdb/ 

3 http://scop.mrc-lmb.cam.ac.uk/scop/ 

4 http://pubchem.ncbi.nlm.nih.gov 

Algorithm: Sequential_Coverage (R, G) 

R: a set of representative patterns from pattern evolution 

G: training set 

A: the resulting association rule set 

1. A is empty 

2. sort patterns in R by log ratio scores in decreasing order 

3. for i = 1 : |R| 

4.     p = R[i] 

5.     A’  A 

6.     A’   

7.     t = normalized accuracy of classification on G using A 

8.     t’ = normalized accuracy of classification on G using A’ 

9.     if (t’ > t) 

10.         A   

 



all the bioassays used in [Yan, 2008] and [Ranu, 2009]. Each 

compound can be either active or inactive in a bioassay. Unless 

otherwise specified, for each bioassay, we randomly select 400 

active compounds as the positive set and 1600 inactive 

compounds as the negative set. The graph representation of 

compounds is straightforward. Each atom is represented by a node 

labeled with the atom type and each chemical bond is represented 

by an edge labeled with the bond type. On average, each 

compound graph has 55 nodes and 57 edges. 

Table 1: list of selected SCOP families 

SCOP ID Family name 
Number of 

selected proteins 

46463 Globins 51 

47617 Glutathione S-transferase (GST) 36 

48623 Vertebrate phospholipase A2 29 

48942 C1 set domains  38 

50514 Eukaryotic proteases 44 

51012 
alpha-Amylases, C-terminal beta-

sheet domain 
26 

51487 beta-glycanases 32 

51751 Tyrosine-dependent oxidoreductases 65 

51800 
Glyceraldehyde-3-phosphate 

dehydrogenase-like 
34 

52541 Nucleotide and nucleoside kinases 27 

52592 G proteins 33 

53851 Phosphate binding protein-like 32 

56251 Proteasome subunits 35 

56437 C-type lectin domains 38 

88634 Picornaviridae-like VP  39 

88854 Protein kinases, catalytic subunit 41 

 

Table 2: list of selected bioassays 

Assay 

ID 
Tumor description 

Total number 

of actives 

Total 

number of 

inactives 

1 Non-Small Cell Lung 2047 38410 

33 Melanoma 1642 38456 

41 Prostate 1568 25967 

47 Central Nerv Sys 2018 38350 

81 Colon 2401 38236 

83 Breast 2287 25510 

109 Ovarian 2072 38551 

123 Leukemia 3123 36741 

145 Renal 1948 38157 

167 Yeast anticancer 9467 69998 

330 Leukemia 2194 38799 

 

For each experiment, we run GAIA (for both single-GAIA and 

parallel-GAIA) 5 times and report the average normalized 

accuracy and average runtime of the 5 runs. Note that GAIA is a 

randomized algorithm and each run may have slightly different 

classification accuracy and runtime even though the standard 

deviations are very small. For chemical datasets, standard 

deviations of normalized accuracies are less than 0.01 and 

standard deviations of runtimes are usually less than 1 second for 

single-GAIA and less than 0.1 second for parallel-GAIA. For 

protein datasets, standard deviations of normalized accuracies are 

usually less than 0.03 and standard deviations of runtimes are less 

than 0.1 seconds. Therefore, we only report the average in the 

following analysis.  

5.1 GAIA Performance Analysis 
In this subsection, we study the performance of GAIA with 

respect to three parameters: s (maximum number of positions in a 

candidate list), n (maximum number of iterations) and c (number 

of instances of pattern evolution). 

First, we run single-GAIA (c = 1) with different s and n on the 

unbalanced chemical datasets and show the average normalized 

accuracy and average runtime in Table 3 and Table 4. In Table 3, 

n is fixed at 4 and we can see the normalized accuracy is generally 

insensitive to the variation in s. When n is large enough, larger s 

enables GAIA to perform a more extensive search for 

discriminative patterns because it allows more candidate patterns 

to be stored in candidate lists and visited in the search process, 

which is why when the value of s increases from 1 to 7 the 

normalized accuracy also increases. When the value of s further 

increases, the normalized accuracy starts to decrease because 

although the size of candidate lists allows GAIA to perform a 

more exhaustive search, GAIA only runs for n iterations and thus 

fails to take advantage of the large candidate lists. It can also be 

seen that although n is fixed, the average runtime varies and is 

correlated with the normalized accuracy. This is because, 

generally speaking, the more discriminative a pattern is the more 

frequent and larger it is and thus the more time it takes to compute 

all of its embeddings and perform extensions. In Table 4, we fix s 

at 10 and study the performance of single-GAIA with respect to n.   

means that pattern evolution terminates when all candidate lists 

are empty. We observe that increasing n can effectively improve 

normalized accuracy when n is small but only has marginal effect 

when n is large. When n is small, pattern evolution is far from 

convergence after n iterations and larger n can make the result 

closer to convergence. When n is sufficiently large, pattern 

evolution is already near convergence and further increase in n 

has little effect. Similarly, Table 4 also shows that larger n results 

in longer runtime due to more iterations. We provide n as an 

optional parameter for applications in which speed is crucial. 

