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ABSTRACT
In this paper, we propose an online aggregation system called
COSMOS (Continuous Sampling for Multiple queries in an
Online aggregation System), to process multiple aggregate
queries efficiently. In COSMOS, a dataset is first scram-
bled so that sequentially scanning the dataset gives rise to a
stream of random samples for all queries. Moreover, COS-
MOS organizes queries into a dissemination graph to ex-
ploit the dependencies across queries. In this way, aggre-
gates of queries closer to the root (source of data flow) can
potentially be used to compute the aggregates of descen-
dent/dependent queries. COSMOS applies some statistical
approach to combine answers from ancestor nodes to gener-
ate the online aggregates for a node. COSMOS also offers
a partitioning strategy to further salvage intermediate an-
swers. We have implemented COSMOS and conducted an
extensive experimental study in PostgreSQL. Our results on
the TPC-H benchmark show the efficiency and effectiveness
of COSMOS.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design

Keywords
Online aggregation, sampling, random, dissemination graph

1. INTRODUCTION
Queries involving aggregates are widely used in many ap-

plications. For example, in Online Analytical Processing
(OLAP), large amount of data stored in a data warehouse

∗This work is funded by Singapore NRF grant R-252-000-
376- 279

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

are typically aggregated and summarized to support busi-
ness analysis and decision making. Unfortunately, aggre-
gate queries are computationally expensive to process (which
leads to long processing time) and have traditionally been
evaluated based on a blocking execution model (which leads
to long initial response time).

To handle the challenges, Hellerstein et. al. [8] proposed
(non-blocking) online aggregation mechanisms that return
approximate answers to users (almost) instantly. Instead of
giving users a precise answer of an aggregate, online aggrega-
tion methods continuously generate running aggregates and
their corresponding confidence intervals for the users. The
idea is to continuously draw samples from a dataset, com-
pute an approximation of an aggregate quickly with the sam-
ples, and refine the approximate aggregate as more samples
are picked. Error bounds and confidence intervals are also
computed and updated at the same time to give the user an
indication of the quality of the approximate answers. Since
samples are much smaller than the size of the dataset, the
computation cost to return the first approximate answer is
short. Moreover, as aggregate queries are mainly used to get
a rough picture of a large dataset, it is expected that users
will terminate the evaluation of their queries prematurely as
long as they are satisfied with the quality of the answers.
Thus, the (effective) processing time of the query may be
lower than it would take to compute the precise aggregate
value.

In this paper, we study how to efficiently deploy online
aggregation for processing multiple aggregate queries. Mul-
tiple “aggregate” queries come in several flavors. A single
complex query may involve multiple aggregates. For ex-
ample, a nested query that involves aggregates in both the
outer and inner query blocks. As another example, con-
sider the following query (that finds the average supplier-
quantity supplied by suppliers of a particular part) which is
not uncommon in data warehouse applications (the lineitem
schema is taken from the TPC-H benchmark):

SELECT AVG(quantity)
FROM (SELECT supp, part, SUM(quantity) as quantity

FROM lineitem
WHERE part = 10
GROUP BY supp, part);

It is also possible for a single user to be switching between
multiple aggregate queries. This is common in OLAP ap-
plications where a user may roll up and drill down between
nodes of his/her data cube operation. Finally, aggregate
queries issued by different users may share the same base ta-
bles. We note that there are potential dependencies among



(sub-)queries, i.e., we can potentially derive the online ag-
gregate of a (sub-)query from the online aggregates of other
(sub-)queries. Moreover, we can potentially reuse samples
retrieved to evaluate a number of queries (in contrast to each
query retrieving its own samples).

We propose an online aggregation system called COSMOS
(Continuous Sampling for Multiple queries in an Online ag-
gregation System), to process multiple aggregate queries ef-
ficiently. COSMOS has a number of distinguishing features.
First, it randomly scrambles a dataset so that tuples re-
trieved from anywhere can be considered as a random sam-
ple for all queries. Second, it continuously scans the scram-
bled dataset sequentially to generate a stream of samples.
Third, to exploit the dependencies across queries, COSMOS
organizes queries into a dissemination graph so that queries
closer to the root feed their descendent/dependent queries
with their estimated answers (as they are refined). Such a
structure also minimizes the computational overhead. Fourth,
COSMOS offers a partitioning strategy to further salvage
intermediate answers. Finally, COSMOS applies some sta-
tistical approach to combine answers from ancestor nodes to
generate the online aggregates for a node.

Several other works have also adopted the idea of con-
tinuously scanning a dataset. For example, in the DataCy-
cle project, the entire database is broadcast cyclically over
high-bandwidth communication networks to a large num-
ber of data filters that perform complex associative search
operations in parallel [3]. More recently, George et. al. pro-
posed the CJOIN pipeline that continuously pipes tuples
from a fact table to a sequence of filters of a large num-
ber of queries [4]. Our COSMOS shares similar motivation;
however, COSMOS cycles through a scrambled dataset to
produce a stream of random samples. COSMOS is differ-
ent from previous schemes as it is designed for approximate
query processing. Each node in our dissemination graph is a
query (compared to a dimension filter in CJOIN) and nodes
share aggregate results (not raw tuples).

We have implemented COSMOS, and evaluated it against
PostgreSQL using the TPC-H benchmark. Our extensive
performance study shows that COSMOS can converge to
good approximation answers quickly. Moreover, it is shown
to be more efficient than naive approaches.

The rest of this paper is organized as follows. In the next
section, we give an overview of COSMOS. In Section 3, we
present our approach of organizing the queries as a dissem-
ination graph. Section 4 presents the statistical estimators
used in our online aggregation methods. In Section 5, we
report results of an experimental study. Section 6 reviews
some related works. Finally, we conclude this paper in Sec-
tion 7.

2. COSMOS: THE BIG PICTURE
Figure 1 shows the system architecture of COSMOS. COS-

MOS comprises two major components: the scrambler and
the dissemination graph.

2.1 The Scrambler
Given a dataset, the task of the scrambler is to gener-

ate a stream of random samples from the dataset. This has
traditionally been performed at runtime by picking samples
randomly from the dataset. However, we advocate storing
the sequence of random samples as a scrambled dataset. In
this way, by scanning the scrambled dataset, we can produce
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Figure 1: System Architecture of COSMOS

