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ABSTRACT
Time-oriented progress estimation for parallel queries is a
challenging problem that has received only limited attention.
In this paper, we present ParaTimer, a new type of time-
remaining indicator for parallel queries. Several parallel
data processing systems exist. ParaTimer targets environ-
ments where declarative queries are translated into ensem-
bles of MapReduce jobs. ParaTimer builds on previous tech-
niques and makes two key contributions. First, it estimates
the progress of queries that translate into directed acyclic
graphs of MapReduce jobs, where jobs on different paths
can execute concurrently (unlike prior work that looked at
sequences only). For such queries, we use a new type of
critical-path-based progress-estimation approach. Second,
ParaTimer handles a variety of real systems challenges such
as failures and data skew. To handle unexpected changes
in query execution times due to runtime condition changes,
ParaTimer provides users with not only one but with a set
of time-remaining estimates, each one corresponding to a
different carefully selected scenario. We implement our es-
timator in the Pig system and demonstrate its performance
on experiments running on a real, small-scale cluster.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—parallel databases

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
Whether in industry or in the sciences, users today need

to store, archive, and most importantly analyze increasingly
large datasets. For example, the upcoming Large Synoptic
Survey Telescope [17] is predicted to generate on the order
of 30 TB of data every day.
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Parallel database management systems [1, 11, 14, 27, 29]
and other parallel data processing platforms [6, 8, 12, 15]
are designed to process such massive-scale datasets: they
enable users to submit declarative queries over the data
and they execute these queries in clusters of shared-nothing
servers. Although parallelism speeds up query execution,
query times in these shared-nothing platforms can still ex-
hibit large intra-query and inter-query variance.

In such an environment, accurate, time-remaining
progress estimation for queries can be helpful both for
users and for the system. Indeed, the latter can use time-
remaining information to improve resource allocation [30],
enable query debugging, or tune the cluster configuration
(such as in response to unexpected query runtimes).

Accurate progress estimation for parallel queries is a
challenging problem because, in addition to the challenges
shared with single-site progress estimators [3, 2, 19, 18, 21,
22], parallel environments introduce distribution, concur-
rency, failures, data skew, and other issues that must be
accounted for. This difficult problem has received only lim-
ited attention. Our preliminary prior work [23], which we
called Parallax, provided accurate estimates, but only for
the limited class of parallel queries that translated into se-
quences of MapReduce jobs. We also previously assumed
uniform data distribution and the absence of node failures,
two assumptions that are unreasonable in practice.

To address these limitations, we have developed Para-
Timer, a time-remaining indicator for a much broader class
of queries and runtime conditions. Many parallel pro-
cessing systems exist. Similar to Parallax, we developed
ParaTimer for Pig queries [24] running in a Hadoop clus-
ter [12], an environment that is a popular open-source paral-
lel data-processing engine under active development. Within
this context, ParaTimer builds on previous techniques and
makes two key contributions. First, ParaTimer estimates
the progress of parallel queries expressed as Pig scripts that
translate into directed acyclic graphs (DAGs) of MapReduce
jobs where jobs on different branches of the DAG can execute
concurrently. DAGs require a radically different approach
than our prior work for sequences of jobs. As a direct re-
sult, unlike Parallax, ParaTimer can handle, for example,
Pig scripts with join operators.

Second, ParaTimer includes techniques for handling sev-
eral real system challenges including failures and data skew.
To handle unexpected changes in query execution times such
as those due to failures, ParaTimer provides users with a
set of time-remaining estimates that correspond to the pre-
dicted query execution times in different scenarios (i.e., a



single worst-case failure, or data skew at an operator). We
call ParaTimer a comprehensive indicator because it pro-
vides this set of estimates instead of a single best guess as
the other indicators do. Each of ParaTimer’s indicators can
be annotated with the scenario that it corresponds to, giving
users a detailed picture of possible expected behaviors.

While many of the ideas presented in this paper could
be adapted to other parallel data processing systems, the
Pig/Hadoop environment poses several unique challenges
that have informed our design and shaped our implemen-
tation. Most notable, a MapReduce-style scheduler requires
intermediate result materialization, schedules small pieces
of work at a time, and restarts small query fragments when
failures occur (rather than restarting entire queries). All
three properties affect query progress and its estimates.

ParaTimer is designed to be accurate while remaining sim-
ple and addressing the above challenges. At a high level,
ParaTimer works as follows. For basic progress estima-
tion, ParaTimer builds on our prior system Parallax [23].
Parallax estimates time-remaining by breaking queries into
pipelines. It estimates time-remaining for each pipeline by
considering the work to be done and the speed at which that
work will be performed, taking (time-varying) parallelism
into account. To get processing speeds, Parallax relies on
earlier debug runs of the same query on input data samples
generated by the user.

To support Pig scripts that translate into MapReduce
DAGs where multiple jobs may execute concurrently (such
as scripts with join operators), ParaTimer includes a method
to identify the critical path in a query plan. It then estimates
progress along that path, effectively ignoring other paths.

ParaTimer also provides support for a variety of practical
challenges, including failures and data skew. For data skew
that can be predicted and planned for, ParaTimer takes it
into account upfront. For failures and data skew that are not
planned, ParaTimer outputs a set of estimates, rather than a
single“best guess,” that bound the expected query execution
time within given possible variations in runtime conditions.
An interesting side-benefit of this approach is that when a
query time goes outside ParaTimer’s initial bounds, a user
knows that there is a problem with either his query or the
cluster. ParaTimer’s output can thus aid in performance
debugging.

Today, parallel systems are being deployed at all scales
and each scale raises new challenges. In this paper, we focus
on smaller-scale systems with tens of servers because many
consumers of parallel data management engines today run at
this scale.1 We evaluate ParaTimer’s performance through
experiments on an eight-node cluster (set to a maximum
degree of parallelism of 32 divided into 16 maps and 16 re-
duces). We compare ParaTimer’s performance against Par-
allax [23], other state-of-the-art single-node progress indica-
tors from the literature [3, 19], and Pig’s current progress
indicator [25]. We show that ParaTimer is more accurate
than all these alternatives on a variety of types of queries
and system configurations. For all queries that we evalu-
ated, ParaTimer’s average accuracy is within 5% of an ideal
indicator, when given accurate cardinality estimates.

The rest of this paper is organized as follows. The next
section provides background on MapReduce, Hadoop, and
our prior work. Section 3 presents ParaTimer’s approach

1http://wiki.apache.org/hadoop/PoweredBy

and key algorithms. Section 4 presents empirical results.
Section 5 discusses related work. Section 6 concludes.

2. BACKGROUND
In this section, we present an overview of MapReduce [6],

Pig [24], the naive progress indicator that currently ships
with Pig, and our recent work on the Parallax progress in-
dicator for Pig [23].

2.1 MapReduce
MapReduce [6] (with its open-source variant Hadoop [12])

is a programming model and an implementation for process-
ing large data sets. The input data takes the form of a file
that contains key/value pairs. Users specify a map func-
tion that iterates over this input file and generates, for each
key/value pair, a set of intermediate key/value pairs. For
this, the map function must parse the value field associated
with each key to extract any required attributes. Users also
specify a reduce function that, similar to a relational ag-
gregate operator, merges or aggregates all values associated
with the same key.