Table 3: Normalized accuracy and average runtime of single-

GAIA with different values of s, where n = 4 (unbalanced 

chemical datasets) 

s Normalized accuracy Average runtime (sec) 

1 0.7295 2.3398 

3 0.7329 2.7545 

5 0.7310 2.8725 

7 0.7330 2.8705 

10 0.7298 2.7444 

30 0.7311 2.4278 

50 0.7300 2.4080 



70 0.7293 2.4207 

 

Table 4: Normalized accuracy and average runtime of single-

GAIA with different values of n, where s = 10 (unbalanced 

chemical datasets) 

n Normalized accuracy Average runtime (sec) 

1 0.7050 1.4192 

2 0.7198 1.8795 

4 0.7320 2.8066 

8 0.7325 4.0611 

 16 0.7363 5.7075 

32 0.7368 8.8772 

 

Then we study the effect of c to the performance of GAIA. Figure 

7 and Figure 8 show the average normalized accuracies of running 

GAIA with different c on chemical datasets and protein datasets 

respectively. Both figures illustrate that increasing c can result in 

higher average normalized accuracy. This positive correlation is 

due to the randomization in pattern evolution. Each instance of 

pattern evolution finds different representative patterns. One 

instance may be able to find a good representative pattern for gi 

but fail to find one for gj while another instance returns a good 

pattern for gj but not for gi. Therefore when the representative 

patterns from different instances are merged together, the average 

quality of representative patterns can be improved. Generally, the 

larger the value of c, the better the normalized accuracy of GAIA. 

Figure 9 and Figure 10 show the average runtime of GAIA with 

different c on chemical datasets and protein datasets respectively. 

Both figures show the same trend of average runtime as c 

increases: runtime starts to converge when c is large.  The runtime 

of GAIA is the sample median of the running times of c pattern 

evolution instances. When c is large enough, the runtime (sample 

median) should converge to the theoretical median of the runtime 

of all possible pattern evolution instances. Therefore, larger c 

leads to more stable runtime. 

 

Figure 7: average normalized accuracy vs. c (unbalanced 

chemical datasets) 

 

Figure 8: average normalized accuracy vs. c (unbalanced 

protein datasets) 

 

Figure 9: average runtime vs. c (unbalanced chemical 

datasets) 

 

Figure 10: average runtime vs. c (unbalanced protein 

datasets) 

Figure 11 and Figure 12 demonstrate the scalability of GAIA for 

chemical datasets as the number of positive graphs and number of 

negative graphs increase. In Figure 11, the number of negative 

graphs is fixed at 1600 and the number of positive graphs varies. 

The average runtime grows approximately linearly as the number 

of positive graphs increases. In Figure 12, the number of positive 

graphs is fixed at 400 and the number of negative graphs varies. 

We can see that the average runtime is linear to the number of 

negative graphs. 

 

Figure 11: average runtime vs. number of positive graphs 

(chemical datasets, number of negative graphs=1600) 
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Figure 12: average runtime vs. number of negative graphs 

(chemical datasets, number of positive graphs=400) 

5.2 Comparison with Other Methods 

5.2.1 Parallel-GAIA 
We first compare parallel-GAIA (denoted as GAIA in this 

subsubsection for simplicity) with two other state-of-the-art graph 

classification methods: COM [Jin, 2009] and graphSig [Ranu, 

2009], both of which claim to outperform Leap [Yan, 2008] in 

terms of runtime with competitive classification accuracy. COM 

also outperforms gPLS for the protein datasets. For GAIA, we use 

the parameters that give the best trade-off between runtime 

efficiency and classification accuracy. For COM and graphSig, we 

set the parameters that deliver the best results as suggested in [Jin, 

2009] and [Ranu, 2009] respectively. The parameters for the three 

methods are summarized in Table 5. To compare with graphSig, 

we use the eleven chemical datasets and randomly sample 400 

actives and 400 inactives from each dataset to form the training 

sets, because graphSig is implemented for balanced datasets. We 

also generate balanced protein datasets (number of negative 

graphs = number of positive graphs) to evaluate graphSig. We do 

not compare with Leap because graphSig outperforms Leap in 

chemical datasets and COM outperforms Leap in protein datasets 

with both faster speed and higher accuracy. 

Table 5: summary of parameters/environment 

 
Parameters for chemical 

datasets 

Parameters for protein 

datasets 

GAIA s=10, n=4, c=32 s=100, n=10, c=32 

COM tp=1%, tn=0.4% tp=30%, tn=0% 

graphSig 
maxPvalue=0.1, 

minFreq=0.1% 

maxPvalue=0.1, 

minFreq=0.1% 

 

Figure 13 shows the normalized accuracy comparison between 

graphSig, GAIA and COM for balanced chemical datasets. GAIA 

delivers better normalized accuracy than graphSig on most 

datasets though not all of them. The average normalized accuracy 

of GAIA is 2.2% higher than that of graphSig. COM generally has 

lower normalized accuracy than GAIA and graphSig. 