a stream of random samples. This design is motivated by
a number of simple and yet interesting observations (which
also correspond to the strengths of such an approach). First,
we obtain only one random sample from a random page ac-
cess of the original dataset, while we have one page of ran-
dom samples from a page of the scrambled dataset. Second,
we have effectively eliminated random look-ups, and can now
sequentially scan the scrambled dataset for samples. This
means the I/O cost for sampling is significantly reduced. In
fact, the “gain by doing all data accesses in sequential order
can be enormous” as “completely random disk access can be
five orders of magnitude slower than sequential access” [9].
The results reported in [9] showed that the throughput of
random access verses sequential access are 316 values/sec
and 53.2M values/sec respectively (this study was done on
a Windows 2003 server with 64 GB RAM and eight 15,000
RPM SAS disks in RAID5 configuration, and each record
is 16 bytes). Our own preliminary study indicates that se-
quentially scanning a 100 GB dataset is only about 1,400 sec,
which corresponds to the time to randomly sample 1.5% of
the dataset. Third, by reading k pages of samples, we es-
sentially have a larger number of samples (than k samples
had k random pages been accessed as in conventional ap-
proaches). This will also translate to a lower error bound
and a higher confidence (our experimental study in Section 5
confirms this). Putting it in another way, it means that we
can arrive at the same accuracy as the conventional method
much faster with fewer number of page accesses, or with
better accuracy with k sequential page accesses. Fourth,
we can continuously cycle through the scrambled dataset -
when the last page is read, processing continues with the
first page, and so on. This means that we can start sam-
pling for a query at any arbitrary page at the time when
the query is admitted for processing. We refer to the first
page read for each query as its anchor page. A query com-
pletes with the precise answer, if necessary, when the same
anchor page is read again. Moreover, a query that arrives
at a later time can potentially reuse sample results (i.e., not
the data samples themselves) from earlier queries (which are
still running), and hence can “back-date” its anchor page to
an even earlier anchor page, further improving the accuracy
of the estimated aggregates within a shorter time. In ad-
dition, such an approach is easy to manage and incurs low
overhead.

To scramble a dataset, we adopt a simple strategy: we
scan a file sequentially; as we scan each tuple, we place it in
a randomly picked position in a scrambled dataset (which
is initially empty). The scrambled dataset is then further
scrambled in the same manner. This process is repeated a
number of times. Eventually, the scrambled dataset is used
as the source dataset for online aggregation.

For queries that involve multiple relations, it may be nec-



essary to generate a random sample stream for the inter-
mediate results. Basically, two approaches can be applied.
We can precompute the join result and scramble the result.
Or alternatively, we build indexes on the join attributes of
queries to exploit index nested loops join. To generate a ran-
dom sample stream from a two-way join, we pick one relation
as the outer relation (R) and the other relation as the inner
relation (S). We retrieve samples from R as in the single
relational case, i.e., by sequentially scanning the scrambled
dataset. For each sample record from R, we search the index
of S. The join output forms a random sample streams for the
join of the two relations. The first scheme trades storage for
efficiency and accuracy, while the second scheme sacrifices
efficiency and accuracy for flexibility. In data warehouse sys-
tems, most queries are primary-key/foreign-key joins (e.g.
TPC-H schema). We can apply the first scheme to scramble
data. On the contrary, if queries are issued on the fly. The
second scheme is more appropriate.

In our system, we adopt an offline batch-update strategy.
The updates to the data warehouse system are collected and
performed in a batch mode. During this period, no queries
will be processed. If a large number of updates need to
be performed, we will rebuild the scrambled dataset after
all updates are committed. Otherwise, for each newly in-
serted tuple t, we randomly select a tuple t′ from scrambled
dataset and replace t′ with t. t′ is appended to the end of
the scrambled dataset.

2.2 Organization of Queries into a
Dissemination Graph

The second component is the dissemination graph, which
is a directed acyclic graph (DAG), where nodes represent
queries, and a directed edge between two nodes represent
the dependency between the two queries. Such dependency
allows the results of a parent node to be used by its child
node. The data source is the root of the graph. As shown
in Figure 1, data pages read from the scrambled dataset are
first held in a sample buffer. Records in the buffer are then
disseminated to queries, and discarded so that the buffer
space is freed for other pages to be read.

In one extreme, we can have a fat (two-tier) dissemina-
tion tree where all queries are dependent on just the sam-
ple stream source only. This corresponds to the case where
each query is processed independently However, each sam-
ple read is reused by all queries. A general dissemination
graph offers more opportunities for sharing intermediate an-
swers (not data). For example, consider the following three
queries (using TPC-H schema as the example):

Q1 select avg(discount) from lineitem where quantity<20
group by returnflag;

Q2 select avg(discount) from lineitem where returnflag=’r’
or returnflag=’a’;

Q3 select avg(discount) from lineitem;

Suppose these queries arrive in the order Q1, followed by Q2,
and then Q3. Now, although Q1 and Q2 share a subset of
the data, it is not possible to salvage the answer of Q1 for Q2

if we naively maintain only one single running average and
error bound for Q1. Fortunately, we observe the following: if
we had partitioned the answers of Q1 based on returnflag
(e.g. we generate running averages and error bounds for
discount with different returnflags), then we can reuse the
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Figure 2: Salvaging Results of Queries

output of two partitions (returnflag=’r’ and ’a’) for Q2

(Q1 only needs to examine tuples whose quantity ≥ 20 for
returnflag=’r’ or ’a’)! Likewise, it is clear that we can
(possibly) reuse the output of Q2 for Q3. The problem,
however, becomes more challenging for Q3 since it can reuse
the partitions of both Q1 and Q2. It is difficult to combine
Q1 and Q2’s partitions to generate a result for Q3. Thus,
we need a more aggressive strategy to be able to salvage
intermediate results.

Figure 2 shows the example of reusing partitions among
the queries. Suppose the table is partitioned by quantity
and returnflag into 9 grids. Q2 can reuse the results of grids
5, 6, 8 and 9 from Q1, while Q3 can reuse the results of all
the grids except the first one. It is interesting to note that
the order of query arrivals can affect reuse. For example,
had Q3 arrived first, then it could have been partitioned in
a manner that benefit both Q1 and Q2.

Now, we can identify four key challenges in the design
of the dissemination graph. First, we need to determine
how samples and answers should be partitioned. Our idea
is to partition samples and answers into grids (as shown in
Figure 2), and to salvage grids that are contained with the
scope of a query. Second, we need a way to measure the
relationships (or dependencies) between queries. Based on
the relationships, we can build the DAG to reuse the sam-
ple answers. Third, we need to dynamically maintain the
DAG as queries are submitted/admitted and completed. Fi-
nally, each query’s answers are derived from possibly multi-
ple answers of its parent nodes (including the sample stream
source). We need statistical estimators to merge these par-
tial answers into a query answer. We shall discuss our solu-
tions to the first three issues in Section 3, and the last issue
in Section 4.

3. THE DISSEMINATION GRAPH
Given a set of queries, we organize them into a data-flow

graph. Each node in the graph corresponds to a query, and
the nodes are connected via data streams. Samples and par-
tial results are shared via the data streams between nodes.
When a new query joins the system, it selects some nodes
as its data source and notifies these nodes about its required
samples/answers. The corresponding nodes will generate a
data stream for the new node. Samples or partial results are



then streamed to the new node which then combined these
into its own final results (and possibly maintaining some
partial results for reuse). In this section, we discuss how to
build and maintain this dissemination graph.

3.1 Query-Based Partitioning
When a new query joins the system, we need to evaluate

its relationship with existing queries. In particular, if two
queries need to process a common subset of tuples, we can
share the samples or partial results of this subset between
the queries, e.g, queries Q1 and Q2 in our discussion in Sec-
tion 2. However, as noted, Q2 can potentially exploit the
output of Q1 only if Q1 had maintained partitions of its an-
swers. Moreover, even if Q1 had actually partitioned in a
manner that Q2 can reuse the answers, it is possible that
another query Q4 (e.g., select avg(discount) from lineitem
groupby returnflag, quantity;) may come along that cannot
take advantage of the partitioning of Q1 (which is beneficial
for Q3). To deal with this problem, we adopt, as a first cut,
a straightforward solution - to partition the data space stat-
ically into hypergrids (grids in short) so that only girds that
are fully contained in an answer can be salvaged.