MapReduce jobs are automatically parallelized and exe-
cuted on a cluster of commodity machines: the map stage is
partitioned into multiple map tasks and the reduce stage is
partitioned into multiple reduce tasks. Each map task reads
and processes a distinct chunk of the partitioned and dis-
tributed input data. The degree of parallelism in the map
stage depends on the input data size. The output of the
map stage is hash partitioned across a configurable number
of reduce tasks. Data between the map and reduce stages
is always materialized. As discussed below, a higher-level
query may require multiple MapReduce jobs, each of which
has map tasks followed by reduce tasks. Data between con-
secutive jobs is also always materialized.

2.2 Pig
To extend the MapReduce framework beyond the sim-

ple one-input, two-stage data-flow model and to provide a
declarative interface to MapReduce, Olston et. al devel-
oped the Pig system [24]. In Pig, queries are written in Pig
Latin, a language combining the high-level declarative style
of SQL with the low-level procedural programming model
of MapReduce. Pig compiles these queries into ensembles of
MapReduce jobs and submits them to a MapReduce cluster.

For example, consider the following SQL query that pro-
cesses a search log. This query filters the data by applying
a user-defined function, Clean. It then counts the number
of remaining entries in the log for each hour.

SELECT S.time, count(*) as total
FROM SearchLogs S
WHERE Clean(S.query) = 1
GROUP BY S.time

In Pig Latin, this example could be written as:

raw = LOAD ’SearchLogs.txt’
AS (seqnum,user,time,query);

filtered = FILTER raw BY Clean(query);
groups = GROUP filtered BY time;
output = FOREACH groups GENERATE $0 AS time, count($1) AS total
STORE output INTO ’Result.txt’ USING PigStorage();

This Pig script compiles into a single MapReduce job with
the map phase performing the user-defined filter and pro-
duces tuples of the form (time, searchlog-entry). The re-
duce phase would then count the searchlog entries for each
distinct time value.
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Figure 1: Detailed phases of a MapReduce Job.
Each Ni indicates the cardinality of the data on the
given link. Ki’s indicate the number of tuples seen
so far on that link. Both counters mark the begin-
ning of a new Parallax pipeline (Section 2.5).

Because Pig scripts can contain multiple filters, aggrega-
tions, and other operations in various orders, in general a
query will not execute as a single MapReduce job but rather
as a directed acyclic graph (DAG) of jobs. For example, one
of the two sample scripts (script1) distributed with the Pig
system compiles into a sequence of five MapReduce jobs.

2.3 MapReduce Details
Each MapReduce job contains seven phases of execution,

as Figure 1 illustrates. These are the split, record reader,
map runner, combine, copy, sort, and reducer phases. The
split phase does minimal work as it only generates byte off-
sets at which the data should be partitioned. For the pur-
pose of progress computation, this phase can be ignored due
to the negligible amount of work that it performs. The next
three phases (record reader, map runner, and combine) are
components of the map and the last three (the copy, sort,
and reducer phases) are part of the reduce.

The record reader phase iterates through its assigned data
partition and generates key/value pairs from the input data.
These records are passed into the map runner and processed
by the appropriate operators running within the map func-
tion. As records are output from the map runner, they are
passed to the combine phase which, if enabled, sorts and
pre-aggregates the data and writes the records locally. If
the combine phase is not enabled, the records are sorted
and written locally without any aggregation.

Once a map task completes, a message is sent to waiting
reduce tasks informing them of the location of the map task’s
output. The copy phase of the reduce task then copies the
relevant data from the node where the map executed onto
the local nodes where the reduces are running. Once all
outputs have been copied, the sort phase of each reduce
task merges all the files and passes the data to the reducer
phase, which executes the appropriate Pig operators. The
output records from the reducer phase are written to disk
as they are created.

2.4 Pig’s Progress Indicator
The existing Pig/Hadoop query progress estimator pro-

vides limited accuracy (see Section 4). This estimator con-
siders only the record reader, copy, and reducer phases for its
computation. The record reader phase progress is computed
as the percentage of bytes read from the assigned data parti-
tion. The copy phase progress is computed as the number of
map output files that have been completely copied divided
by the total number of files that need to be copied. Finally,

the reducer progress is computed as the percentage of bytes
that have been read so far. The progress of a MapReduce
job is computed as the average of the percent complete of
these three phases. The progress of a Pig Latin query is
then just the average of the percent complete of all of the
jobs in the query.

The Pig progress indicator is representative of other indi-
cators that report progress at the granularity of completed
and executing operators. This approach yields limited ac-
curacy because it assumes that all operators (within and
across jobs) perform the same amount of work. This, how-
ever, is rarely the case since operators at different points in
the query plan can have widely different input cardinalities
and can spend a different amount of time processing each
input tuple. This approach also ignores how the degree of
parallelism will vary between operators.

2.5 Parallax Progress Estimator
Our prior work on the Parallax progress estimator [23]

is significantly more accurate than Pig’s original estimator,
but Parallax is designed to be accurate only for very sim-
ple parallel queries. It adapts and extends related work on
single-site SQL query progress estimation [3, 19] to parallel
settings.

Like in single-site estimators [3, 19], Parallax breaks
queries into pipelines, which are groups of interconnected
operators that execute simultaneously. From the seven
phases of a MapReduce job, Parallax ignores two and con-
structs three pipelines from the remaining five: (1) the
record reader, map runner, and combiner operations taken
together, (2) the copy, and (3) the reducer. In our experi-
ments, however, we found that the sort phase can impose a
significant overhead and, hence, ParaTimer accounts for it
as a fourth pipeline.

Given a sequence of pipelines, similar to prior work [19],
Parallax estimates their time remaining as the sum of time
remaining for the currently executing and future pipelines.
The time remaining for each pipeline is the product of the
amount of work that the pipeline must still perform and
the speed at which that work will be done. Parallax defines
the remaining work as the number of input tuples that a
pipeline must still process. If N is the number of tuples
that a pipeline must process in total and K the number of
tuples processed so far, the work remaining is simply N−K.

For a pipeline p, given Np, Kp, and an estimated process-
ing cost αp (expressed in msec/tuple and discussed below),
the time-remaining for the pipeline is αp(Np − Kp). The
time-remaining for a computation is the sum of the time-
remainings for all the jobs and pipelines. Of course, Np and
αp must be estimated for each future pipeline.

Estimating Execution Costs and Work Remaining
An important contribution and innovation of Parallax is its
estimation of pipeline per-tuple processing costs (the αp for
each pipeline). Previous techniques ignore these costs [3,
2], assume constant processing costs [19], or combine mea-
sured processing cost with optimizer cost estimates to bet-
ter weight different pipelines [18]. In contrast, Parallax es-
timates the per-tuple execution time of each pipeline by
observing the current cost for pipelines that have already
started and using information from earlier (e.g., debug) runs
for pipelines that have not started. This approach is espe-
cially well-suited for query plans with user-defined functions.



