
Efficient Parallel Set-Similarity Joins Using MapReduce

Rares Vernica
Department of Computer

Science
University of California, Irvine

rares@ics.uci.edu

Michael J. Carey
Department of Computer

Science
University of California, Irvine

mjcarey@ics.uci.edu

Chen Li
Department of Computer

Science
University of California, Irvine

chenli@ics.uci.edu

ABSTRACT
In this paper we study how to efficiently perform set-simi-
larity joins in parallel using the popular MapReduce frame-
work. We propose a 3-stage approach for end-to-end set-
similarity joins. We take as input a set of records and output
a set of joined records based on a set-similarity condition.
We efficiently partition the data across nodes in order to
balance the workload and minimize the need for replication.
We study both self-join and R-S join cases, and show how to
carefully control the amount of data kept in main memory
on each node. We also propose solutions for the case where,
even if we use the most fine-grained partitioning, the data
still does not fit in the main memory of a node. We report
results from extensive experiments on real datasets, synthet-
ically increased in size, to evaluate the speedup and scaleup
properties of the proposed algorithms using Hadoop.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-

ing, parallel databases

General Terms
Algorithms, Performance

1. INTRODUCTION
There are many applications that require detecting simi-

lar pairs of records where the records contain string or set-
based data. A list of possible applications includes: de-
tecting near duplicate web-pages in web crawling [14], doc-
ument clustering[5], plagiarism detection [15], master data
management, making recommendations to users based on
their similarity to other users in query refinement [22], min-
ing in social networking sites [25], and identifying coalitions
of click fraudsters in online advertising [20]. For example,
in master-data-management applications, a system has to
identify that names “John W. Smith”, “Smith, John”, and
“John William Smith” are potentially referring to the same

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

person. As another example, when mining social networking
sites where users’ preferences are stored as bit vectors (where
a “1” bit means interest in a certain domain), applications
want to use the fact that a user with preference bit vector
“[1,0,0,1,1,0,1,0,0,1]” possibly has similar interests to
a user with preferences “[1,0,0,0,1,0,1,0,1,1]”.

Detecting such similar pairs is challenging today, as there
is an increasing trend of applications being expected to deal
with vast amounts of data that usually do not fit in the
main memory of one machine. For example, the Google
N-gram dataset [27] has 1 trillion records; the GeneBank
dataset [11] contains 100 million records and has a size of
416 GB. Applications with such datasets usually make use of
clusters of machines and employ parallel algorithms in order
to efficiently deal with this vast amount of data. For data-
intensive applications, the MapReduce [7] paradigm has re-
cently received a lot of attention for being a scalable parallel
shared-nothing data-processing platform. The framework is
able to scale to thousands of nodes [7]. In this paper, we
use MapReduce as the parallel data-processing paradigm for
finding similar pairs of records.

When dealing with a very large amount of data, detecting
similar pairs of records becomes a challenging problem, even
if a large computational cluster is available. Parallel data-
processing paradigms rely on data partitioning and redis-
tribution for efficient query execution. Partitioning records
for finding similar pairs of records is challenging for string
or set-based data as hash-based partitioning using the en-
tire string or set does not suffice. The contributions of this
paper are as follows:

• We describe efficient ways to partition a large dataset
across nodes in order to balance the workload and mini-
mize the need for replication. Compared to the equi-join
case, the set-similarity joins case requires “partitioning”
the data based on set contents.

• We describe efficient solutions that exploit the MapRe-
duce framework. We show how to efficiently deal with
problems such as partitioning, replication, and multiple
inputs by manipulating the keys used to route the data
in the framework.

• We present methods for controlling the amount of data
kept in memory during a join by exploiting the properties
of the data that needs to be joined.

• We provide algorithms for answering set-similarity self-
join queries end-to-end, where we start from records con-
taining more than just the join attribute and end with
actual pairs of joined records.

• We show how our set-similarity self-join algorithms can
be extended to answer set-similarity R-S join queries.

• We present strategies for exceptional situations where,
even if we use the finest-granularity partitioning method,
the data that needs to be held in the main memory of
one node is too large to fit.

The rest of the paper is structured as follows. In Sec-
tion 2 we introduce the problem and present the main idea
of our algorithms. In Section 3 we present set-similarity
join algorithms for the self-join case, while in Section 4 we
show how the algorithms can be extended to the R-S join
case. Next, in Section 5, we present strategies for handling
the insufficient-memory case. A performance evaluation is
presented in Section 6. Finally, we discuss related work in
Section 7 and conclude in Section 8. A longer technical re-
port on this work is available in [26].

2. PRELIMINARIES
In this work we focus on the following set-similarity join

application: identifying similar records based on string sim-
ilarity. Our results can be generalized to other set-similarity
join applications.
Problem statement: Given two files of records, R and S,
a set-similarity function, sim, and a similarity threshold τ ,
we define the set-similarity join of R and S on R.a and S.a
as finding and combining all pairs of records from R and S
where sim(R.a, S.a) ≥ τ .

We map strings into sets by tokenizing them. Examples of
tokens are words or q-grams (overlapping sub-strings of fixed
length). For example, the string “I will call back” can
be tokenized into the word set [I, will, call, back]. In
order to measure the similarity between strings, we use a set-
similarity function such as Jaccard or Tanimoto coefficient,
cosine coefficient, etc.1. For example, the Jaccard similarity
function for two sets x and y is defined as: jaccard(x, y) =
|x∩y|
|x∪y|

. Thus, the Jaccard similarity between strings “I will

call back” and “I will call you soon” is 3

6
= 0.5.

In the remainder of the section, we provide an introduc-
tion to the MapReduce paradigm, present the main idea of
our parallel set-similarity join algorithms, and provide an
overview of filtering methods for detecting set-similar pairs.

2.1 MapReduce
MapReduce [7] is a popular paradigm for data-intensive

parallel computation in shared-nothing clusters. Example
applications for the MapReduce paradigm include process-
ing crawled documents, Web request logs, etc. In the open-
source community, Hadoop [1] is a poplar implementation of
this paradigm. In MapReduce, data is initially partitioned
across the nodes of a cluster and stored in a distributed file
system (DFS). Data is represented as (key, value) pairs.
The computation is expressed using two functions:

map (k1,v1) → list(k2,v2);

reduce (k2,list(v2)) → list(k3,v3).

Figure 1 shows the data flow in a MapReduce computa-
tion. The computation starts with a map phase in which the
map functions are applied in parallel on different partitions

1The techniques described in this paper can also be used
for approximate string search using the edit or Levenshtein
distance [13].

Figure 1: Data flow in a MapReduce computation.

of the input data. The (key, value) pairs output by each
map function are hash-partitioned on the key. For each par-
tition the pairs are sorted by their key and then sent across
the cluster in a shuffle phase. At each receiving node, all
the received partitions are merged in a sorted order by their
key. All the pair values that share a certain key are passed
to a single reduce call. The output of each reduce function
is written to a distributed file in the DFS.