To partition the data space into grids, we need to identify
candidate attributes for partitioning. We identify two types
of columns as candidates for partitioning. The first type of
columns (type-1) are those appearing in“Group By”clauses.
By partitioning such columns, we reuse the samples for an-
swering “Group By” queries. The second type of columns
(type-2) are columns appearing in “Where” predicates. We
can reuse the samples to answer queries with different selec-
tion predicates after partitioning type-2 columns.

For a type-1 column, we partition the column based on
the group names if the number of groups is fewer than Ng

(a predetermined system parameter). Otherwise, we parti-
tion the column as a type-2 column. For a type-2 column,
we partition the column based on the values. In the fol-
lowing discussion, we focus on how to adaptively partition
type-2 column. One straightforward method is to partition
the space uniformly (e.g. for each column of a table, we par-
tition it into k equal-size cells). Unfortunately, this method
suffers from the curse of dimensionality - a table with 10 par-
titioning columns where each column is split into 10 ranges
will result in 1010 grids. The number of grids may be even
larger than the number of tuples. Maintaining partial results
for all grids is not practical.
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!#

Figure 3: Query-based Partitioning

An alternative approach, which we refer to as Partition,
is to partition the space based on the query workload. A
query training set can be collected as representative of the
workload. The idea of this scheme is to partition the space
for each query such that grids are fully contained in some
queries and we can easily share the partial results between
queries. Figure 3 illustrates the idea of this approach. We

partition the space based on two queries Q1 and Q2. A
5×5 partition is generated and the search ranges of a query
composes 4 grids. Q1 and Q2 share a common grid. This ap-
proach works well if the combination of search conditions is
limited. However, in most cases, this approach will also gen-
erate too many grids. To reduce the maintenance overheads,
we propose an adaptive query-based partitioning scheme,
QueryPartition, to merge some partitions.

Algorithm 1 QueryPartition(QuerySet Sq, int pNum)

1: P = Partition(Sq)
2: if |P | ≤ pNum then
3: return P
4: else
5: while |P | > pNum do
6: Sa = getAttributes()
7: for ∀ai ∈ Sa do
8: Ri = getRange(ai, P )
9: for ∀rj ∈ Ri do

10: P ′
i = combine(rj , rj−1)

11: x = computeGridUtility(P ′
i )

12: if x > max then
13: max = x, candidate = P ′

i
14: P = P ′

i

Algorithm 1 presents the algorithmic description of our
adaptive scheme. Sq is the training set and pNum is a sys-
tem set maximal number of partitions. We first use scheme
Partition to partition the space. If the number of gener-
ated partitions is fewer than pNum, we can terminate the
process (lines 1-3). Otherwise, we proceed to merge parti-
tions iteratively (lines 5-14). In each iteration, we combine a
set of partitions. Specifically, for each partitioned attribute,
suppose it has been split into k sub-ranges r1, r2, ..., rk. We
try to combine the consecutive ranges (line 10), After the
corresponding partitions are merged, we evaluate the utility
of the current partitioning. Among all possible mergings,
we select the combination that maximizes the utility. In
this work, we adopt a simple metric for utility - we simply
count the number of grids that can be reused. The number
of grids is reduced in each iteration and we can terminate
the processing when the number of grids is fewer than the
threshold.

3.2 Dissemination Graph
The purpose of parititioning the space is two fold. First,

it allows us to easily determine how a query can be par-
titioned to potentially benefit other queries. In Figure 2,
we have pre-partitioned the space into 9 grids (based on two
attributes, quantity and returnflag). When Q1 arrives, it or-
ganizes its (partial) answers into 6 partitions (based on the
pre-partitioning). Second, it allows us to easily determine
what can be shared. In Figure 2, when Q2 joins, it organizes
its (partial) answers into 6 partitions, and “notices” that it
can reuse the partial answers from 4 partitions of Q1.

The dissemination graph is a directed acyclic graph (DAG).
Each node represents a query. We also use Qi to denote
node i and query Qi interchangeably. The sample stream
source, denoted Q0, forms the root node of the DAG. An
edge Qi → Qj indicates that there is a data stream from Qi

to Qj . In particular, for an edge of the form Q0 → Qi, the
actual sample data are transmitted from the sample source
(Q0) to node Qi. Qi will then compute the aggregates for
the partitions based on the samples collected. If a query



involves only part of a grid (rather than a full grid), the
summary data are also computed for them; however, such
partial partitions cannot be salvaged and shared. The sam-
ples are then discarded. Note that it is possible that a query
does not fit the pre-partitioning (e.g., a query that groups
by discount). In this case, such a query also draws its sam-
ple data from Q0 and computes its own answers. For such
queries, our current solution does not offer any opportunity
for salvaging their answers. More aggressive sharing meth-
ods are needed, which we plan to explore in future work.

On the other hand, for an edge of the form Qi → Qj

(i, j (= 0), no actual samples are transmitted; instead, it is
the aggregates of those grids that are shared that are trans-
mitted from Qi to Qj . Referring to Figure 2, the numbers
on the edges denote the data (sample or partial results) of
grids that should be transmitted - the normal font denotes
actual samples, while the italized bold font denotes sum-
mary/aggregate data.

Let uplink(Qi) and downlink(Qi) denote the uplink nodes
and downlink nodes of Qi, respectively. Let Sq denote the
current query set. We have

∀Qj ∈ Sq ,∃(Qj → Qi) ⇒ Qj ∈ uplink(Qi)

∀Qj ∈ Sq,∃(Qi → Qj) ⇒ Qj ∈ downlink(Qi)

Qi accepts the data streams from nodes in uplink(Qi) and
it streams data to the nodes in downlink(Qi). Each query
node registers its required grids in its uplink nodes, and
records where it is getting these grids from. Referring to
Figure 2, at Q1, we see that Q2 has registered that it needs
the aggregate data for grids 5, 6, 8 and 9; and Q3 has reg-
istered its interests in the summary data for grids 4 and 7.
We also see that Q2 keeps track of the source of its data
(it is receiving from Q1 partial results of grids 5, 6, 8 and
9, and sample data for grids 2 and 3 from the root). The
node in the dissemination graph disseminates its samples or
partial results according to the registration information of
its downlink grids. The dissemination graph defines how the
samples are disseminated among the queries.

We are now ready to discuss how the dissemination graph
is constructed. The idea of constructing a dissemination
graph is to facilitate the samples’ sharing. As we share the
samples in the granularity of grids, the relationship between
two queries is also defined by the involved grids. Generally,
if two queries involve the same grid, we can reuse the partial
answers of the grid. The grids can be classified into three
types for a specific query Qi.