Debug runs can be done on small samples and are common
in cluster-computing environments.

Additionally, Parallax dynamically reacts to changes in
runtime conditions by applying a slowdown factor, sp to
current and future pipelines of the same type.

For cardinality estimates, Np, Parallax relies on standard
techniques from the query optimization literature [28]. For
pre-defined operators such as joins, aggregates, or filters,
cardinalities can be estimated using cost formulas. For user-
defined functions and to refine pre-computed estimates, Par-
allax can leverage the same debug runs as above.

We adopt the same strategy in this paper: we do not
study cardinality estimation and assume they are derived
using one of the above techniques. We also use α processing
costs computed from debug runs of the same query fragment.

Accounting for Dynamically Changing Parallelism
The second key contribution of Parallax is how it handles
parallelism, i.e., multiple nodes simultaneously processing a
map or a reduce. Parallelism affects computation progress
by changing the speed with which a pipeline processes in-
put data. The speedup is proportional to the number of
partitions, which we call the pipeline width.

Given J , the set of all MapReduce jobs, and Pj , the set
of all pipelines within job j ∈ J , the progress of a computa-
tion is thus given by the following formula, where Njp and
Kjp values are aggregated across all partitions of the same
pipeline and Setupremaining is the overhead for the unsched-
uled map and reduce tasks.

Tremaining = Setupremaining +
X

j∈J

X

p∈Pj

sjpαjp(Njp −Kjp)

pipeline widthjp

When estimating pipeline width, Parallax takes into ac-
count the cluster capacity and the (estimated) dataset sizes.
In a MapReduce system, the number of map tasks depends
on the size of the input data, not the capacity of the cluster.
The number of reduce tasks is a configurable parameter. The
cluster capacity determines how many map or reduce tasks
can execute simultaneously. In particular, if the number of
map (or reduce) tasks is not a multiple of cluster capacity,
the number of tasks can decrease at the end of execution of
a pipeline, causing the pipeline width to decrease, and the
pipeline to slow down. For example, a 5 GB file, in a system
with a 256 MB chunk size (a recommended value that we
also use in our experiments) and enough capacity to execute
16 map tasks simultaneously, would be processed by a round
of 16 map tasks followed by a round with only 4 map tasks.
Parallax takes this slowdown into account by computing, at
any time, the average pipeline width for the remainder of
the job.

Finally, given Tremaining, ParaTimer also outputs the per-
cent query completed, computed as a fraction of expected
runtime:

Pcomplete =
Tremaining

Tcomplete + Tremaining
(1)

where Tcomplete is the total query processing time so far.

3. ParaTimer
In this section, we present ParaTimer: a progress indica-

tor for parallel queries that take the form of directed acyclic

graphs (DAGs) of MapReduce jobs. ParaTimer builds on
Parallax but takes a radically different strategy for progress
estimation. First, to support complex DAG-shaped queries
where multiple MapReduce jobs execute concurrently –such
as those produced by Pig Latin scripts with joins– Para-
Timer adopts a critical-path-based progress estimation tech-
nique: ParaTimer identifies and tracks only those map and
reduce tasks on the query’s critical path (Section 3.1). Inter-
estingly, when the critical path includes many tasks execut-
ing in parallel, ParaTimer can monitor more of the tasks to
smooth its estimates or fewer of them to reduce monitoring
overhead. Additionally, ParaTimer is designed to work well
under a variety of adverse scenarios including failures (Sec-
tion 3.2) and data skew (Section 3.3). For this, ParaTimer
introduces the idea of providing users with a set of estimated
query runtimes. Each estimate assumes as different execu-
tion scenarios (e.g., with and without failures or worst-case
and best-case schedule) and can thus be annotated with a
description of that scenario. Additionally, because each ex-
ecution scenario could be associated with a probability (i.e.,
probability of a single failure, probability of two failures,
etc.), these multiple estimators can be seen as samples from
the query-time probability distribution function.

3.1 Critical-Path-Based Progress Estimation
To handle complex-shaped query plans in the form of trees

or DAGs, ParaTimer adopts the strategy of identifying and
tracking the critical path in a query plan. For this, Para-
Timer proceeds in four steps. First, it pre-computes the
expected task schedule for a query (Section 3.1.1). Second,
it extracts path fragments from this schedule (Section 3.1.2).
Third, it identifies the critical path in terms of these path
fragments (Section 3.1.3). Finally, it tracks progress on this
critical path (Section 3.1.4).

3.1.1 Computing the Task Schedule
To identify the critical path, ParaTimer first mimics the

scheduler algorithm to pre-compute the expected schedule
for all tasks and thus all pipelines in the query.

ParaTimer takes the scheduling algorithm as input. In
this paper, we assume a FIFO scheduler, the default in
Hadoop. With a FIFO scheduler, jobs are launched one
after the other in sequence. All the tasks of a given job are
scheduled before any tasks of the next job get any resources.
Hence, the only possibility for concurrent execution of mul-
tiple jobs is when a job has fewer tasks remaining to run
than the cluster capacity, C. At that time, the remaining
capacity is allocated to the next job (unless it must wait for
the previous job to finish, as indicated by the DAG). Both
map and reduce task scheduling follows this strategy. Re-
duces are further constrained by the map schedule. They
can start copying data as soon as the first map task ends,
but the last round of data copy as well as the sort and re-
duce pipelines must proceed in series with the maps from
the same job.

Figure 2 shows an example query plan that includes a join
and enables inter-MapReduce-job parallelism in addition to
intra-job parallelism. Figure 3(a) shows a possible schedule
for the resulting map and reduce tasks in a cluster with
enough capacity for five concurrent map and five concurrent
reduce tasks.2 For clarity, the figure omits the copy and sort

2In Hadoop terminology, we say that the cluster has five
map slots and five reduce slots.
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 foreach j
generate i

LOAD
Job 3

JOIN

DISTINCT

 Job 2
 foreach j
generate i

LOAD DISTINCT

Figure 2: Example Pig Latin query plan with a join
operator.

pipelines but shows the map and reduce pipelines. In this
example, we assume that Job 1 has two map tasks and one
reduce task, Job 2 has six map tasks and one reduce task,
and Job 3 has one map task and one reduce task. As the
figure shows, the map tasks for Jobs 1 and 2 can execute
concurrently before the map tasks for Job 3 run. Reduce
tasks execute after their respective map tasks.

Given a DAG of MapReduce jobs, ParaTimer thus com-
putes a schedule, S, such as the one shown in Figure 3(a)
but including also copy and sort pipelines.

While pre-computing the schedule using a given scheduler
algorithm, ParaTimer uses Parallax to estimate the time
that each pipeline will take to run. Given a schedule, Para-
Timer breaks the query plan into path fragments as we de-
scribe next.