Besides the map and reduce functions, the framework also
allows the user to provide a combine function that is ex-
ecuted on the same nodes as mappers right after the map

functions have finished. This function acts as a local reducer,
operating on the local (key, value) pairs. This function al-
lows the user to decrease the amount of data sent through
the network. The signature of the combine function is:

combine (k2,list(v2)) → list(k2,list(v2)).

Finally, the framework also allows the user to provide initial-
ization and tear-down function for each MapReduce function
and customize hashing and comparison functions to be used
when partitioning and sorting the keys. From Figure 1 one
can notice the similarity between the MapReduce approach
and query-processing techniques for parallel DBMS [8, 21].

2.2 Parallel Set-Similarity Joins
One of the main issues when answering set-similarity joins

using the MapReduce paradigm, is to decide how data should
be partitioned and replicated. The main idea of our al-
gorithms is the following. The framework hash-partitions
the data across the network based on keys; data items with
the same key are grouped together. In our case, the join-
attribute value cannot be directly used as a partitioning
key. Instead, we use (possibly multiple) signatures generated
from the value as partitioning keys. Signatures are defined
such that similar attribute values have at least one signature
in common. Possible example signatures include: the list of
word tokens of a string and ranges of similar string lengths.
For instance, the string “I will call back” would have 4
word-based signatures: “I”, “will”, “call”, and “back”.

We divide the processing into three stages:

• Stage 1: Computes data statistics in order to generate
good signatures. The techniques in later stages utilize
these statistics.

• Stage 2: Extracts the record IDs (“RID”) and the join-
attribute value from each record and distributes the RID
and the join-attribute value pairs so that the pairs shar-
ing a signature go to at least one common reducer. The
reducers compute the similarity of the join-attribute val-
ues and output RID pairs of similar records.

• Stage 3: Generates actual pairs of joined records. It
uses the list of RID pairs from the second stage and the
original data to build the pairs of similar records.

An alternative to using the second and third stages is to
use one stage in which we let key-value pairs carry com-
plete records, instead of projecting records on their RIDs
and join-attribute values. We implemented this alternative
and noticed a much worse performance, so we do not con-
sider this option in this paper.

2.3 Set-Similarity Filtering
Efficient set-similarity join algorithms rely on effective

filters, which can decrease the number of candidate pairs
whose similarity needs to be verified. In the past few years,
there have been several studies involving a technique called
prefix filtering [6, 4, 29], which is based on the pigeonhole
principle and works as follows. The tokens of strings are
ordered based on a global token ordering. For each string,
we define its prefix of length n as the first n tokens of the
ordered set of tokens. The required length of the prefix de-
pends on the size of the token set, the similarity function,
and the similarity threshold. For example, given the string,
s, “I will call back”and the global token ordering {back,

call, will, I}, the prefix of length 2 of s is [back, call].
The prefix filtering principle states that similar strings need
to share at least one common token in their prefixes. Using
this principle, records of one relation are organized based on
the tokens in their prefixes. Then, using the prefix tokens
of the records in the second relation, we can probe the first
relation and generate candidate pairs. The prefix filtering
principle gives a necessary condition for similar records, so
the generated candidate pairs need to be verified. A good
performance can be achieved when the global token ordering
corresponds to their increasing token-frequency order, since
fewer candidate pairs will be generated.

A state-of-the-art algorithm in the set-similarity join liter-
ature is the PPJoin+ technique presented in [29]. It uses the
prefix filter along with a length filter (similar strings need to
have similar lengths [3]). It also proposed two other filters:
a positional filter and a suffix filter. The PPJoin+ technique
provides a good solution for answering such queries on one
node. One of our approaches is to use PPJoin+ in parallel
on multiple nodes.

3. SELF-JOIN CASE
In this section we present techniques for the set-similarity

self-join case. As outlined in the previous section, the solu-
tion is divided into three stages. The first stage builds the
global token ordering necessary to apply the prefix-filter.2 It
scans the data, computes the frequency of each token, and
sorts the tokens based on frequency. The second stage uses
the prefix-filtering principle to produce a list of similar-RID
pairs. The algorithm extracts the RID and join-attribute
value of each record, and replicates and re-partitions the
records based on their prefix tokens. The MapReduce frame-
work groups the RID and join-attribute value pairs based
on the prefix tokens. It is worth noting that using the infre-
quent prefix tokens to redistribute the data helps us avoid

2An alternative would be to apply the length filter. We
explored this alternative but the performance was not good
because it suffered from the skewed distribution of string
lengths.

unbalanced workload due to token-frequency skew. Each
group represents a set of candidates that are cross paired and
verified. The third stage uses the list of similar-RID pairs
and the original data to generate pairs of similar records.

3.1 Stage 1: Token Ordering
We consider two methods for ordering the tokens in the

first stage. Both approaches take as input the original records
and produce a list of tokens that appear in the join-attribute
value ordered increasingly by frequency.

3.1.1 Basic Token Ordering (BTO)
Our first approach, called Basic Token Ordering (“BTO”),

relies on two MapReduce phases. The first phase computes
the frequency of each token and the second phase sorts the
tokens based on their frequencies. In the first phase, the
map function gets as input the original records. For each
record, the function extracts the value of the join attribute
and tokenizes it. Each token produces a (token, 1) pair.
To minimize the network traffic between the map and reduce

functions, we use a combine function to aggregates the 1’s
output by the map function into partial counts. Figure 2(a)
shows the data flow for an example dataset, self-joined on an
attribute called“a”. In the figure, for the record with RID 1,
the join-attribute value is “A B C”, which is tokenized as “A”,
“B”, and “C”. Subsequently, the reduce function computes
the total count for each token and outputs (token, count)

pairs, where “count” is the total frequency for the token.
The second phase uses MapReduce to sort the pairs of to-

kens and frequencies from the first phase. The map function
swaps the input keys and values so that the input pairs of the
reduce function are sorted based on their frequencies. This
phase uses exactly one reducer so that the result is a totally
ordered list of tokens. The pseudo-code of this algorithm
and other algorithms presented is available in [26].

3.1.2 Using One Phase to Order Tokens (OPTO)
An alternative approach to token ordering is to use one

MapReduce phase. This approach, called One-Phase Token
Ordering (“OPTO”), exploits the fact that the list of tokens
could be much smaller than the original data size. Instead of
using MapReduce to sort the tokens, we can explicitly sort
the tokens in memory. We use the same map and combine

functions as in the first phase of the BTO algorithm. Similar
to BTO we use only one reducer. Figure 2(b) shows the data
flow of this approach for our example dataset. The reduce

function in OPTO gets as input a list of tokens and their
partial counts. For each token, the function computes its
total count and stores the information locally. When there
is no more input for the reduce function, the reducer calls a
tear-down function to sort the tokens based on their counts,
and to output the tokens in an increasing order of their
counts.