 

 

Figure 13: normalized accuracy comparison for balanced 

chemical datasets between GAIA, COM and graphSig 

Figure 14 compares the runtime of graphSig, GAIA and COM for 

the balanced chemical datasets. GAIA demonstrates a huge 

advantage in runtime performance. For all datasets, GAIA is 

20.44 times faster than graphSig on average. In addition, GAIA 

also outperforms COM considerably for every chemical dataset in 

terms of speed (on average 2.83 times faster). 

 

Figure 14: runtime comparison for balanced chemical 

datasets between GAIA, COM and graphSig 

 

Figure 15: normalized accuracy comparison for balanced 

protein datasets between GAIA, COM and graphSig 

Figure 15 and Figure 16 compare the normalized accuracy and 

average runtime performance respectively between graphSig, 

GAIA and COM. GraphSig is not comparable in processing 

protein datasets. Its speed is 2 orders of magnitude slower and its 

normalized accuracy is close to 0.5. This is mainly because 

graphSig is specifically designed and optimized for chemical 

compound datasets. Between GAIA and COM, GAIA is on 

average about 1.2 times faster and has a normalized accuracy 

5.7% higher than that of COM. 
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Figure 16: runtime comparison for balanced protein datasets 

between GAIA, COM and graphSig 

 

Figure 17: normalized accuracy comparison for unbalanced 

chemical datasets between GAIA and COM 

 

Figure 18: normalized accuracy comparison for protein 

datasets between GAIA and COM 

Since both GAIA and COM can handle unbalanced datasets, we 

use the unbalanced chemical datasets and unbalanced protein 

datasets described at the beginning of this section to provide 

additional comparison. Figure 17 and Figure 18 show the 

normalized accuracy comparison. For chemical datasets, 

normalized accuracy of GAIA is 6.86% higher than that of COM 

on average. For protein datasets, normalized accuracy of GAIA is 

2.7% higher than that of COM on average.  

 

Figure 19: runtime comparison for unbalanced chemical 

datasets between GAIA and COM 

 

Figure 20: runtime comparison for unbalanced protein 

datasets between GAIA and COM 

Figure 19 and Figure 20 compare the runtimes of the two methods 

for chemical datasets and protein datasets respectively. On 

average, GAIA is 3.8 times faster than COM for chemical datasets 

and 1.5 times faster than COM for protein datasets. 

5.2.2 Single-GAIA 
Considering that parallel-GAIA demands more computation 

resources than COM and graphSig when outperforming them, we 

also compare single-GAIA with the other two methods to further 

demonstrate the advantage of GAIA. Table 6 summarizes the 

average runtime and average normalized accuracy comparisons 

between single-GAIA, parallel-GAIA, COM and graphSig using 

the datasets used in Subsubsection 5.2.1. The parameters are the 

same as listed in Table 5 except that for single-GAIA c=1. It can 

be seen in Table 6 that even without parallel computing, single-

GAIA can excel COM and graphSig in terms of both average 

runtime and normalized accuracy. The only exception is that the 

average normalized accuracy of single-GAIA for the unbalanced 

protein datasets is 3.27% lower than that of COM. 

Table 6: summary of comparison between single-GAIA, 

parallel-GAIA, COM and graphSig 

 
Single-
GAIA 

Parallel-
GAIA 

COM graphSig 

Balanced 

chemical 
datasets 

Runtime 

(sec) 
1.296 1.210 3.430 24.73 

Accuracy 0.7029 
5
 0.6988 0.6428 0.6768 

Balanced 

protein 
datasets 

Runtime 

(sec) 
0.5996 0.5748 0.6788 51.13 

Accuracy 0.7665 0.7855 0.7285 0.5250 

Unbalanced 

chemical 

datasets 

Runtime 

(sec) 
2.807 2.752 10.44 N/A 

Accuracy 0.7320 0.7368 0.6682 N/A 

Unbalanced 

protein 

datasets 

Runtime 
(sec) 

2.047 2.028 3.059 N/A 

Accuracy 0.7605 0.8202 0.7932 N/A 

 

                                                                 
5 Most of the time parallel-GAIA has higher accuracy than single-

GAIA, but single-GAIA may have slightly higher accuracy 

when single-GAIA alone can already produce high accuracy and 

thus parallel computing cannot improve it. 
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6. CONCLUSIONS 
In this paper, we investigate the problem of efficiently finding 

discriminative subgraph patterns in graph databases for graph 

classification. We propose an efficient subgraph encoding 

approach that makes use of embedding information and supports 

arbitrary subgraph extensions. By using this encoding approach, 

we are able to adopt evolutionary computation in discriminative 

subgraph mining which explores candidate subgraph patterns 

efficiently in a randomized fashion. We also use parallel 

computation to further improve the quality of the resulting 

discriminative patterns by integrating the results from independent 

instances of pattern evolution. Experiments show that GAIA runs 

much faster and offers competitive or better classification 

accuracy than the state-of-the-art discriminative subgraph mining 

algorithms no matter whether with or without parallel 

computation, even when running on the datasets that the 

competitor algorithms are optimized for. In addition, GAIA shows 

linear scalability with respect to the size of graph database.  
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