3.1.2 Breaking A Schedule into Path Fragments
Given a FIFO scheduler, a MapReduce task schedule has

a regular structure because, typically, batches of tasks are
scheduled at the same time. If all tasks in the batch process
approximately the same amount of data and do so at ap-
proximately the same speed, they all end around the same
time and a new batch of tasks can begin. For example, in
Figure 3(a), m11 and m12 form one such batch. When this
batch ends, another batch comprising tasks m24 and m25
begins. Tasks m21, m22, and m23 form yet another batch.
We call each such batch a round of tasks. A round of tasks
can be as small as one task. For example r1 forms its own
round of tasks. A round of tasks can be no larger than the
cluster capacity, C, which is five tasks in the example. More
precisely:

Definition 3.1. Given a schedule S, a task round, T , is
a set of tasks t ∈ S that all begin within a time δ1 of each
other and end within a time δ1 of each other.

δ1 defines how much skew is tolerable while still consid-
ering tasks to belong to the same round. This is a config-
urable parameter. We discuss skew further in Section 3.3.
In MapReduce systems, task rounds are typically scheduled
one after the other in sequence. More precisely, we say that
two rounds are consecutive if the delay between the end of
one round (the end of the last task in the round) and the
beginning of the next round (start time of the first task in
the new round) is no more than the setup overhead, δ2, of
the system (δ1 and δ2 are independent of each other).

Given the notion of consecutive path rounds, we define a
path fragment as follows:

Definition 3.2. A path fragment is a set of tasks all of
the same type (i.e., either maps or reduces) that execute in
consecutive rounds. In a path fragment, all rounds have the
same width (i.e., same number of parallel tasks) except the
last round, which can be either full or not.

Note that each task belongs to exactly one path fragment,
i.e., path fragments partition the tasks. Given the above
definition, the schedule in Figure 3(a) comprises the follow-
ing six path fragments: p1 = {m11, m12, m24, m25}, p2 =
{m21, m22, m23, m26}, p3 = {r1}, p4 = {r2}, p5 = {m3},
and p6 = {r3}.

It is worth noting that the map path fragments comprise
only map pipelines. Reduce path fragments, however, com-
prise copy, sort, and reduce pipelines.

To understand how these path fragments represent paral-
lel query execution, it is worth considering three job config-
urations:

Sequence of MapReduce Jobs. If a query comprises only
a sequence of MapReduce jobs, the tasks for different jobs
never overlap and we simply get one path fragment for each
job’s map tasks and a second one for each job’s reduce tasks.
The critical path is the sequence of all these path fragments
and our algorithm implicitly becomes equivalent to Parallax.

Parallel Map Tasks. In the absence of inter-job paral-
lelism, a query is thus a series of path fragments, all of the
same width equal to the cluster capacity (or less once fewer
tasks remain). The effect of inter-job parallelism is to di-
vide the concurrently executing tasks into multiple“thinner”
path fragments because tasks from different jobs have dif-
ferent runtimes and violate the “time difference < δ1” rule.
Hence, when two jobs execute concurrently, there are two
path fragments operating simultaneously as in Figure 3(a).
In our example, we know the cluster will first execute
m11, m12, m21, m22, m23. Because map tasks belong to two
different jobs and are thus likely to take different amounts
of time, they are divided into two path fragments p1 =
{m11, m12, m24, m25} and p2 = {m21, m22, m23, m26}.
Conversely, if Parallax estimated Job 1’s map tasks to take
longer than Job 2’s map tasks, the fragments would be
{m11, m12} and {m21, m22, m23, m24, m25, m26}. Simi-
larly, when N queries execute in parallel (for any N ≤ C),
there are N path fragments operating simultaneously.

Parallel Reduce Tasks. When parallel jobs comprise both
map and reduce tasks, the number of path fragments further
increases. Path fragments that involve map tasks are iden-
tified as described above. We now discuss path fragments
in the reduce phases. We assume no data skew. We discuss
data skew in Section 3.3.

There are three cases for reduce tasks:

• Case 1: Reduces run far apart from each other. This
is the case in the example in Figure 3(a). Reduces
run after their respective maps, but they are much
shorter than the maps and thus create long gaps be-
tween themselves. In this scenario, ParaTimer places
the reduces for different jobs in different path frag-
ments.

• Case 2: Reduces overlap. Let’s imagine that the re-
duce for Job 1 stretches all the way past the end of
Job 2’s map tasks. In this case, however, this reduce
still remains in its own path fragment because Job 2’s
reduce can run right after Job 2’s map tasks end in
another available slot. Hence, the path fragments are
the same as in Case 1.

• Case 3: Reduces run in sequence. Imagine case 2 but
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Figure 3: Possible execution schedule for jobs from Figure 2 on a cluster with 5 map and 5 reduce slots. (a)
Execution without failure. (b) Worst-case failure in terms of latency. (c) Failure adds a path fragment but
does not change latency.

with more reduce tasks for Job 1, enough to fill the
entire cluster capacity or more. In this last case, Job
2 reduces will run directly after Job 1 reduces, form-
ing either one path fragment (if Job 1 reduces were a
multiple of cluster capacity) or two (otherwise).

Once again, these reduce path fragments comprise the
copy, sort, and reduce pipelines. Early copies are ignored
for the purpose of path fragment identification: reduces are
assumed to run entirely after the corresponding map path
fragments end.

3.1.3 Identifying the Critical Path Fragments
Given a schedule and an assignment of tasks to path frag-

ments, it is easy to derive a schedule in terms of path frag-
ments where each path fragment is accompanied by a start
time and a duration. The start time of a path fragment is
simply the lowest start time of all tasks in the fragment. The
duration of the path fragment is the sum of the durations
of all the rounds (recall that by definition all tasks within a
path fragment have approximately the same duration, given
by Parallax).

Given a schedule expressed in terms of path fragments,
ParaTimer identifies the fragments on the critical path using
the following simple algorithm.

ParaTimer starts with the entire path-fragment schedule.
As long as there exist overlapping-in-time path fragments in
the schedule, perform the following substitutions:

• Case 1: If two overlapping path fragments start at the
same time, keep only the one expected to take longer.
In the example, p1 and p2 execute in parallel. Hence,
the shorter p1 fragment can be ignored.

• Case 2: If two overlapping path fragments start at dif-
ferent times, keep the one that starts earlier. Remove
the other one, but add back its extra time. In our
example, p2 and p3 overlap. Because the overlap is to-
tal, p3’s time can be ignored. However, if r1 stretched
past the end of m26, the extra time would be taken
into account on the critical path.

The end-result is a schedule in the form of a series, and
this is the critical path.

3.1.4 Estimating Time Remaining at Runtime
In the absence of changes in runtime conditions, path frag-

ments and the critical path can be identified once prior to
query execution. The path fragments on the critical path
are then monitored at runtime and their time-remaining
is computed using Parallax. The time-remaining for the

critical path is the sum of these per-path-fragment time-
remainings. For path fragments that partly overlap, only
their extra, non-overlapping time is added.

Instead of monitoring all tasks in a path fragment on
the critical path, ParaTimer could monitor only a thread
of tasks within the path fragment (or some subset of these
threads), where a thread is a sequence of tasks from the
beginning to the end of a path fragment. This oppor-
tunity enables ParaTimer to offer a flexible trade-off be-
tween overhead and progress estimation smoothness: wider
path fragments can smooth away progress estimation blips
due to small inaccuracies and variations in task completion
times. Thinner path fragments, however, can reduce moni-
toring overhead. Furthermore, when tasks are grouped into
path fragments, ParaTimer can easily change which tasks
it tracks at runtime to better balance the monitoring load
yet still track the critical path. We experimented with both
alternatives, which produced similar estimates, and show re-
sults using the wide path-fragments.