1. Grid gx is fully contained by Qi’s search range.

2. Grid gx overlaps with Qi’s search range and Qi does
not fully contain gx.

3. Grid gx does not overlap with Qi.

For a type-1 grid, Qi needs to retrieve samples from the
sample source (Q0) if there are no existing queries for it
to salvage; otherwise, if partial result is available, it will
reuse it. For a type-2 grid, Qi needs to retrieve sample
from Q0 to compute its partial result on the fly, as partial
result of such a grid cannot be used by Qi (since they are
obtained based on samples from the entire grid space). We
use f1(Qi) and f2(Qi) to denote the type 1 and type 2 grid
sets of Qi, respectively. To simplify the presentation, we
define function F as follows.

Definition 1. Let Sg and Sq denote the set of grids and
queries respectively. F : Sq ×Sq → Sg. Let Sr = F (Qi, Qj),
Sr denotes the set of grids, which are fully contained by both
Qi and Qj.

F returns the grids that can be shared between the queries.
It is obvious that F (Qi, Qj) = F (Qj, Qi).

Let Sq denote the current query set in the system. When
an incoming query Qi joins the system, we search queries
in Sq and connects Qi to the queries, whose partial results
can be reused. The intuition is to maximize the result’s
sharing. Algorithm 2 shows the idea of retrieving the cor-
responding queries. First, we rank queries in Sq with re-
gard to Qi by function F in a descending order (lines 2-
5). If two queries Q1 and Q2 have the same F value (e.g.
F (Q1, Qi) = F (Q2, Qi)), Q1’s score is higher than that of
Q2’s, i.f.f. |f1(Q1)| < |f1(Q2)|. In other words, we pre-
fer the queries that involve fewer type 1 grids. Then, we
continuously retrieve the top query from the list until the
search range of the incoming query has been fully covered
or there is no candidate query left (lines 6-16). After insert-
ing a query into the result set, we recompute the scores and
(reusable) grids of the remaining queries (lines 13-15). We
reduce the query’s score by removing the effect of queries in
the result set. We overload F to compute the set of grids
between two grid sets.

Algorithm 2 RankQuery(Query Qi, QuerySet Sq)

1: Sr = ∅
2: for ∀Qj ∈ Sq do
3: grid[j] = F (Qi, Qj)
4: score[j] = |F (Qi, Qj)|
5: List = sort(Sq, score)
6: while true do
7: Qk = List.removeF irst()
8: if score[k] < 0 then
9: return Sr

10: Sr = Sr ∪ {Qk}
11: if Sr fully covers Qi or List is empty then
12: return Sr

13: for ∀Qj ∈ List do
14: score[j] = score[j]− |F (grid[j], F (grid[k], grid[i]))|
15: grid[j] = grid[j] − F (grid[j], F (grid[k], grid[i]))
16: List = sort(List, score)

Algorithm 3 Join(Query Qi, QuerySet Sq)

1: Sr = RankQuery(Qi, Sq)
2: G = f1(Qi) ∪ f2(Qi)
3: for ∀Qj ∈ Sr do
4: add edge Qj → Qi

5: register F (Qi, Qj) ∩ G in Qj for Qi

6: G = G − F (Qi, Qj)
7: if G (= ∅ then
8: add edge root → Qi

Suppose Algorithm 2 returns Sr for the incoming query
Qi. Qi joins the system as a descendent of queries in Sr.
Specifically, for any query Qj in Sr, we add an edge Qj →
Qi. Algorithm 3 illustrates the join process of a query node.
In line 2, G represents the grids involved in Qi. We iterate
through all queries in Sr and add the corresponding edges
(line 3-6). When adding an edge Qj → Qi, Qi registers the
grids that are required to be retrieved from Qj . Finally, if
some grids cannot be found in the existing query set, Qi di-
rectly draws the samples from the root node (sample source).



The data stream from the root to a query composes of sam-
ples retrieved from the database, whereas the data stream
from one query to another composes of partial results of
grids.
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Figure 4: Q6 joins the dissemination graph

Figure 4 illustrates the process of adding a new query into
the dissemination tree. In this example, we assume that the
data space has been partitioned into 9 grids (labelled 1 to
9). The figure shows that Q1 basically requests for sample
tuples that fall into grids 1 to 5. At Q1, the partial answers
of grids 1 to 5 will be maintained. Q3 requires samples from
grids 4 to 8. However, it can reuse the summary of grids 4
and 5 from Q1, but will need to retrieve sample tuples of
grids 6-8 from the stream source. Now, suppose Q6 joins
the system and it fully covers grids 2,3 and 8, and partially
overlaps with grid 9. Q6 searches existing queries and try
to reuse the results of grids 2, 3 and 8. Query Q1, Q2 and
Q4 can share their results of grid 2. Q2 is chosen as it
only maintains results for three grids and thus has lower
overheads. Similarly, Q2 and Q5 are chosen to provide the
results of grids 3 and 8. As Q6 only partially overlaps with
grid 9, it directly retrieves samples from the sample source.
To improve performance, it inherits the buffered samples for
this grid from the sample source.
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Figure 5: Q3 leaves the dissemination graph

When a query terminates, we need to remove it from
the stream graph and reorganize the query nodes. Suppose
query Qi is finished. We need to remove the registered infor-
mation from the queries in uplink(Qi), and reorganize the
queries in downlink(Qi) since these queries depended on Qi

for partial answers. Algorithm 4 illustrates the idea of han-
dling query departure. For each query Qj in downlink(Qi),
we rank the queries in uplink(Qi) for Qj . Then, based on
the results, we add new edges between the queries. Figure 5
shows an example of the reorganization of data streams be-
tween the queries. Here, Q3 (in Figure 4) completes its
processing and leaves the systems. Its downlink nodes Q4

and Q5 need to adjust their links. Based on Algorithm 4,
the new data stream is shown in Figure 5, where Q4 and Q5

are now linked to the root and Q1.

3.3 Online Aggregation Over The
Dissemination Graph

In this section, we describe how COSMOS operates. In the
dissemination graph, the root continously scans the scram-
bled dataset and retrieves samples to its buffer. Each node

Algorithm 4 Leave(Query Qi)

1: remove edges from nodes in uplink(Qi) to Qi

2: remove edges from Qi to nodes in downlink(Qi)
3: for ∀Qj ∈ downlink(Qi) do
4: G = f1(Qj) ∪ f2(Qj)
5: Sr = RankQuery(Qj, uplink(Qi))
6: for ∀Qk ∈ Sr do
7: add an edge E(Qk → Qj)
8: register F (Qj, Qk) ∩ G in Qk for Qj

in the graph receives two types of data streams (one of which
may be empty). The data stream connecting the root to the
query node provides the actual samples for grids. The data
stream connecting two query nodes transfers aggregate val-
ues and statistics of type-1 grids (the grids that are fully
contained by the query). To reduce the update overheads,
the root only forwards the samples (as a batch) to other
nodes when its buffer is full. As each node receives the batch
of samples, it recomputes its aggregates and error bounds,
and updates its downlink nodes. The incoming stream data
will trigger an update event for a query node to employ Al-
gorithm 5 to update its result and error bound.