3.2 Stage 2: RID-Pair Generation
The second stage of the join, called “Kernel”, scans the

original input data and extracts the prefix of each record
using the token order computed by the first stage. In general
the list of unique tokens is much smaller and grows much
slower than the list of records. We thus assume that the list
of tokens fits in memory. Based on the prefix tokens, we
extract the RID and the join-attribute value of each record,
and distribute these record projections to reducers. The

(a) Basic Token Ordering (BTO) (b) One-Phase Token Ordering
(OPTO)

Figure 2: Example data flow of Stage 1. (Token ordering for a self-join on attribute “a”.)

join-attribute values that share at least one prefix token are
verified at a reducer.

Routing Records to Reducers. We first take a look
at two possible ways to generate (key, value) pairs in the
map function. (1) Using Individual Tokens: This method
treats each token as a key. Thus, for each record, we would
generate a (key, value) pair for each of its prefix tokens.
Thus, a record projection is replicated as many times as the
number of its prefix tokens. For example, if the record value
is “A B C D” and the prefix tokens are “A”, “B”, and “C”, we
would output three (key, value) pairs, corresponding to
the three tokens. In the reducer, as the values get grouped
by prefix tokens, all the values passed in a reduce call share
the same prefix token.

(2) Using Grouped Tokens: This method maps multiple
tokens to one synthetic key, thus can map different tokens
to the same key. For each record, the map function generates
one (key, value) pair for each of the groups of the prefix
tokens. In our running example of a record “A B C D”, if
tokens “A” and “B” belong to one group (denoted by “X”),
and token “C” belongs to another group (denoted by “Y”),
we output two (key, value) pairs, one for key “X” and one
for key “Y”. Two records that share the same token group
do not necessarily share any prefix token. Continuing our
running example, for record “E F G”, if its prefix token “E”
belongs to group “Y”, then the records “A B C D” and “E F

G” share token group “Y” but do not share any prefix token.
So, in the reducer, as the values get grouped by their token
group, no two values share a prefix token. This method can
help us have fewer replications of record projections. One
way to define the token groups in order to balance data
across reducers is the following. We use the token ordering
produced in the first stage, and assign the tokens to groups
in a Round-Robin order. In this way we balance the sum of
token frequencies across groups. We study the effect of the
number of groups in Section 6. For both routing strategies,
since two records might share more that one prefix token,
the same pair may be verified multiple times at different
reducers, thus it could be output multiple times. This is
dealt with in the third stage.

3.2.1 Basic Kernel (BK)
In our first approach to finding the RID pairs of simi-

lar records, called Basic Kernel (“BK”), each reducer uses a
nested loop approach to compute the similarity of the join-
attribute values. Before the map functions begin their execu-
tions, an initialization function is called to load the ordered
tokens produced by the first stage. The map function then

retrieves the original records one by one, and extracts the
RID and the join-attribute value for each record. It tok-
enizes the join attribute and reorders the tokens based on
their frequencies. Next, the function computes the prefix
length and extracts the prefix tokens. Finally, the function
uses either the individual tokens or the grouped tokens rout-
ing strategy to generate the output pairs. Figure 3(a) shows
the data flow for our example dataset using individual to-
kens to do the routing. The prefix tokens of each value are
in bold face. The record with RID 1 has prefix tokens “A”
and “B”, so its projection is output twice.

In the reduce function, for each pair of record projec-
tions, the reducer applies the additional filters (e.g., length
filter, positional filter, and suffix filter) and verifies the pair
if it survives. If a pair passes the similarity threshold, the
reducer outputs RID pairs and their similarity values.

3.2.2 Indexed Kernel (PK)
Another approach on finding RID pairs of similar records

is to use existing set-similarity join algorithms from the
literature [23, 3, 4, 29]. Here we use the PPJoin+ algo-
rithm from [29]. We call this approach the PPJoin+ Kernel
(“PK”).

Using this method, the map function is the same as in
the BK algorithm. Figure 3(b) shows the data flow for our
example dataset using grouped tokens to do the routing. In
the figure, the record with RID 1 has prefix tokens “A” and
“B”, which belong to groups “X” and “Y”, respectively. In the
reduce function, we use the PPJoin+ algorithm to index the
data, apply all the filters, and output the resulting pairs. For
each input record projection, the function first probes the
index using the join-attribute value. The probe generates a
list of RIDs of records that are similar to the current record.
The current record is then added to the index as well.

The PPJoin+ algorithm achieves an optimized memory
footprint because the input strings are sorted increasingly by
their lengths [29]. This works in the following way. The in-
dex knows the lower bound on the length of the unseen data
elements. Using this bound and the length filter, PPJoin+
discards from the index the data elements below the min-
imum length given by the filter. In order to obtain this
ordering of data elements, we use a composite MapReduce
key that also includes the length of the join-attribute value.
We provide the framework with a custom partitioning func-
tion so that the partitioning is done only on the group value.
In this way, when data is transferred from map to reduce,
it gets partitioned just by group value, and is then locally
sorted on both group and length.

(a) Basic Kernel (BK) using individual tokens for rout-
ing

(b) PPJoin+ Kernel (PK) using grouped tokens for
routing

Figure 3: Example data flow of Stage 2. (Kernel for a self-join on attribute “a”.)

3.3 Stage 3: Record Join
In the final stage of our algorithm, we use the RID pairs

generated in the second stage to join their records. We pro-
pose two approaches for this stage. The main idea is to first
fill in the record information for each half of the pair and
then use the two halves to build the full record pair. The
two approaches differ in the way the list of RID pairs is pro-
vided as input. In the first approach, called Basic Record
Join (“BRJ”), the list of RID pairs is treated as a normal
MapReduce input, and is provided as input to the map func-
tions. In the second approach, called One-Phase Record Join
(“OPRJ”), the list is broadcast to all the maps and loaded
before reading the input data. Duplicate RID pairs from the
previous stage are eliminated in this stage.

3.3.1 Basic Record Join (BRJ)
The Basic Record Join algorithm uses two MapReduce

phases. In the first phase, the algorithm fills in the record
information for each half of each pair. In the second phase,
it brings together the half-filled pairs. The map function in
the first phase gets as input both the set of original records
and the RID pairs from the second stage. (The function can
differentiate between the two types of inputs by looking at
the input file name.) For each original record, the function
outputs a (RID, record) pair. For each RID pair, it outputs
two (key, value) pairs. The first pair uses the first RID as
its key, while the second pair uses the second RID as its key.
Both pairs have the entire RID pair and their similarity as
their value. Figure 4 shows the data flow for our example
dataset. In the figure, the first two mappers take records as
their input, while the third mapper takes RID pairs as its
input. (Mappers do not span across files.) For the RID pair
(2, 11), the mapper outputs two pairs, one with key 2 and
one with key 11.

The reduce function of the first phase then receives a list
of values containing exactly one record and other RID pairs.
For each RID pair, the function outputs a (key, value)

pair, where the key is the RID pair, and the value is the
record itself and the similarity of the RID pair. Continuing
our example in Figure 4, for key 2, the first reducer gets the
record with RID 2 and one RID pair (2, 11), and outputs
one (key, value) pair with the RID pair (2, 11) as the key.