Alternatively, ParaTimer could also monitor all pipelines
in an ongoing query (not just the critical path) and could
recompute the schedule at each time tick. This choice repre-
sents the maximum overhead and maximum accuracy mon-
itoring solution. In fact, when runtime conditions change,
the schedule and critical path must be recomputed dynam-
ically as we discuss next.

3.2 Handling Failures
MapReduce [6] is designed to provide intra-query fault-

tolerance. As a query executes, MapReduce materializes
the output of each map and reduce task. If a task fails, the
system simply restarts the failed task, possibly on a different
node. The task reprocesses its materialized input data and
materializes its output again from the beginning.3

Failures can significantly affect progress estimation. As
an example, Figure 3(b) and (c) shows two schedules for the
query from Figure 3(a) for two different failure scenarios.
Depending when the failure occurs, it may or may not affect
the query time and it may affect it by a different amount.

The challenge with handling failures is that the system,
of course, does not know ahead of time what failures, if
any, will occur. As a result, there is no way to predict the
running time for a query accurately. The best answer that

3MapReduce also uses a form of task replication: when an
operation is close to completion, backup tasks for the re-
maining in-progress tasks are launched. In this paper, how-
ever, we consider the simpler configuration where this fea-
ture is disabled.



the system can provide about remaining query time is, “It
depends.”

To address this challenge, we take an approach that we
call comprehensive progress estimation. Instead of seeing
only one, best guess about the remaining query time, the
user should be shown multiple guesses. Ideally, one would
like to give the user a probability distribution function of
the remaining query time. However, such a function would
be difficult to estimate with accuracy. Instead, we take the
approach of outputting select points on that curve. For sce-
narios with failures, we study one specific such point in this
paper, which assumes that a single worst-case failure will
occur before the end of execution. We introduce additional
indicators when we discuss data skew in Section 3.3.

3.2.1 Comprehensive Progress Estimation
For clarity of exposition, we refer to the standard Para-

Timer approach described in previous sections as the StdEs-
timator. We now describe possible additional estimates that
ParaTimer can output assuming that failures occur during
query execution.

One important estimator in the presence of failures is what
we call the PessimisticFailureEstimator. This estimator as-
sumes a single task execution will fail but that the failure
will have worst-case impact on overall query execution time.
This estimator is useful because single-failures are likely to
take place and the estimator provides an upper bound on the
query time in case they arise. The upper bound is also use-
ful because it approximates the time of an execution with
a single failure that could actually occur. An example of
upper bound that would be less useful would be to assume
the entire query is re-executed upon a failure and to return
as possible time-remaining the same value as StdEstimator
plus the value of StdEstimator at time zero (basically the
time-remaining plus the estimated total time without fail-
ure). In most cases, PessimisticFailureEstimator will return
a much tighter upper bound.

Consider again the example in Figure 3. The StdEs-
timator would output the time remaining for the sched-
ule shown in Figure 3(a), while PessimisticFailureEstimator
would show the time for the schedule shown in Figure 3(b).
Even though the failure is worst-case, the query time is ex-
tended by only a small fraction.

Three conditions make a failure a worst-case failure. First,
the longest remaining task must be the one to fail. In the
example, the map tasks of Job 2 are the longest tasks to
run. Second, the task must fail right before finishing as this
adds the greatest delay. Third, the task must have been
scheduled in the last round of tasks for the given job and
phase. Indeed, if one of tasks m21 through m23 failed, the
query latency would not be affected.

PessimisticFailureEstimator assumes such a worse-case
scenario. For simplicity, however, instead of examining
the schedule carefully to determine the exact worst-case
scenario that is possible, PessimisticFailureEstimator ap-
proximates that scenario by simply assuming the longest
upcoming pipeline will fail right before finishing and will
fail at a time when nothing else can run in parallel. As
a result, PessimisticFailureEstimator produces the follow-
ing time-remaining value for a query Q comprising a set of
pipelines P partitioned into Pdone, Pscheduled, and Pblocked:

PessimisticFailureEstimator(Q) =

= StdEstimator(Q) + max∀p∈Pscheduled∪Pblocked (Parallax(p))

In addition to PessimisticFailureEstimator, ParaTimer
could output additional query time estimates. In partic-
ular, as the scale of a query grows and multiple failures
become likely, ParaTimer could output estimates that al-
low for multiple failures. Going in the other direction, if
users want tighter bounds than PessimisticFailureEstimator,
ParaTimer could output time-remaining assuming failures
that are not necessarily worst-case failures. ParaTimer’s
goal is to enable users to select from a battery of such addi-
tional query time bounds, depending on their system config-
uration and monitoring needs. However, we currently sup-
port and evaluate only the PessimisticFailureEstimator.

3.2.2 Adjusting Estimates after Failures
After a failure occurs, it is crucial to recompute all estima-

tors. There is no sense in the StdEstimator reporting zero-
failure execution time when we know a failure has occurred.
Just as the StdEstimator should account for one past fail-
ure and no future failures, the PessimisticFailureEstimator
should account for one past failure and another worst-case
future failure. Otherwise, this second estimator would be-
come redundant once a failure occurred. Of course, when
indicators are adjusted in this fashion, the user should be
notified that a failure occurred and that all estimators have
been adjusted. In the example, as soon as task m26 fails
and m26′ starts, StdEstimator updates its schedule and re-
computes time remaining. Similarly, PessimisticFailureEs-
timator leverages the new StdEstimator and assumes that
m26′ will fail before finishing. Once m26′ ends, Pessimistic-
FailureEstimator will start returning a time-remaining that
assumes r2, the new longest remaining task, will fail.

In general, a failure can affect all not-completed path frag-
ments and the identity of the critical path, so it is necessary
to recompute these entities from the revised schedule. For
example, when a failure occurs, as illustrated in Figure 3(c),
the failure can stagger the tasks inside a path fragment by
more than value δ1, which requires separating these tasks
into two path fragments (e.g., m11, m12′ and m24 form two
path fragments after the failure). As the figure shows, a
failure can also cause some tasks to move to different path
fragments (e.g., m25′), possibly splitting them in two (not
shown in the figure). In other cases, such as when m26 fails,
path fragments remain the same. To correctly handle all
these cases, when a failure occurs, ParaTimer examines all
currently scheduled tasks and re-runs the scheduler forward
to get the correct new schedule, path fragments, and critical
path.

This process repeats every time a failure occurs.

3.3 Handling Data Skew
So far, we assumed uniform data distribution and approx-

imately constant per-tuple processing times. Under these
assumptions, all partitions of a pipeline process the same
amount of data and end at approximately the same time.
Frequently, however, data and processing times are not dis-
tributed in such a uniform fashion but instead are skewed.
In this section, we address the problem of data skew, when
the imbalance comes from an uneven distribution of data to



partitions. We leave the problem of the imbalance in per-
tuple processing times for future work.