Algorithm 5 Update(StreamData S, Query Qi)

1: Qi.updateGrid(S)
2: GridSet G=Qi.getGrid()
3: for ∀gi ∈ G do
4: compute aggregate and variance
5: update error bound and confidence using variance
6: forward S to Qi’s downlink nodes
7: if Qi.isComplete() || error bound and confidence satisfy

the requirement then
8: return result with error bound and confidence

In Algorithm 5, the query node first updates the results
of its involved grids based on the new stream data (line 1).
If the stream data are partial results of type-1 grids, the
node just copies the new results.1 If the stream data are
new samples from the database, we need to recompute the
aggregate results of the grids (type 1 and type 2) (lines 3-4).
We shall defer the discussion on the formulas for computing
the aggregates for type-1 and type-2 grids to Section 4. It
suffices to note that at the end of this step, we have a set
of aggregates and error bounds for each grid. Note that the
actual aggregate and error bound of a query may require
merging the partial results (line 5). Again, we shall defer
our discussion on how such partial results are merged to
Section 4.

After the query updates its result, it starts to disseminate
the grid results to its downlink nodes (line 6). For a downlink
node Qi and its registered grid set G, ∀gi ∈ G, if the results
of gi has been updated, we forward gi’s new results to node
Qi.

The query can be terminated in two cases (line 7). First,
the query has scanned the whole dataset and generates the
precise result. Initially, when a query receives a sample for
a grid, it will mark the grid with the anchor page of the
sample. If the grid sees the same anchor page again, it stops
receiving new samples as it has scanned the whole data set.

1In our implementation, we did not duplicate multiple copies
of partial results. Instead, we only store one copy of the
summarized result, and provide a pointer to the appropriate
grids.



If all grids involved in the query stops receiving samples,
the query can generate the precise result. Moreover, if a
query node receives the information of a grid from its uplink
node, it will inherit the anchor page information from the
uplink node. The second condition of query termination is
determined by the user. If the user is satisfied with the
result, he can stop the query processing before scanning the
whole dataset.

In the above discussion, we show the maintenance strat-
egy of the dissemination graph, which is designed to salvage
samples of the grids that are fully contained by queries. If
the grid partially overlaps with a query, we must draw its
samples from the sample stream source. Let the grid set
that overlaps with the current queries be Sg . To facilitate
the query processing in Sg, we maintain a sample cache for
the grids in Sg. Specifically, the sample source keeps k re-
cent samples for each grid gi in Sg. When a new sample is
retrieved for gi, it will be inserted into the cache and if the
cache is full, the oldest sample is discarded.

Given a new query Q, suppose gi partially overlaps with
Q. After Q joins the dissemination graph, we check gi’s
sample cache in the source node. For the samples that pass
the predicates of Q, we use them to compute the initial
result of gi (To efficiently locate the samples that satisfy
the predicates, we can apply an index structure, such as R-
tree, to maintain the samples in cache ). After initialization,
gi’s result will be updated by the samples that are directly
streamed from the source.

4. STATISTICAL ESTIMATION
In COSMOS, for each query/node in the dissemination

graph, there are three kinds of estimates to evaluate: (a)
estimates for type-1 grid - this is needed for those nodes that
are connected directly to the sample source; for those that
salvage the results, they simply reuse them; (b) estimates
for type-2 grid - this is needed for a query that requires
grids that partially overlap its query region and samples have
to be drawn from the sample source; (c) estimates for the
query itself - this requires integrating the above two kinds
of estimates. In this section, we first present the statistical
estimates used to compute estimates for type-1 and type-
2 grids. Then, we look at how multiple estimates can be
aggregated.

4.1 Estimators for Grids
In this paper, we use avg, sum and count as examples.

Other aggregate operators can be handled in the same way.
For each grid gi, we also maintain a count, denoted as H(gi),
of the number of tuples in gi seen so far. H(gi) will be used
in the result estimation.

For a table R = {c0, c1, ..., ck}, we refer to ci as an ag-
gregate column if it can appear as an aggregate attribute
in a query. For example, returnflag in lineitem is not an
aggregate column (since there is no query that computes an
aggregate on returnflag), while discount is an aggregate
column. We use C to denote the set of aggregate columns of
a table.

Generally speaking, we need to keep two types of partial
results for a grid gi, the aggregate results and the corre-
sponding statistics. For a table R = {c0, c1, ..., ck}, if ci ∈ C,
we precompute all its possible aggregations. For example,
suppose grid gi has received N samples. Let the current ag-
gregate values of ci be avg(ci) = Vavg, sum(ci) = Vsum and

count(ci) = Vcount, respectively. Since we maintain H(gi),
we have Vcount = H(gi). For the other two aggregate val-
ues, after receiving a new tuple t = {v0, v1, ..., vk} of R, if t
belongs to grid gi, we update the aggregate values of ci as:

avg(ci) =
VavgN + vi

N + 1
(1)

sum(ci) =
VsumN + H(gi)vi

N + 1
(2)

In this way, we maintain the aggregate values of all columns
in C. And, they can be potentially reused by different queries.

Besides the aggregate results, we need the corresponding
statistics to estimate the error bound and confidence. First,
we need to record how many samples have been received for
this grid (e.g. N). Then, we need to compute the variances
for the aggregate values. To simplify the computation of
variance computation, we apply the computational formula
of variance.

var(X) = E(X2) − (E(X))2 (3)

We define E2 for avg(ci) and sum(ci) as:

E2
avg = E2

avg + v2
i ; E2

sum = E2
sum + v2

i H(gi)
2 (4)

And the variances of avg(ci) and sum(ci) are estimated as:

var(avg(ci)) =
E2

avg

N
− V 2

avg (5)

var(sum(ci)) =
E2

sum

N
− V 2

sum (6)

For type-2 grids, the estimates can be computed in a sim-
ilar manner. However, for type-2 grids, besides the number
of retrieved samples (N), we also keep the statistics of the
number of samples in the query range (N ′). As type-2 grid
partially overlaps with the query, N ′ < N . Thus, we need
to replace N with N ′ for Equations 1, 5 and 6. Besides, new
formulas are required to estimate count(i).

count(ci) =
N ′H(gi)

N
(7)

E2
count = E2

count + f(vi)
2N2 (8)

var(count(ci)) =
E2

count

N
− N ′2H(gi)

2

N2
(9)

In Equation 8, if the sample is in the query range, f(vi)
returns 1. Otherwise, it returns 0.

4.2 Integrating Estimators
At a query node, it basically has two types of estimates -

estimates for type-1 grids that it can obtain from its parent
node(s) (or compute itself if the parent is the sample source),
and estimates for type-2 grids (computed from actual sam-
ples that it retrieves from the sample stream source). To
produce the final estimates for this node, we need to merge
these estimates into a single estimate and error bound. We
assume that each grid can be considered as an independent
sample set for the database. And we apply weighted sam-
pling approach to combine the results. Suppose the partial
result is Xi for grid gi, the weighted result is computed as:

X =
k

X

i=0

wiXi +
k

X

i=0

k
X

j=0

cov(Xi, Xj) (10)



wi is the weight assigned to gi and
P

wi = 1. cov(Xi, Xj) is
the covariance between two estimations. As no grid shares
the same sample, the covariance between different estima-
tions is very small. We discard the covariance part in Equa-
tion 10 to simplify the computation. Similar approach is
adopted in [10], as well. Suppose the variance of the estima-
tion of gi is σ2

i , we estimate the variance of the final result
as:

σ̄2 =
X

w2
i σ2

i (11)

The optimal weight that minimizes the variance is computed
as [10]:

wi =
1

σ2
i

P 1
σ2

i

(12)

We note that when combining estimations from multiple
grids, sometimes, we may under-estimate the variance as
some grids lack enough samples. As

P

wi = 1,
P

w2
i ≤ 1.