The second phase uses an identity map that directly out-
puts its input. The reduce function therefore gets as input,
for each key (which is a RID pair), a list of values contain-
ing exactly two elements. Each element consists of a record
and a common similarity value. The reducer forms a pair of

the two records, appends their similarity, and outputs the
constructed pair. In Figure 4, the output of the second set
of mappers contains two (key, value) pairs with the RID
pair (1, 21) as the key, one containing record 1 and the other
containing record 21. They are grouped in a reducer that
outputs the pair of records (1, 21).

3.3.2 One-Phase Record Join (OPRJ)
The second approach to record join uses only one MapRe-

duce phase. Instead of sending the RID pairs through the
MapReduce pipeline to group them with the records in the
reduce phase (as we do in the BRJ approach), we broadcast
and load the RID pairs at each map function before the input
data is consumed by the function. The map function then
gets the original records as input. For each record, the func-
tion outputs as many (key, value) pairs as the number of
RID pairs containing the RID of the current record. The
output key is the RID pair. Essentially, the output of the
map function is the same as the output of the reduce func-
tion in the first phase of the BRJ algorithm. The idea of
joining the data in the mappers was also used in [10] for the
case of equi-joins. The reduce function is the same as the
reduce function in the second phase of the BRJ algorithm.
Figure 5 shows the data flow for our example dataset. In
the figure, the first mapper gets as input the record with
RID 1 and outputs one (key, value) pair, where the key is
the RID pair (1, 21) and the value is record 1. On the other
hand, the third mapper outputs a pair with the same key,
and the value is the record 21. The two pairs get grouped
in the second reducer, where the pair of records (1, 21) is
output.

4. R-S JOIN CASE
In Section 3 we described how to compute set-similarity

self-joins using the MapReduce framework. In this section
we present our solutions for the set-similarity R-S joins case.
We highlight the differences between the two cases and dis-
cuss an optimization for carefully controlling memory usage
in the second stage.

The main differences between the two join cases are in the
second and the third stages where we have records from two
datasets as the input. Dealing with the binary join operator
is challenging in MapReduce, as the framework was designed
to only accept a single input stream. As discussed in [10, 21],
in order to differentiate between two different input streams
in MapReduce, we extend the key of the (key, value) pairs
so that it includes a relation tag for each record. We also

Figure 4: Example data flow of Stage 3 using Basic Record Join (BRJ) for a self-join case. “a1” and “a2”
correspond to the original attribute “a”, while “b1” and “b2” correspond to attribute “b”.

Figure 5: Example data flow of Stage 3 using One-Phase Record Join (OPRJ) for a self-join case. “a1” and
“a2” correspond to the original attribute “a” while, “b1” and “b2” correspond to attribute “b”.

modify the partitioning function so that partitioning is done
on the part of the key that does not include the relation
name. (However, the sorting is still done on the full key.)
We now explain the three stages of an R-S join.

Stage 1: Token Ordering. In the first stage, we use
the same algorithms as in the self-join case, only on the
relation with fewer records, say R. In the second stage, when
tokenizing the other relation, S, we discard the tokens that
do not appear in the token list, since they cannot generate
candidate pairs with R records.

Stage 2: Basic Kernel. First, the mappers tag the
record projections with their relation name. Thus, the re-
ducers receive a list of record projections grouped by re-
lation. In the reduce function, we then store the records
from the first relation (as they arrive first), and stream the
records from the second relation (as they arrive later). For
each record in the second relation, we verify it against all
the records in the first relation.

Stage 2: Indexed Kernel. We use the same mappers as
for the Basic Kernel. The reducers index the record projec-
tions of the first relation and probe the index for the record
projections of the second relation.

As in the self-join case, we can improve the memory foot-
print of the reduce function by having the data sorted in-

Figure 6: Example of the order in which records
need to arrive at the reducer in the PK kernel of
the R-S join case, assuming that for each length, l,
the lower-bound is l−1 and the upper-bound is l+1.

creasing by their lengths. PPJoin+ only considered this im-
provement for self-joins. For R-S joins, the challenge is that
we need to make sure that we first stream all the record pro-
jections from R that might join with a particular S record
before we stream this record. Specifically, given the length
of a set, we can define a lower-bound and an upper-bound
on the lengths of the sets that might join with it [3]. Be-

fore we stream a particular record projection from S, we
need to have seen all the record projections from R with a
length smaller than or equal to the upper-bound length of the
record from S. We force this arrival order by extending the
keys with a length class assigned in the following way. For
records from S, the length class is their actual length. For
records from R, the length class is the lower-bound length
corresponding to their length. Figure 6 shows an example of
the order in which records will arrive at the reducer, assum-
ing that for each length l, the lower-bound is l − 1 and the
upper-bound is l + 1. In the figure, the records from R with
length 5 get length class 4 and are streamed to the reducer
before those records from S with lengths between [4, 6].

Stage 3: Record Join. For the BRJ algorithm the map-
pers first tag their outputs with the relation name. Then,
the reducers get a record and their corresponding RID pairs
grouped by relation and output half-filled pairs tagged with
the relation name. Finally, the second-phase reducers use
the relation name to build record pairs having the record
form R first and the record form S second. In the OPRJ
algorithm, for each input record from R, the mappers out-
put as many (key,value) pairs as the number of RID pairs
containing the record’s RID in the R column (and similar for
S records). For each pair, the key is the RID pair plus the
relation name. The reducers proceed as do the second-phase
reducers for the BRJ algorithm.

5. HANDLING INSUFFICIENT MEMORY
As we saw in Section 3.2, reducers in the second stage re-

ceive as input a list of record projections to be verified. In
the BK approach, the entire list of projections needs to fit
in memory. (For the R-S join case, only the projections of
one relation must fit.) In the PK approach, because we are
exploiting the length filter, only the fragment corresponding
to a certain length range needs to fit in memory. (For the R-
S join case, only the fragment belonging to only one relation
must fit.) It is worth noting that we already decreased the
amount of memory needed by grouping the records on the in-
frequent prefix tokens. Moreover, we can exploit the length
filter even in the BK algorithm, by using the length filter
as a secondary record-routing criterion. In this way, records
are routed on token-length-based keys. The additional rout-
ing criterion partitions the data even further, decreasing the
amount of data that needs to fit in memory. This technique
can be generalized and additional filters can be appended
to the routing criteria. In this section we present two ex-
tensions of our algorithms for the case where there are just
no more filters to be used but the data still does not fit in
memory. The challenge is how to compute the cross prod-
uct of a list of elements in MapReduce. We sub-partition
the data so that each block fits in memory and propose two
approaches for processing the blocks. First we look how the
two methods work in the self-join case and then discuss the
differences for the R-S join case.