In a MapReduce system, skew due to uneven data distri-
bution can occur only in reduce tasks. It cannot arise for
map tasks because each map task processes exactly one data
chunk and all chunks (except possibly the last one) are of
the same size. We thus focus on the case of data skew in
reduce pipelines.

A possible schedule for a set of reduce tasks, where each
task processes a different amount of data could be as follows:
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When data skew occurs, we no longer have the nice, wide
path fragments that we had before. Instead, each slot in the
cluster becomes its own path fragment.

If the MapReduce scheduler is deterministic, ParaTimer
can pre-compute the expected task schedule for a query. It
can then use it to estimate the time on all path fragments
and identify the critical path.

The challenge is when the scheduler is not completely de-
terministic. In particular, the challenge arises when Para-
Timer does not know how tasks within a job will be sched-
uled exactly. As a consequence, ParaTimer cannot be cer-
tain of the query time because the schedule will affect that
time. To address this challenge, we also adopt the compre-
hensive estimation approach. That is, ParaTimer outputs
multiple estimates for the query. Each estimate gives the
expected query time under a different scenario.

For data skew, different estimates could be useful. We
propose to show users two estimates: an upper bound and a
lower bound on the expected query time. For a set of reduce
tasks, the approach works as follows:

Given a set of reduce tasks R and a cluster capacity C,
expressed in terms of number of slots, if cardinality esti-
mates point to data skew, ParaTimer considers that there
are C parallel path fragments for both the copy and reduce
pipelines. The expected number of rounds within each of
these path fragments is given by: n = $R

C %. Before the tasks
in R start executing, ParaTimer reports the time of chaining
together either the n longest tasks (UpperBoundEstimate)
or n shortest tasks (LowerBoundEstimate).

Once the tasks start executing, we take R to contain
just the not-yet-completed tasks. We then partition R into
two disjoint sets Rscheduled and Rblocked, where Rscheduled ∩
Rblocked = ∅, Rscheduled∪Rblocked = R, and Rscheduled refers
to tasks that have started. We update n to be $Rblocked

C %.
We then report as an upper bound the time of chaining to-
gether the longest currently executing task followed by the
n longest unscheduled tasks and similar for the lower bound
as shown in Algorithm 1.

When multiple jobs are chained together, time-remaining
estimation errors accumulate and ParaTimer reports the
sum of all upper bounds as the upper bound. It reports
the sum of all lower bounds as the lower bound

Other upper and lower bounds are possible. In particular,
one could examine the current schedule more carefully to
make the bounds tighter. However, our current choices yield
useful results as we show next.

Algorithm 1 Estimates in presence of data skew
Input: Rscheduled: Set of scheduled reduce tasks
Input: Rblocked: Set of blocked reduce tasks
Input: n: Expected number of rounds
Output: UpperBoundEstimate and LowerBoundEstimate
1: // Compute time of r using Parallax
2: ∀r ∈ Rscheduled Timescheduled[r] = Parallax(r)
3: ∀r ∈ Rblocked Timeblocked[r] = Parallax(r)
4: Sort(Timescheduled) descending
5: Sort(Timeblocked) descending

6: UpperBoundEstimate = Timescheduled[0]+
Pn−1

i=0 Timeblocked[i]
7: RS = |Rscheduled|
8: RB = |Rblocked|
9: LowerBoundEstimate = Timescheduled[RS − 1]+

10:
PRB−1

i=RB−n Timeblocked[i]

4. EVALUATION
In this section, we evaluate the ParaTimer estimator

through a set of microbenchmarks. In each experiment, we
run a Pig Latin query in a real small-scale cluster. The input
data is synthetic with sizes up to 8GB and either uniform
or Zipfian data distribution.

We compare the performance of ParaTimer against that
of Parallax [23], Pig’s original progress estimator [25], and
previous techniques for single-site progress estimation, in
particular GNM [3], DNE [3], and Luo [19]. We reimple-
mented the GNM, DNE, and Luo estimators in Pig/Hadoop.
We demonstrate that ParaTimer outperforms all these ear-
lier proposals on queries with concurrent MapReduce jobs.
We also show ParaTimer’s performance in the presence of
failures and data skew and, for the latter, compare again
against Parallax.

4.1 Experimental Setup and Assumptions
All experiments were run on an eight-node cluster config-

ured with the Hadoop-17 release and Pig Latin trunk from
February 12, 2009. Each node contains a 2.00GHz dual
quad-core Intel Xeon CPU with 16GB of RAM. The cluster
was configured to a maximum degree of parallelism of 16
concurrent map tasks and 16 concurrent reduce tasks.

As discussed in Section 2.5, for a given query plan, Paral-
lax and thus ParaTimer take as input cardinality estimates,
N , and processing rate estimates, α, for each pipeline. In all
experiments and for all progress estimators, we use perfect
cardinality estimates (N values) in order to isolate the other
sources of errors in progress estimation. Both Parallax and
ParaTimer are demonstrated in two forms: Perfect, which
uses α values from a prior run over the entire data set; and
1% which uses α collected from a single prior run over a 1%
sampled subset (other sample sizes yielded similar results).

4.2 Concurrent MapReduce Jobs
In this section, we investigate how well ParaTimer handles

Pig Latin scripts that contain a join operator and yield a
query plan with concurrent MapReduce jobs. We use the
following Pig Latin script:

a0 = LOAD ’synthetic’ AS (user, action);
a1 = FOREACH a0 GENERATE ToLower2(user) AS user;
a2 = DISTINCT a1 PARALLEL 16;
b0 = LOAD ’synthetic2-1GB’ AS (user, action);
b2 = FOREACH b0 GENERATE user;
b3 = DISTINCT b2 PARALLEL 16;
c0 = JOIN a2 BY user, b3 BY user PARALLEL 16;
STORE c0 into ’join-parallel2out’;
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Figure 4: Task schedule for Pig Latin query com-
prising a join operator and translating into three
MapReduce jobs.
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Figure 5: Percent-time complete estimates for par-
allel query with join. 4.2 GB and 1 GB data sets.
Task schedule as in Figure 4.

This script performs an equi-join of two uniformly-
distributed data sets without duplicates. It compiles into
three jobs: the first two perform the DISTINCT operations
in parallel on the two different datasets. The third performs
the equi-join of the outputs (as in Figure 2).

We run two experiments with different critical path con-
figurations. The schedule of the first join experiment is de-
picted in Figure 4. This experiment runs for approximately
28 minutes. Job 1 processes 1 GB of data through four par-
allel maps and 16 reduces. Job 2 processes 4.2 GB of data
through 17 map tasks and 16 reduces.

Figures 5 and 6 show the results for ParaTimer, Paral-
lax, Pig’s existing indicator, and the other single-site indi-
cators from the literature (GNM [3], DNE [3], and Luo [19]).
In these figures, the x-axis shows the real percent-time re-
maining for the query and the y-axis shows the estimated
percent-time remaining. Hence, the closer a curve is to the
x = y trend-line, the smaller the estimation error.