Some small σ generated by a grid with few samples may be
assigned a large weight, which results in a biased estimation.
This is more significant when a large number of grids are
involved in the query. Therefore, in this paper, we use a
modifier to handle the under-estimation.

As a matter of fact, variances computed by Equations 5,
6 and 9 are approximations. We use the sample variances
as the variances of the whole dataset. From the analysis of
[15], a better estimation of variance σ is

σ2 ∼ σ2
sχ2

K − 1
(13)

where σ2
s is the variance estimated from the samples, χ2

follows chi-square distribution and K is the number of grids
(e.g. number of independent samples).

By extending χ, we get the final estimation of σ2 as:

σ2 = σ̄2 × 1
K − 1

K
X

i=1

(Xi − X)2

σ2
i

(14)

The variance is used to generate the statistics error bound
and confidence for the approximate result (line 7 in Algo-
rithm 5). Suppose the accurate result is X̄ . Based on central
limit theory, X̄ −X follows normal distribution, if X is gen-
erated by a large enough sample set. Therefore, we have

P (X̄ − X < ε) 0 2φ(
ε
√

N̄

X̄
) − 1 (15)

where N̄ is the total number of samples retrieved for the
query, P (X̄ −X < ε) is the confidence that the error bound
is ε.

To guarantee the validity of Equation 15, we use the result
of a grid, only if the number of its samples is larger than a
predefined threshold T . In our experiment, we set T to 50.
Another exception is that if the aggregate column is also
used in partitioning, we need to collect results from enough
grids to avoid biased estimation. Specifically, if we partition
ci into k equal-size ranges [l1, u1], [l2, u2],...,[lk , uk] and a
query asks for the average value of ci, we cannot provide
an unbiased result until we have collected the samples for
all sub-ranges. Suppose based on tuple count information
in H , the query range covers about n0 tuples and range
[li, ui] have ni tuples approximately. If [li, ui] overlaps with
the query and ni

n0
≥ α, the query node will generate an

error bound only if it has obtained samples from a grid that
overlaps with [li, ui]. Otherwise, the error bound is set to
“unknown”. We set alpha to 0.1% in the experiments. And
such setting does not affect the performance significantly.
As if we draw samples uniformly from the dataset, we can
soon get samples for all grids.

5. EXPERIMENTAL STUDY

5.1 Experiment Settings
Our COSMOS system is implemented in Java and de-

ployed on a DELL server with Quad-Core AMD Opteron(tm)
Processor 8356 and 128GB memory. The system keeps a
pool to accept incoming queries. If the pool is not full, the
query is inserted into the pool and joins the stream graph.
Otherwise, the query must wait until some existing queries
finish their processing. The system continuously retrieves
samples from the scrambled dataset. Each time, S samples
are extracted. S equals to the buffer size of the root node
in the stream graph. The incoming samples will trigger Al-
gorithm 5 at query nodes sequentially. And the queries will
update their results and the corresponding statistics. We use
TPC-H 10G dataset as our test data and generate queries
based on the following two query templates.

Query Template 1 (T1):

SELECT sum(ci)|count(ci)|avg(ci)
FROM LINEITEM
WHERE [orderdate> x and orderdate< x+2 year]|[discount

> x and discount< x+0.03]| [extendedprice> x and
extendedprice< x+30000]|[quantity> x and
quantity< x+30]

GROUP BY [returnflag]|[linestatus];

where ci = quantity|discount|extendedprice and x is some
random values.

Query Template 2 (T2):

SELECT sum(ci)|count(ci)|avg(ci)
FROM LINEITEM L, ORDERS O
WHERE L.orderkey = O.orderkey and

[shipdate> x and shipdate< x+2 year]|[discount> x
and discount< x+0.03]| [extendedprice> x and
extendedprice< x+30000]|[quantity> x and quantity
< x+30]|[totalprice> x and totalprice< x+300000]

GROUP BY [returnflag]|[linestatus]|[orderpriority];

where ci = quantity|discount|extendedprice|totalprice and
x is some random values.

Two stream sources are established to process queries gen-
erated from different query templates. In the preprocessing
phase, we generated 1000 random queries for each template
and partitioned the search space based on the queries. In
this way, search spaces of template 1 and template 2 are
partitioned based on 6 and 8 columns, respectively. Based
on TPC-H schema, the selectivity of each aggregation group
varies from 0.2 to 0.01 (depending on queries).

We use the average processing time of the query as the
metric. In each test, we process 1000 queries and compute
the average time. Each experiment is repeated 10 times to
remove any side effects. The number of concurrent queries is
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Figure 6: Effect of Data
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Figure 8: Effect of Error
Bound (T1)
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Figure 9: Effect of Error
Bound (T2)

set to 20. And each time, 200 samples are retrieved from the
database to update the results. We set a predefined error
bound and confidence to simulate the user’s behavior. Let
ε and c denote the predefined error bound and confidence,
respectively. Suppose the approximate result is V̄ and the

accurate result is V , then P ( |V̄ −V |
V

) < ε = c. The default
values of ε and c are 0.01 and 95%, respectively. When a
group achieves the predefined error bound and confidence,
we stop updating its result. And, the query is said to be com-
plete only if all of its groups have stopped processing. We
use the query-based grid partitioning scheme as the default
partitioning method and the space is initially partitioned
into 1000 grids.

For comparison purposes, we implemented 3 methods. In
AQP − Baseline, the pool size is set to 1. In other words,
we process queries one by one and do not share samples in
AQP −Baseline. In AQP −Direct, all queries are directly
connected to the root node. While samples are retrieved
once and shared among the queries, there is no sharing of
partial answers among them. In AQP −Graph, the queries
are maintained in a dissemination graph and partial answers
and samples are shared via the sub-streams.