Map-Based Block Processing. In this approach, the
map function replicates the blocks and interleaves them in
the order they will be processed by the reducer. For each
block sent by the map function, the reducer either loads the
block in memory or streams the block against a block already
loaded in memory. Figure 7(a) shows an example of how
blocks are processed in the reducer, in which the data is sub-
partitioned into three blocks A, B, and C. In the first step,
the first block, A, is loaded into memory and self-joined.

(a) Map-based block
processing

(b) Reduce-based block
processing

Figure 7: Data flow in the reducer for two block
processing approaches.

After that, the next two blocks, B and C, are read from
the input stream and joined with A. Finally, A is discarded
from memory and the process continues for blocks B and C.
In order to achieve the interleaving and replications of the
blocks, the map function does the following. For each (key,

value) output pair, the function determines the pair’s block,
and outputs the pair as many times as the block needs to be
replicated. Every copy is output with a different composite
key, which includes its position in the stream, so that after
sorting the pairs, they are in the right blocks and the blocks
are in the right order.

Reduce-Based Block Processing. In this approach,
the map function sends each block exactly once. On the
other hand, the reduce function needs to store all the blocks
except the first one on its local disk, and reload the blocks
later from the disk for joining. Figure 7(b) shows an example
of how blocks are processed in the reducer for the same three
blocks A, B, and C. In the first step, block A is loaded into
memory and self-joined. After that, the next two blocks, B
and C, are read from the input stream and joined with A
and also stored on the local disk. In the second step, A is
discarded from memory and block B is read from disk and
self-joined. Then, block C is read from the disk and joined
with B. The process ends with reading C from disk and
self-joining it.

Handling R-S Joins. In the R-S join case the reduce

function needs to deal with a partition from R that does not
fit in memory, while it streams a partition coming from S.
We only need to sub-partition the R partition. The reduce

function loads one block from R into memory and streams
the entire S partition against it. In the map-based block
processing approach, the blocks from R are interleaved with
multiple copies of the S partition. In the reduce-based block
processing approach all the R blocks (except the first one)
and the entire S partition are stored and read from the local
disk later.

6. EXPERIMENTAL EVALUATION
In this section we describe the performance evaluation of

the proposed algorithms. To understand the performance

of parallel algorithms we need to measure absolute running
time as well as relative speedup and scaleup [8].

We ran experiments on a 10-node IBM x3650 cluster.
Each node had one Intel Xeon processor E5520 2.26GHz
with four cores, 12GB of RAM, and four 300GB hard disks.
Thus the cluster consists of 40 cores and 40 disks. We used
an extra node for running the master daemons to manage
the Hadoop jobs and the Hadoop distributed file system.
On each node, we installed the Ubuntu 9.04, 64-bit, server
edition operating system, Java 1.6 with a 64-bit server JVM,
and Hadoop 0.20.1. In order to maximize the parallelism and
minimize the running time, we made the following changes
to the default Hadoop configuration: we set the block size
of the distributed file system to 128MB, allocated 1GB of
virtual memory to each daemon and 2.5GB of virtual mem-
ory to each map/reduce task, ran four map and four reduce
tasks in parallel on each node, set the replication factor to
1, and disabled the speculative task execution feature.

We used the following two datasets and increased their
sizes as needed:

• DBLP3 It had approximately 1.2M publications. We
preprocessed the original XML file by removing the tags,
and output one line per publication that contained a
unique integer (RID), a title, a list of authors, and the
rest of the content (publication date, publication journal
or conference, and publication medium). The average
length of a record was 259 bytes. A copy of the entire
dataset has around 300MB before we increased its size.
It is worth noting that we did not clean the records before
running our algorithms, i.e., we did not remove punctu-
ations or change the letter cases. We did the cleaning
inside our algorithms.

• CITESEERX4 It had about 1.3M publications. We
preprocessed the original XML file in the same way as
for the DBLP dataset. Each publication included an
abstract and URLs to its references. The average length
of a record was 1374 bytes, and the size of one copy of
the entire dataset is around 1.8GB.

Increasing Dataset Sizes. To evaluate our parallel set-
similarity join algorithms on large datasets, we increased
each dataset while maintaining its set-similarity join prop-
erties. We maintained a roughly constant token dictionary,
and wanted the cardinality of join results to increase linearly
with the increase of the dataset. Increasing the data size by
duplicating its original records would only preserve the token
dictionary-size, but would blow up the size of the join result.
To achieve the goal, we increased the size of each dataset by
generating new records as follows. We first computed the
frequencies of the tokens appearing in the title and the list
of authors in the original dataset, and sorted the tokens in
their increasing order of frequencies. For each record in the
original dataset, we created a new record by replacing each
token in the title or the list of authors with the token after
it in the token order. For example, if the token order is (A,
B, C, D, E, F) and the original record is “B A C E”, then
the new record is “C B D F.”We evaluated the cardinality of
the join result after increasing the dataset in this manner,
and noticed it indeed increased linearly with the increase of
the dataset size.

We increased the size of each dataset 5 to 25 times. We re-

3http://dblp.uni-trier.de/xml/dblp.xml.gz
4http://citeseerx.ist.psu.edu/about/metadata

fer to the increased datasets as“DBLP×n”or“CITESEERX
×n”, where n ∈ [5, 25] and represents the increase factor.
For example, “DBLP×5” represents the DBLP dataset in-
creased five times.

Before starting each experiment we balanced its input
datasets across the ten nodes in HDFS and the four hard
drives of each node in the following way. We formatted the
distributed file system before each experiment. We created
an identity MapReduce job with as many reducers running
in parallel as the number of hard disks in the cluster. We
exploited the fact that reducers write their output data to
the local node and also the fact that Hadoop chooses the
disk to write the data using a Round-Robin order.

For all the experiments, we tokenized the data by word.
We used the concatenation of the paper title and the list of
authors as the join attribute, and used the Jaccard similarity
function with a similarity threshold of 0.80. The 0.80 thresh-
old is usually the lower bound on the similarity threshold
used in the literature [3, 6, 29], and higher similarity thresh-
olds decreased the running time. A more complete set of
figures for the experiments is contained in [26]. The source
code is available at http://asterix.ics.uci.edu/.

6.1 Self-Join Performance
We did a self-join on the DBLP×n datasets, where n ∈

[5, 25]. Figure 8 shows the total running time of the three
stages on the 10-node cluster for different dataset sizes (rep-
resented by the factor n). The running time consisted of
the times of the three stages: token ordering, kernel, and
record join. For each dataset size, we used three combina-
tions of the approaches of the stages. For example, “1-BTO”
means we use BTO in the first stage. The second stage is
the most expensive step, and its time increased the fastest
with the increase of the dataset size. The best algorithm is
BTO-PK-OPRJ, i.e., with BTO for the first stage, PK for
the second stage, and OPRJ for the third stage. This com-
bination could self-join 25 times the original DBLP dataset
in around 650 seconds.