We report both the average and maximum across the in-
stantaneous errors for all experiments in this section. The
instantaneous error is computed as in [3]:

error =

˛̨
˛̨100 ∗ (ti − t0)

(tn − t0)
− fi

˛̨
˛̨ (2)

where fi is the reported percent-time done estimate, ti is
the current time, tn is the time when the query completes,
and (ti -t0)/(tn-t0) represents the actual percent-time done.

Overall, ParaTimer does very well with average error un-
der 1.1% and maximum error under 4.6% The error is mostly
concentrated at the end of the execution of the final round
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Figure 6: Percent-time complete estimates for par-
allel query with join. 4.2 GB and 1 GB data sets.
Task schedule as in Figure 4.

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

Figure 7: Percent-time complete estimates for par-
allel query with join. 4 GB and 1 GB data sets.
Task schedule as in Figure 4 but without m217.

of map tasks in job 2. In this case optimistic estimates are
reported but only for a brief amount of time. ParaTimer
assumes that, in the absence of changes to external condi-
tions, a pipeline will process data at constant speed. Para-
Timer does not account for an extra blocking combine phase
that is sometimes performed at the end of a map pipeline.4

A more refined model could improve these estimates, but
would complicate the implementation.

Parallax has good average error (7-8%), but has high max-
imum error (19-20%). Since Parallax assumes a serial sched-
ule of jobs consisting of job 1 followed by jobs 2 and 3, it
incorrectly assumes that each job will execute with access to
full cluster resources and will run one after the other. As-
suming serial execution leads to pessimistic estimates. As-
suming access to full cluster capacity leads to optimistic es-
timates. In this configuration, the serial assumption weighs
more heavily and the estimate is pessimistic.

Figure 5 demonstrates that, as expected, indicators from
the literature that are designed for single-site systems cannot
be directly applied to a parallel setting. All of them have
average errors > 11% and maximum errors > 28%

The next join experiment uses the same Pig Latin script
as before, but this time job 2 processes a 4GB input data
set, which creates 16 map tasks. The schedule of tasks for
this experiment is similar to Figure 4, except m217 is omit-

4The combine phase processes the data one chunk at the
time in parallel with the rest of the pipeline but may some-
times block that pipeline.



ted. However, the critical path has changed and is computed
through the first job’s map tasks and the second job’s map
tasks m213 through m216. Figure 7 shows the results. The
experiment ran for approximately 25 minutes.

ParaTimer performs similarly well to the previous join
experiment, with average errors under 0.6% and maximum
errors under 4.2%. Parallax’s average errors are in the 3-5%
range and maximum errors are as high as 20%. Parallax’s
errors are due to the incorrect assumption that the second
job’s map tasks will be running at full cluster capacity. It
expects the pipeline width to be close to 16 for the execution
of these maps, when in fact the pipeline width starts as 12
and drops to 4 after the first job’s maps complete. Because
of this assumption, the estimates trend optimistic.

Overall, in these experiments, ParaTimer thus signifi-
cantly outperforms Parallax, reducing maximum errors from
20% to 5% approximately.

4.3 Failures
In this section, we examine the robustness of ParaTimer

through four single-task failure scenarios. We start with the
query schedule from Figure 4 and test different configura-
tions of failures on or off the critical path and either chang-
ing or not that critical path. The following table summarizes
the experimental configurations:

Where failure occurs
Changes critical path Other path Critical path

No A C
Yes B D

Given the schedule from Figure 4, to obtain case A, we
fail map task m104 at 195 seconds into its execution (around
35% complete). The scheduler selects the next available map
task (here: m213 ) and schedules it in place of the failed one
resulting in a schedule analogous to that in Figure 3(c). Ex-
periment C is similar to A except that we fail m201 around
59 seconds into its execution. m201 then gets rescheduled
alongside m217. In both cases, the query time before and
after failure remains the same as the latency for the extra
tasks can be hidden by the execution of m217. Since both
graphs look almost the same, due to space constraints, we
show only results for one experiment.

Figure 8 shows the results for experiment C. As dis-
cussed in Section 3.2, ParaTimer produces multiple esti-
mates in the case of failures: StdEstimate and Pessimistic-
FailureEstimate (StdEstimate is represented as Perfect and
1% ParaTimer in the figures). We also present an addi-
tional estimate, referred in this section as FailureEstimate,
which provides an estimate in between StdEstimate and Pes-
simisticEstimate. Before a failure occurs, FailureEstimate
(like PessimisticFailureEstimate) is cautious and accounts
for a failure of the longest-running task among all current
and future pipelines. However, once a failure occurs, it as-
sumes that no more failures will occur for the remainder of
that job’s pipeline. At this point, its time-remaining esti-
mate is equivalent to StdEstimate but only until the end of
that pipeline at which time, FailureEstimate assumes that
a failure will occur again.

In the case of experiments A and C, since the query time
is not affected by the failure, StdEstimate shows the correct
percent-done throughout query execution with an average
error below 2% in both experiments. The PessimisticFail-
ureEstimate over-estimates the time throughout most of the
execution. At time 1500 seconds, once the long-running map
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Figure 8: Failure case C, failure occurs at 5% done.
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Figure 9: Failure case D, failure occurs at 33% done.

tasks from Job 2 end, PessimisticFailureEstimate correctly
updates itself by assuming only one of the remaining short
tasks can fail. Finally, FailureEstimate correctly follows Pes-
simisticFailureEstimate before failure and StdEstimate after
the failure and until the end of the map tasks. It then fol-
lows PessimisticFailureEstimate again. The overestimation
of the query-time by PessimisticFailureEstimate is 15% on
average. It is a bit high at 30% right before the job2 map
tasks end because of the large difference in execution times
for the two types of tasks.

To obtain Case B, we fill-up the path fragment compris-
ing tasks {m201, . . . , m212, m217} to form a new path frag-
ment with tasks {m201, . . . , m212, m217, . . . , m228}. With
this setup, there is no more room to hide any restarted tasks.
We then fail task m104 after 296 seconds (at 53% complete).
For case D, we use the same setup but fail task m201, which
is on the critical path, at 676 seconds into its execution (at
93% complete). In both cases, the critical path changes
and the time-remaining increases after the failure. Figure 9
shows the time-remaining curve for experiment D (exper-
iment B has similar shape). As expected, before the fail-
ure happens, StdEstimate provides a lower-bound on query
execution while PessimisticFailureEstimate and FailureEs-
timate are providing an upper-bound on query execution.
This is exactly the desired behavior. The span between the
two is small. The upper bound over-estimates query time
on average by 13% (at most by 30%) while the lower-bound
underestimates it by at most 6%. After the failure, all esti-
mators adjust their predictions as expected.

Overall, the ParaTimer approach to handling failures thus
works well for all four failure configurations.
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Figure 10: Percent-time complete estimates in the
presence of Zipfian skew 8GB data set (32 maps, 32
reduces).

4.4 Data Skew
The goal of the experiments in this section is to measure

how well ParaTimer handles data skew, which results from
an imbalance in the distribution of the data processed per
task or partition. Recall from Section 3.3 that such skew
arises only in reduce pipelines.