5.2 Experiment Evaluation

5.2.1 Effect of Data Size
In the first set of experiments, we vary the data size

from 2G to 10G and evaluate the performance of different
schemes. We also run the same set of queries in PostgreSQL
to get the precise results. When processing queries of tem-
plate 2, we actually build a scrambling dataset for the re-
sults of lineitem &' order. Figure 6 and Figure 7 show the
average processing time for template 1 and template 2, re-
spectively. Both figures indicate that online aggregation is
scalable with regard to the data size. And the cost of online
aggregation is much lower than the complete query process-
ing (PostgreSQL). Among the online aggregation schemes,
AQP −Graph performs the best and AQP − baseline is the
worst (we will be able to see the difference more clearly in
subsequent experiments). This is expected as AQP −Graph
salvages both samples and partial answers. Note that the
predefined error bound and confidence are 0.01 and 95%,
which actually provide a good enough estimation. The scal-
ability of online aggregation can be explained as follows.
The processing time of online aggregation is affected by the
number of samples retrieved. And the number of required
samples are estimated via the variance. Therefore, the per-
formance of online aggregation is actually determined by
the data distribution, rather than the data size. For com-
parison purpose, AQP − Graph is also run to return pre-

cise results. We use AQP − Complete to denote such a
scheme. In Figure 6, we can see AQP − Complete per-
forms worse than PostgreSQL, because it needs to update
the results and statistics of grids. On the contrary, Post-
greSQL applies cache and index (index is built for orderdate
and extendedprice) to improve its performance. The dia-
gram of AQP − Complete is omitted in Figure 7, as it is
much worse than other schemes. This experiment shows
that AQP -based schemes are most useful when precise re-
sults are not necessary.

5.2.2 Effect of Error Bound and Confidence
The predefined error bound affects the number of retrieved

samples. If we try to get a tighter bound, we need much
more samples from the database. Figure 8 and Figure 9
confirm this. The predefined error bound ranges from 0.01
to 0.05. AQP − Graph performs best as it shares both the
samples and partial results among the queries. In partic-
ular, recall that whenever partial results can be salvaged,
AQP − Graph essentially has a larger “sample size” than
AQP −Baseline and AQP −Direct. This is because when
queries join the dissemination graph, they inherit some ex-
isting results (i.e., it back-dates its anchor page to an earlier
time). As such, it has a better description about the data
distribution, namely variances of the data. On the contrary,
AQP − Baseline and AQP − Direct retrieve samples on
the fly. Sometimes, they underestimate the variances of the
data when not enough samples are obtained.

AQP −Direct performs better than AQP −Baseline, be-
cause once a sample is retrieved, it is fed to all query nodes.
The samples are shared among the nodes. AQP − Graph
performs better for template 1, because we partition the
space into 1000 grids for both cases. In template 2, we have
more columns involved in the queries and we need more grids
to partition them to improve the reuse of the partial results.
When we decrease the error bound from 0.02 to 0.01, we
need to retrieve more samples than the case of decreasing
the error bound from 0.03 to 0.02. If some query requires
high accuracy (e.g. 0.0001 error bound), online aggregation
may eventually be worse than the complete query process-
ing.

The predefined confidence gives the probability that the
accurate result is bounded by the estimated error bound.
Figure 10 and Figure 11 show the effect of confidence for
template 1 and template 2, respectively. The confidence
varies from 80% to 99% in both cases. As the confidence
increases, more samples are required. This can be explained
by Equation 15. AQP − Graph still performs best as the
partial results are shared between the nodes.



 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 80  82  84  86  88  90  92  94  96  98

Av
er

ag
e 

Pr
oc

es
sin

g 
Ti

m
e 

(m
se

c)

Confidence

AQP-Baseline
AQP-Direct
AQP-Graph

Figure 10: Effect of Con-
fidence (T1)
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5.2.3 Accuracy of Estimation
In this and subsequent experiments, as results of template

1 and template 2 show similar trend, we only present the
results of template 1. Figure 12 and Figure 13 depict the
accuracy of AQP − Graph.

In Figure 12, we show the accuracy of the estimated er-
ror bound. When a query achieves the default error bound
(0.01), it stops its processing and terminates. Then, we
compare the approximate result V̄ with the precise result V
computed by PostgreSQL. The real error rate is calculated
as V −V̄

V
. When the real error rate is less than the estimated

bound, the estimation provides an accurate result. Based
on the result of Figure 12, online aggregation performs quite
well - the real error is always lower than the estimated er-
ror. When we increase the confidence, the real error rate
also decreases. This is because high confidence causes more
samples to be retrieved, which generates a better estimation.

In Figure 13, we test the correctness of the estimated
confidence. The confidence is set to the default value, e.g.
95%. We compute the probability of the accurate result
being bounded by the estimated result. Specifically, we
record the results, error bounds and confidences generated
by AQP−Graph. And the same set of queries are submitted
to PostgreSQL for obtaining the accurate results. Suppose
for a query Qi, its precise result is Vi and the estimated re-
sult is V̄i. Let εi be the corresponding error bound. For the
query set Sq , the correct estimation set is defined as:

Sc = {Qi|
|Vi − V̄i|

Vi
≤ ε}

The real probability is computed as |Sc|
|Sq|

. As shown in Fig-

ure 13, AQP −Graph offers very good estimation - for most
queries, the user can assume that V is bounded by V̄ ± εV̄
with the probability of at least the predefined confidence. In
Figure 13, we change the error bound from 0.01 to 0.05. The
results suggest that as we tighten the bound, AQP −Graph
may over-estimate the confidence. Fortunately, the error

bound remains acceptable and very good. For example, if
we compare with the results in Figure 12 (which has an esti-
mated error bound of 0.01), as mentioned earlier, the actual
error bound is lower than 0.01.

5.2.4 Effect of Sample Buffer Size
The sample stream root continuously retrieves samples to

its buffer. When the buffer is full, it forwards the samples
to the subsequent query nodes as a batch. This strategy
aims to reduce the update cost of query nodes. If we update
the partial results and statistics for each incoming sample,
the update cost will dominate the performance and online
aggregation may degrade. Figure 14 illustrates the effect of
the sample buffer. We vary the size of the sample buffer
from 200 to 10000 tuples. At first, when we increase the
sample buffer, the performance of all approximate schemes
improve. However, after the size of the sample buffer in-
creases to 1000 tuples, the performance does not improve
any more. Instead, if we continue to increase the buffer size
to beyond 3000 tuples, the performance began to degrade.
As a query will terminate if it satisfies the predefined error
bound and confidence, having a large sample buffer trans-
lates to a longer waiting time since the updates happen pe-
riodically. Moreover, setting the sample buffer to a large
value will slow down the update of results, which affects the
user’s experience. Therefore, the size of sample buffer is a
tradeoff between the performance and user’s experience.

5.2.5 Effect of Result Sharing
In Figure 15, we show the effect of result sharing. Specif-

ically, the first 100 queries are used to warm up the system
and we compare the progresses of the remaining 900 queries
in AQP −Direct and AQP −Graph. The error bound is set
to 0.01 and we record the costs of reaching confidence 85%,
90%, 95% and 98%. We show the improved ratio, which
is computed as 1 − cost(AQP−Graph)

cost(AQP−Direct) . With result sharing,
AQP −Graph is much faster than AQP −Direct, especially
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Figure 18: Effect of Par-
tition Numbers (T1)
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Figure 19: Scan Vs Sam-
pling (Processing Cost)
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Figure 20: Scan Vs Sam-
pling (Accuracy)
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Figure 21: Scan Vs Sam-
pling (Error Rate)

for low confidences, as low confidences do not require too
many samples. In fact, for some queries, by exploiting exist-
ing samples and results, we can directly provide good enough
results (e.g. error bound=0.01 and confidence=90%).