6.1.1 Self-Join Speedup
In order to evaluate the speedup of the approaches, we

fixed the dataset size and varied the cluster size. Figure 9
shows the running time for self-joining the DBLP×10 dataset
on clusters of 2 to 10 nodes. We used the same three com-
binations for the three stages. For each approach, we also
show its ideal speedup curve (with a thin black line). For
instance, if the cluster has twice as many nodes and the data
size does not change, the approach should be twice as fast.
In Figure 10 we show the same numbers, but plotted on a
“relative scale”. That is, for each cluster size, we plot the
ratio between the running time for the smallest cluster size
and the running time of the current cluster size. For exam-
ple, for the 10-node cluster, we plot the ratio between the
running time on the 2-node cluster and the running time on
the 10-node cluster. We can see that all three combinations
have similar speedup curves, but none of them speed up lin-
early. In all the settings the BTO-PK-OPRJ combination
is the fastest (Figure 9). In the following experiments we
looked at the speedup characteristics for each of the three
stages in order to understand the overall speedup. Table 1
shows the running time for each stage in the self-join.

Stage 1: Token Ordering. We can see that the OPTO
approach was the fastest for the settings of 2 nodes and 4

http://asterix.ics.uci.edu/

5 10 25

Dataset Size (times the original)

0

200

400

600

800

T
im

e
(s

ec
on

ds
)

1-BTO
2-BK
3-BRJ
2-PK
3-OPRJ

Figure 8: Running time for self-
joining DBLP×n datasets (where
n ∈ [5, 25]) on a 10-node cluster.

2 3 4 5 6 7 8 9 10

Nodes

0

200

400

600

800

1000

1200

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 9: Running time for self-
joining the DBLP×10 dataset on
different cluster sizes.

2 3 4 5 6 7 8 9 10

Nodes

1

2

3

4

5

S
pe

ed
up

 =
 O

ld
 T

im
e

/ N
ew

 T
im

e

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 10: Relative running time
for self-joining the DBLP×10
data set on different cluster sizes.

Stage Alg. # Nodes
2 4 8 10

1 BTO 191.98 125.51 91.85 84.02
OPTO 175.39 115.36 94.82 92.80

2 BK 753.39 371.08 198.70 164.57
PK 682.51 330.47 178.88 145.01

3 BRJ 255.35 162.53 107.28 101.54
OPRJ 97.11 74.32 58.35 58.11

Table 1: Running time (seconds) of each stage for
self-joining the DBLP×10 dataset on different clus-
ter sizes

nodes. For the settings of 8 nodes and 10 nodes, the BTO
approach became the fastest. Their limited speedup was due
to two main reasons. (1) As the number of nodes increased,
the amount of input data fed to each combiner decreased. As
the number of nodes increased, more data was sent through
the network and more data got merged and reduced. (A
similar pattern was observed in [10] for the case of general
aggregations.) (2) The final token ordering was produced by
only one reducer, and this step’s cost remained constant as
the number of nodes increased. The speedup of the OPTO
approach was even worse since as the number of nodes in-
creased, the extra data that was sent through the network
had to be aggregated at only one reducer. Because BTO
was the fastest for settings of 8 nodes and 10 nodes, and it
sped up better than OPTO, we only considered BTO for the
end-to-end combinations.

Stage 2: Kernel. For the PK approach, an important
factor affecting the running time is the number of token
groups. We evaluated the running time for different num-
bers of groups. We observed that the best performance was
achieved when there was one group per token. The reason
was that the reduce function could benefit from the group-
ing conducted “for free” by the MapReduce framework. If
groups had more than one token, the framework spends the
same amount of time on grouping, but the reducer benefits
less. Both approaches had an almost perfect speedup. More-
over, in all the settings, the PK approach was the fastest.

Stage 3: Record Join. The OPRJ approach was always
faster than the BRJ approach. The main reason for the poor
speedup of the BRJ approach was due to skew in the RID

pairs that join, which affected the workload balance. For
analysis purposes, we computed the frequency of each RID
appearing in at least one RID pair. On the average an RID
appeared on 3.74 RID pairs, with a standard deviation of
14.85 and a maximum of 187. Additionally, we counted how
many records were processed by each reduce instance. The
minimum number of records processed in the 10-nodes case
was 81,662 and the maximum was 90,560, with an average of
87,166.55 and a standard deviation of 2,519.30. No matter
how many nodes we added to the cluster, a single RID could
not be processed by more than one reduce instance, and all
the reducers had to wait for the slowest one to finish.

The speedup of the OPRJ approach was limited because
in the OPRJ approach, the list of RID pairs that joined
was broadcast to all the maps where they must be loaded
in memory and indexed. The elapsed time required for this
remained constant as the number of nodes increased. Ad-
ditional information about the total amount of data sent
between map and reduce for each stage is included in [26].

6.1.2 Self-Join Scaleup

2 3 4 5 6 7 8 9 10
Nodes and Dataset Size

(times 2.5 x original)

0

200

400

600

800

1000

1200

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 11: Running time for self-joining the
DBLP×n dataset (where n ∈ [5, 25]) increased pro-
portionally with the increase of the cluster size.

In order to evaluate the scaleup of the proposed approaches
we increased the dataset size and the cluster size together
by the same factor. A perfect scaleup could be achieved if
the running time remained constant. Figure 11 shows the
running time for self-joining the DBLP dataset, increased

from 5 to 25 times, on a cluster with 2 to 10 nodes, respec-
tively. We can see that the fastest combined algorithm was
BTO-PK-OPRJ. We can also see that all three combina-
tions scaled up well. BTO-PK-BRJ had the best scaleup.
In the following, we look at the scaleup characteristics of
each stage. Table 2 shows the running time (in seconds) for
each of the self-join stages.

Stage Alg. # Nodes/Dataset Size
2/x5 4/x10 8/x20 10/x25

1 BTO 124.05 125.51 127.73 128.84
OPTO 107.21 115.36 136.75 149.40

2 BK 328.26 371.08 470.84 522.88
PK 311.19 330.47 375.72 401.03

3 BRJ 156.33 162.53 166.66 168.08
OPRJ 60.61 74.32 102.44 117.15

Table 2: Running time (seconds) of each stage for
self-joining the DBLP×n dataset (n ∈ [5, 25]) in-
creased proportionally with the increase of the clus-
ter size.

Stage 1: Token Ordering. We can see in Table 2
that the BTO approach scaled up almost perfectly, while
the OPTO approach did not scale up as well. Moreover, the
OPTO approach became more expensive than the BTO ap-
proach as the number of nodes increased. The reason why
the OPTO approach did not scale up as well was because it
used only one reduce instance to aggregate the token counts
(instead of using multiple reduce functions as in the BTO
case). Both approaches used a single reduce to sort the to-
kens by frequency. As the data increased, the time needed
to finish the one reduce function increased.