We run two experiments. Each one comprises a Pig Latin
script that performs a GROUP-BY operation through a sin-
gle MapReduce job. Moreover, the script loads an 8 GB
data set with a Zipfian distribution on the key used by the
GROUP-BY operator, which results in data skew in the re-
duce pipeline.

For the first experiment, we manually configured the Pig
Latin script to produce a single round of 16 reduce tasks.
In that case, ParaTimer can predict the schedule with cer-
tainty: all reduce tasks will be scheduled concurrently. It
can thus reliably identify and follow the critical path. It pro-
duces a“best guess”estimate from this offline, pre-computed
critical path. For the second experiment, we double the
number of reduce tasks. In this scenario, ParaTimer may
not know exactly how tasks will be scheduled and must thus
output an upper- and lower-bound estimate. The first ex-
periment ran in 49 minutes and the second in 45 minutes.
Since the results from the first experiment were similar to
the second, we omit it to conserve space and only report
that ParaTimer’s “best guess” estimate is indeed accurate in
such a configuration with average errors at 3.5% for Perfect
ParaTimer and 4.3% for 1% ParaTimer.

The results for the second experiment can be found in
Figure 10. Here “best guess” was within 4% average error
for 1% ParaTimer and within 1.5% for Perfect ParaTimer.
As expected, Figure 10, shows the“best guess” estimates be-
tween the upper and lower bound curves. Furthermore, the
bounds provide reasonable estimates: lower bound underes-
timates the query time on average by 6% while the upper
bound overestimates it by at most 17%. There is a tem-
porary spike when the query is 60% complete that affects
the quality of both ParaTimer and Parallax, and this occurs
around the time that the sort pipeline starts processing tu-
ples. Because this pipeline is bursty, and, here, the bursts
exceed the window that we use to estimate processing rates,
it causes the slowdown factor to vary wildly, but only for a
short period of time. The slowdown factor recovers once the
sort is complete. This is an implementation limitation.

In both data skew experiments, Parallax produces less ac-

curate estimates with an average error within 11% and high
maximum errors around 40%. Parallax’s accuracy suffers
because it assumes that each reduce partition processes a
uniform amount of data. Since it does not take this skew into
account, it produces overly-optimistic estimates for both ex-
periments.

4.5 Future Work
ParaTimer is one of the first steps toward providing

an accurate, time-remaining progress estimator for parallel
queries and the above experiments demonstrate that it can
provide accurate information in a variety of important and
challenging circumstances. ParaTimer, however, does not
solve all problems. In particular, in this paper, we did not
study the impact of wrong cardinality estimates on Para-
Timer, which affect predicted times for pipelines and could
also cause ParaTimer to compute the wrong critical path.
It would also be interesting to exercise ParaTimer in a vari-
ety of additional conditions including more complex queries,
larger clusters, clusters where competing workloads use the
same physical machines, and scenarios where failures, skew,
and other problems arise simultaneously.

5. RELATED WORK
Several relational DBMSs, including parallel DBMSs, pro-

vide coarse-grained progress indicators for running queries.
Most systems simply maintain and display a variety of statis-
tics about (ongoing) query execution [4, 5, 7, 10] (e.g.,
elapsed time, number of tuples output so far). Some sys-
tems [7, 10] further break a query plan into steps (e.g., oper-
ators), show which of the steps are currently executing, and
how evenly the processing is distributed across processors.
Some systems further provide time-remaining estimates for
long-running operations by assuming that these operations
process data at constant speed [26], which is not always the
case. Pig/Hadoop’s existing progress estimator [25] takes a
similar approach. It shows a percent-remaining estimate but
has low accuracy (Figure 5) because it assumes all operators
take the same amount of time to complete. Our approach
strives to estimate time remaining with significantly more
accuracy.

There has been significant recent work on developing
progress indicators for SQL queries executing within single-
node DBMSs [3, 2, 18, 19, 21, 22], possibly with concurrent
workloads [20]. In contrast, ParaTimer focuses on the chal-
lenges specific to parallel queries: distribution across multi-
ple nodes, concurrent execution, failures, and data skew.

Chaudhuri et al. [3] maintain upper and lower bounds on
operator cardinalities to refine their estimates at runtime.
These bounds are not analogous to ParaTimer’s bounds.
Chaudhuri et al. use bounds only to correct their single best-
guess estimate of query progress when original cardinality
estimates are incorrect or to produce approximate estimates
with provable guarantees in the presence of join skew [2].
In contrast, ParaTimer focuses on producing multiple useful
guesses on query times. Further, ParaTimer’s guesses are
also not necessarily absolute upper and lower bounds but
rather additional estimates for different possible conditions.

In follow-on work, Chaudhuri et al. [2] study the problem
of join skew in single-node estimators, where different input
tuples contribute to very different numbers of output tuples.
In contrast, we focus on data skew across partitions of an
operator and do not consider join skew.



In preliminary prior work, we developed Parallax [23],
the first non-trivial time-based progress estimator for par-
allel queries. However, Parallax only works for very simple
queries in mostly static runtime conditions. In contrast,
ParaTimer’s approach works for parallel queries with joins
and in the presence of data skew and failures.

Query progress is related to the cardinality estimation
problem. There exists significant work in the cardinality
estimation area including recent techniques [21, 22] that con-
tinuously refine cardinality estimates using online feedback
from query execution. These techniques can help improve
the accuracy of progress indicators. They are orthogonal to
our approach since we do not address the cardinality esti-
mation problem in this paper.

Query optimizers have a model of query cost and compute
that cost when selecting query plans. These costs, how-
ever, are designed for selecting plans rather than comput-
ing the most accurate time-remaining estimates. As such,
optimizer’s estimates can be inaccurate time-remaining in-
dicators [9, 19]. Ganapathi et al. [9] use machine learning
to predict query times before execution. In contrast, we
focus on providing continuously updated time-remaining es-
timates during query execution taking runtime conditions
such as failures into account.

Work on online aggregation [13, 16] also strives to pro-
vide continuous feedback to users during query execution.
The feedback, however, takes the form of confidence bounds
on result accuracy rather than estimated completion times.
Additionally, these techniques use special operators to avoid
any blocking in the query plans.

Finally, query schedulers can use estimates of query com-
pletion times to improve resource allocation. Existing tech-
niques for time-remaining estimates in this domain [30],
however, currently use only heuristics based on Hadoop’s
progress counters, which leads to similar limitations as in
Pig’s current estimator.

6. CONCLUSION
We presented ParaTimer, a system for estimating the

time-remaining for parallel queries consisting of multiple
MapReduce jobs running on a cluster. We leveraged our
earlier work that determines operator speed via runtime
measurements and statistics from earlier runs on data sam-
ples. Unlike this prior work, we support queries where mul-
tiple MapReduce jobs operate in parallel (as occurs with
join queries), where nodes fail at runtime, and where data
skew exists. The essential techniques involve identifying the
critical path for the entire query and producing multiple
time estimates for different assumptions about future dy-
namic conditions. We have implemented our approach in
the Pig/Hadoop system and demonstrated that for a range
of queries and dynamic conditions it produces quality time
estimates that are more accurate than existing alternatives.
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