5.2.6 Effect of Concurrency
In AQP −Direct and AQP −Graph, multiple queries are

processed concurrently. Specifically, the incoming query will
be inserted into the pool, if it is not full. Otherwise, it must
wait until some existing queries finish their processing. The
size of the query pool affects the degree of concurrency. In
Figure 16, we change the size of query pool from 10 to 100
(default value is 20). Both AQP−Direct and AQP−Graph
show similar behavior. At first, their performance improves
as more queries are being processed concurrently. This is
because the queries can share their samples and partial re-
sults. However, after the size of the query pool increases
to a certain value, the performance starts to degrade. This
shows that concurrent processing also incurs some additional
overheads. In both AQP − Direct and AQP − Graph, the
stream root needs to disseminate samples to different query
nodes. Given a sample, the root computes the grid ID of the
sample and checks whether a query node has registered for
the grid. The cost of this process increases significantly as
more queries are connected to the root. In AQP − Graph,
more concurrent queries also lead to a more complex dissem-
ination graph, which will incur higher cost when we share
results among the queries.

5.2.7 Comparison of Partitioning Methods
So far, in our experimental study, we have used the query-

based grid partitioning method to facilitate the reuse of sam-
ples. In Figure 17, we compare the uniform partitioning
method, query-based partitioning method and query-based
partitioning method with cache. In uniform partitioning,
we partition each column into equal-size sub-ranges. And
all columns have approximately the same number of par-
titions. In both the uniform partitioning and query-based
partitioning, the total number of partitions is set to 1000.
Figure 17 shows that for AQP−Baseline and AQP−Direct,
partitioning methods do not affect the performance signif-
icantly, while for AQP − Graph, query-based partitioning
performs much better than the uniform one. This is because
in AQP − Graph we also share the partial results among
the queries. Query-based partitioning helps to improve the
probability of reusing a grid. When enchanced with cache,
all methods provide a better accuracy. However, in terms
of processing time, AQP − Graph performs slightly better,
while the other methods perform even worse. This is be-

cause maintaining cache incurs additional overheads, which
may reduce its benefit.

In Figure 18, we evaluate the performance of the query-
based partitioning method by varying the number of parti-
tions from 500 to 2000. For AQP − Baseline and AQP −
Direct, when the number of partitions increases, the perfor-
mance decreases. This is because 1) we compute the grid
ID of each sample to disseminate the samples and 2) the
final result is generated by combining results of all involved
grids. The above two costs are proportional to the number
of grids. On the contrary, AQP −Graph’s performance im-
proves when we increase the number of partitions from 500
to 1500, as more partial results can be shared among nodes.
But if we continuously increase the number of partitions to
2000, AQP −Graph’s performance also decreases due to the
computation overheads.

5.2.8 Sequential Scan Vs. Random Sampling
In this experiment, we compare three approximate pro-

cessing methods, Sequential Scan, Random Sampling and
AQP-Graph. We set the predefined confidence to 90%. Se-
quential Scan reads the scrambled dataset continuously and
applies the retrieved tuple as a random sample. Random
Sampling randomly selects a tuple from the unscrambled
dataset as a valid sample. Figure 19, Figure 20 and Figure 21
show the comparison results of processing time, accuracy of
confidence and real error rate, respectively. Sequential Scan
performs significantly better than Random Sampling due to
its sequential I/O. Sequential Scan achieves a similar per-
formance to AQP-Graph, when the estimated error bound
is set to 0.05. In that case, only a few samples are retrieved
and therefore sharing samples cannot benefit a lot. How-
ever, 0.05 is quite a large error for computing sum or count.
Figure 20 and Figure 21 show that all methods can provide
a good estimation.

6. RELATED WORKS

6.1 Online Aggregations
Online aggregation was first proposed in [8]. Several mod-

ifications to the database engine was proposed to support
online aggregation. These include techniques to randomly
access data, to evaluate operations (such as join and sort)
without blocking, to incorporate statistical analysis [6], etc.

In [7], Haas and Hellerstein proposed a new family of join
algorithms, called ripple joins, which are effective when an
aggregate is to be performed online. [13] enhances the orig-
inal ripple join algorithms by combining parallelism with
sampling to speed query convergence. It maintains a good



performance even when the memory overflows. More re-
cently, Wu et. al. studied online aggregation in a distributed
setting [19]. The scheme maintains synopses which are es-
sentially samples that can be reused by different queries.
However, there is no discussion on how partial answers can
be exploited.

In real systems, queries from different users are submitted
concurrently. Existing work on online aggregation focuses
on single query optimization, while in this paper, we share
samples and partial answers among concurrent queries. Our
approach effectively reduces the processing overheads.

Online aggregation is based on the assumption of ran-
dom samples. In [5], a new sampling technique, outlier-
indexing, is proposed to retrieve random samples for dataset
with skewed distribution. By combining weighted samples
from uniform sampling and outlier-indexing, [5] can provide
an aggregate result with significantly reduced approxima-
tion error. Most work assumes the samples are small in
size, whereas in [11], an online algorithm is used to main-
tain large-scale on-disk samples. The algorithm is suitable
for both biased and unequal probability sampling. In [1,
2], precomputed samples are maintained to support approx-
imate query processing. Samples are selected in the prepro-
cessing phase. The scrambled dataset in COSMOS can be
considered as precomputed samples as well. COSMOS re-
trieves the samples in an online way. It allows the sample
size to dynamically change from a small number that sat-
isfies the precision requirement to a full scan that returns
complete result.

6.2 Multi Query Optimization
The basic idea of multi query optimization is to share

results of common sub-queries. In [18], three cost-based
heuristic algorithms are proposed to search common sub-
expressions among concurrent queries. The query plan is
changed adaptively to share the results of sub-expressions.
In [12, 14], views are dynamically materialized and main-
tained to process incoming queries. The views are selected
based on the common sub-expressions and maintenance costs.
In [16, 17], to speed up aggregate queries, the authors pro-
posed to precompute aggregates, and develop data struc-
tures that allow these precomputed aggregates to be ac-
cessed quickly. The data space is also partitioned, and ad-
ditional meta-data are maintained in the data structures to
enable the system to present the error bounds of the answers.

In COSMOS, we also share partial answers among queries.
But as we adopt online aggregation techniques, COSMOS
does not materialize the views or buffer the tuples of com-
pleted queries. Instead, the samples are continuously drawn
and discarded. Only partial results of specific grids are main-
tained to facilitate query processing. In other words, queries
share the table scan asynchronously. They can join or leave
the dissemination tree at any time. Compared to existing
solutions, our approach has low maintenance cost and can
adaptively adjust its buffered results.

7. CONCLUSIONS
In this paper, we have examined the problem of deploying

online aggregation to evaluate multiple aggregate queries.
We proposed COSMOS, a system that (a) preprocesses a
dataset so that we can sequentially scan it for random sam-
ples, (b) organizes queries into a dissemination graph to sal-
vage partial results generated from certain queries that share

the space the query covers, (c) estimates query answers using
a two-step mechanism. We have evaluated COSMOS using
the TPC-H benchmark, and our results showed the superi-
ority of COSMOS over traditional and naive methods.
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