Stage 2: Kernel. We can see that the PK approach was
always faster and scaled up better than the BK approach.
To understand why the BK approach did not scale up well,
let us take a look at the complexity of the reducers. The
reduce function was called for each prefix token. For each
token, the reduce function received a list of record projec-
tions, and had to verify the self-cross-product of this list.
Moreover, a reducer processed a certain number of tokens.
Thus, if the length of the record projections list is n and the
number of tokens that each reducer has to process is m, the
complexity of each reducer is O(m · n2). As the dataset in-
creases, the number of unique tokens remains constant, but
the number of records having a particular prefix token in-
creased by the same factor as the dataset size. Thus, when
the dataset is increased t times the length of the record pro-
jections list increases t times. Moreover, as the number of
nodes increases t times, the number of tokens that each re-
ducer has to process decreases t times. Thus, the complexity
of each reducer becomes O

`

m/t · (n · t)2
´

= O(t ·m ·n2). De-
spite the fact the reduce function had a running time that
grew proportional with the dataset size, the scaleup of the
BK approach was still acceptable because the map function
scaled up well. In the case of PK, the quadratic increase
when the data linearly increased was alleviated because an
index was used to decide which pairs are verified.

Stage 3: Record Join. We can see that the BRJ
approach had an almost perfect scaleup, while the OPRJ
approach did not scale up well. For our 10-node cluster,
the OPRJ approach was faster than the BRJ approach, but
OPRJ could become slower as the number of nodes and data

size increased. The OPRJ approach did not scale up well
since the list of RID pairs that needed to be loaded and in-
dexed by each map function increased linearly with the size
of the dataset.

6.1.3 Self-Join Summary
We have the following observations:

• For the first stage, BTO was the best choice.

• For the second stage, PK was the best choice.

• For the third stage, the best choice depends on the amount
of data and the size of the cluster. In our experiments,
OPRJ was somewhat faster, but the cost of loading the
similar-RID pairs in memory was constant as the the
cluster size increased, and the cost increased as the data
size increased. For these reasons, we recommend BRJ as
a good alternative.

• The three combinations had similar speedups, but the
best scaleup was achieved by BTO-PK-BRJ.

• Our algorithms distributed the data well in the first and
the second stages. For the third stage, the algorithms
were affected by the fact that some records produced
more join results that others, and the amount of work to
be done was not well balanced across nodes. This skew
heavily depends on the characteristics of the data and
we plan to study this issue in future work.

6.2 R-S Join Performance
To evaluate the performance of the algorithms for the R-

S-join case, we did a join between the DBLP and the CITE-
SEERX datasets. We increased both datasets at the same
time by a factor between 5 and 25. Figure 12 shows the
running time for the join on a 10-node cluster. We used the
same combinations for each stage as in the self-join case.
Moreover, the first stage was identical to the first stage of
the self-join case, as this stage was run on only one of the
datasets, in this case, DBLP. The running time for the sec-
ond stage (kernel) increased the fastest compared with the
other stages, but for the 5 and 10 dataset-increase factors,
the third stage (record join) became the most expensive.
The main reason for this behavior, compared to the self-join
case, was that this stage had to scan two datasets instead of
one, and the record length of the CITESEERX dataset was
much larger than the record length of the DBLP dataset.
For the 25 dataset-increase factor, the OPRJ approach ran
out of memory when it loaded the list of RID pairs, making
BRJ the only option.

6.2.1 R-S Join Speedup
As in the self-join case, we evaluated the speedup of the al-

gorithms by keeping the dataset size constant and increasing
the number of nodes in the cluster. Figure 13 shows the run-
ning times for the same three combinations of approaches.
We can see that the BTO-PK-OPRJ combination was ini-
tially the fastest, but for the 10-node cluster, it became
slightly slower than the BTO-BK-BRJ and BTO-PK-BRJ
combinations. Moreover, BTO-BK-BRJ and BTO-PK-BRJ
sped up better than BTO-PK-OPRJ.

To better understand the speedup behavior, we looked at
each individual stage. The first stage performance was iden-
tical to the first stage in the self-join case. For the second
stage we noticed a similar speedup (almost perfect) as for
the self-join case. Regarding the third stage, we noticed

5 10 25

Dataset Size (times the original)

0

400

800

1200

1600

2000

2400
T

im
e

(s
ec

on
ds

)

1-BTO
2-BK
3-BRJ
2-PK
3-OPRJ

Figure 12: Running time for
joining the DBLP×n and the
CITESEERX×n datasets (where
n ∈ [5, 25]) on a 10-node cluster.

2 3 4 5 6 7 8 9 10

Nodes

0

1000

2000

3000

4000

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 13: Running time for
joining the DBLP×10 and the
CITESEERX×10 datasets on
different cluster sizes.

2 3 4 5 6 7 8 9 10
Nodes and Dataset Size

(times 2.5 x original)

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 14: Running time for
joining the DBLP×n and the
CITESEERX×n datasets (where
n ∈ [5, 25]) increased proportion-
ally with the cluster size.

that the OPRJ approach was initially the fastest (for the
2 and 4 node case), but it eventually became slower than
the BRJ approach. Additionally, the BRJ approach sped
up better than the OPRJ approach. The poor performance
of the OPRJ approach was due to the fact that all the map
instances had to load the list of RID pairs that join.

6.2.2 R-S Join Scaleup
We also evaluated the scaleup of the R-S join approaches.

The evaluation was similar to the one done in the self-join
case. In Figure 14 we plot the running time of three com-
binations for the three stages as we increased the dataset
size and the cluster size by the same factor. We can see
that BTO-BK-BRJ and BTO-PK-BRJ scaled up well. The
BTO-PK-BRJ combination scaled up the best. BTO-PK-
OPRJ ran out of memory in the third stage for the case
where the datasets were increased 8 times the original size.
The third stage ran out of memory when it tried to load in
memory the list of RID pairs that join. Before running out
of memory, though, BTO-PK-OPRJ was the fastest.

To better understand the behavior of our approaches, we
again analyzed the scaleup of each individual stage. The
first stage performance was identical with its counter-part
in the self-join case. Additionally, the second stage had a
similar scaleup performance as its counterpart in the self-
join case. Regarding the third stage, we observed that the
BRJ approach scaled up well. We also observed that even
before running out of memory, the OPRJ approach did not
scale up well, but for the case where it did not run our of
memory, it was faster than the BRJ approach.

6.2.3 R-S Join Summary
We have the following observations:

• The recommendations for the best choice from the self-
join case also hold for the R-S join case.

• The third stage of the join became a significant part of
the execution due to the increased amount of data.

• The three algorithm combinations preserved their speedup
and scaleup characteristics as for the self-join case.

• We also observed the same data distribution character-
istics as for the self-join case.

• For both self-join and R-S join cases, we recommend
BTO-PK-BRJ as a robust and scalable method.

7. RELATED WORK
Set-similarity joins on a single machine have been widely

studied in the literature [23, 6, 3, 4, 29]. Inverted-list-based
algorithms for finding pairs of strings that share a certain
number of tokens in common have been proposed in [23].
Later work has proposed various filters that help decrease
the number of pairs that need to be verified. The prefix
filter has been proposed in [6]. The length filter has been
studied in [3, 4]. Two other filters, namely the positional
filter and the suffix filter, were proposed in [29]. In partic-
ular, for edit distance, two more filters based on mismatch
have been proposed in [28]. Instead of directly using the
tokens in the strings, the approach in [3] generates a set of
signatures based on the tokens in the string and relies on the
fact that similar strings need to have a common signature.
A different way of formulating set-similarity join problem is
to return partial answers, by using the idea of locality sensi-
tive hashing [12]. It is worth noting most of work deals with
values already projected on the similarity attribute and pro-
duces only the list of RIDs that join. Computing such a list
is the goal of our second stage and most algorithms could
successfully replace PPJoin+ in our second stage. To the
best of our knowledge, there is no previous work on parallel
set-similarity joins.

Parallel join algorithms for large datasets had been widely
studied since the early 1980’s (e.g., [19, 24]). Moreover,
the ideas presented in Section 5 bear resemblance with the
bucket-size-tuning ideas presented in [18]. Data partition
and replication techniques have been studied in [9] for the
problem of numeric band joins.

The MapReduce paradigm was initially presented in [7].
Since then, it has gained a lot of attention in academia [30,
21, 10] and industry [2, 16]. In [30] the authors proposed
extending the interface with a new function called “merge”
in order to facilitate joins. A comparison of the MapRe-
duce paradigm with parallel DBMS has been done in [21].
Higher-level languages on top of MapReduce have been pro-
posed in [2, 16, 10]. All these languages could benefit from
the addition of a set-similarity join operator based on the

techniques proposed here. In the context of JAQL [16] a
tutorial on fuzzy joins was presented in [17].

8. CONCLUSIONS
In this paper we studied the problem of answering set-

similarity join queries in parallel using the MapReduce frame-
work. We proposed a three-stage approach and explored sev-
eral solutions for each stage. We showed how to partition
the data across nodes in order to balance the workload and
minimize the need for replication. We discussed ways to
efficiently deal with partitioning, replication, and multiple
inputs by exploiting the characteristics of the MapReduce
framework. We also described how to control the amount
of data that needs to be kept in memory during join by ex-
ploiting the data properties. We studied both self-joins and
R-S joins, end-to-end, by starting from complete records and
producing complete record pairs. Moreover, we discussed
strategies for dealing with extreme situations where, even
after the data is partitioned to the finest granularity, the
amount of data that needs to be in the main memory of
one node is too large to fit. Given our proposed algorithms,
we implemented them in Hadoop and analyzed their per-
formance characteristics on real datasets (synthetically in-
creased).
Acknowledgments: We would like to thank Vuk Ercego-
vac for a helpful discussion that inspired the stage variants
in Section 3.1.2 and 3.3.2. This study is supported by NSF
IIS awards 0844574 and 0910989, as well as a grant from the
UC Discovery program and a donation from eBay.

9. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.

[2] Apache Hive. http://hadoop.apache.org/hive.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW, pages 131–140, 2007.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer

Networks, 29(8-13):1157–1166, 1997.

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
page 5, 2006.

[7] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[8] D. J. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.

[9] D. J. DeWitt, J. F. Naughton, and D. A. Schneider.
An evaluation of non-equijoin algorithms. In VLDB,
pages 443–452, 1991.

[10] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of MapReduce: the Pig experience. PVLDB,
2(2):1414–1425, 2009.

[11] Genbank. http://www.ncbi.nlm.nih.gov/Genbank.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB,
pages 518–529, 1999.

[13] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[14] M. R. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR, pages
284–291, 2006.

[15] T. C. Hoad and J. Zobel. Methods for identifying
versioned and plagiarized documents. JASIST,
54(3):203–215, 2003.

[16] Jaql. http://www.jaql.org.

[17] Jaql - Fuzzy join tutorial. http://code.google.com/
p/jaql/wiki/fuzzyJoinTutorial.

[18] M. Kitsuregawa and Y. Ogawa. Bucket spreading
parallel hash: A new, robust, parallel hash join
method for data skew in the super database computer
(sdc). In VLDB, pages 210–221, 1990.

[19] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its
architecture. New Generation Comput., 1(1):63–74,
1983.

[20] A. Metwally, D. Agrawal, and A. E. Abbadi.
Detectives: detecting coalition hit inflation attacks in
advertising networks streams. In WWW, pages
241–250, 2007.

[21] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In SIGMOD Conference, pages 165–178, 2009.

[22] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In WWW, pages 377–386, 2006.

[23] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In SIGMOD Conference, pages
743–754, 2004.

[24] D. A. Schneider and D. J. DeWitt. A performance
evaluation of four parallel join algorithms in a
shared-nothing multiprocessor environment. In
SIGMOD Conference, pages 110–121, 1989.

[25] E. Spertus, M. Sahami, and O. Buyukkokten.
Evaluating similarity measures: a large-scale study in
the orkut social network. In KDD, pages 678–684,
2005.

[26] R. Vernica, M. Carey, and C. Li. Efficient parallel
set-similarity joins using MapReduce. Technical
report, Department of Computer Science, UC Irvine,
March 2010. http://asterix.ics.uci.edu.

[27] Web 1t 5-gram version 1. http://www.ldc.upenn.
edu/Catalog/CatalogEntry.jsp?

catalogId=LDC2006T13.

[28] C. Xiao, W. Wang, and X. Lin. Ed-join: An efficient
algorithm for similarity joins with edit distance
constraints. In VLDB, 2008.

[29] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In WWW,
pages 131–140, 2008.

[30] H. Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr.
Map-Reduce-Merge: simplified relational data
processing on large clusters. In SIGMOD Conference,
pages 1029–1040, 2007.

http://hadoop.apache.org
http://hadoop.apache.org/hive
http://www.ncbi.nlm.nih.gov/Genbank
http://www.jaql.org
http://code.google.com/p/jaql/wiki/fuzzyJoinTutorial
http://code.google.com/p/jaql/wiki/fuzzyJoinTutorial
http://asterix.ics.uci.edu
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13

	Introduction
	Preliminaries
	MapReduce
	Parallel Set-Similarity Joins
	Set-Similarity Filtering

	Self-Join Case
	Stage 1: Token Ordering
	Basic Token Ordering (BTO)
	Using One Phase to Order Tokens (OPTO)

	Stage 2: RID-Pair Generation
	Basic Kernel (BK)
	Indexed Kernel (PK)

	Stage 3: Record Join
	Basic Record Join (BRJ)
	One-Phase Record Join (OPRJ)

	R-S Join Case
	Handling Insufficient Memory
	Experimental Evaluation
	Self-Join Performance
	Self-Join Speedup
	Self-Join Scaleup
	Self-Join Summary

	R-S Join Performance
	R-S Join Speedup
	R-S Join Scaleup
	R-S Join Summary

	Related Work
	Conclusions
	References

