
1
().i i ii ...n
|S I|/|S | F

Hierarchically Organized Skew-Tolerant Histograms

for Geographic Data Objects

Yohan J. Roh
SAIT, Samsung Electronics

yohan.roh@samsung.com

Jae Ho Kim
KAIST

jaeho@dbserver.kaist.ac.kr

Yon Dohn Chung
Korea University

ydchung@korea.ac.kr

Jin Hyun Son
Hanyang University

jhson@hanyang.ac.kr

Myoung Ho Kim
KAIST

mhkim@dbserver.kaist.ac.kr

ABSTRACT

Histograms have been widely used for fast estimation of query

result sizes in query optimization. In this paper, we propose a new

histogram method, called the Skew-Tolerant Histogram

(STHistogram) for two or three dimensional geographic data

objects that are used in many real-world applications in practice.

The proposed method provides a significantly enhanced accuracy

in a robust manner even for the data set that has a highly skewed

distribution. Our method detects hotspots present in various parts

of a data set and exploits them in organizing histogram buckets.

For this purpose, we first define the concept of a hotspot, and

provide an algorithm that efficiently extracts hotspots from the

given data set. Then, we present our histogram construction

method that utilizes hotspot information. We also describe how to

estimate query result sizes by using the proposed histogram. We

show through extensive performance experiments that the

proposed method provides better performance than other existing

methods.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – spatial

databases and GIS

General Terms

Algorithms, Experimentation, Performance

Keywords

Spatial Databases, Query Optimization, Histograms

1. INTRODUCTION
Histograms have been widely used as an approximation tool for

multi-dimensional data distributions. The most important

application of histograms is to estimate the result sizes of queries.

This so-called selectivity estimation is used by query optimizers to

determine the most efficient query execution plan [14, 15]. In

addition, selectivity estimation has been shown to be useful in

many other areas of database processing, e.g., top-k query

processing, skyline query processing, load-balancing in parallel

join query execution, and spatio-temporal query processing [3, 6,

21, 22, 26, 27]. Motivated by such applications, there has been a

great deal of work on the problem of selectivity estimation such as

histograms [1, 2, 8, 11, 12, 19, 24, 28], wavelet transformation

[18, 29], SVD [23], discrete cosine transform [17], and sampling

[13]. Among these approaches, histograms have been shown to be

one of the most popular and effective ways to obtain accurate

estimates of selectivity for multi-dimensional queries [8]. A

histogram consists of a set of buckets Bi, i = 1, ... , n, where each

bucket Bi has its data space Si and frequency Fi of data objects

within Si. The number of buckets for a histogram is usually a

system parameter. Given a data range I specified in a query, an

estimate of the selectivity of the query, i.e., the number of objects

in I, is computed as follows, under uniform distribution

assumption: Here, | | denotes the size of

data space and „Si I‟ denotes the intersection of Si and I.

EXAMPLE 1. Consider a histogram that consists of three buckets

B1 (S: 0~50, F: 100), B2 (S: 50~80, F: 40), and B3 (S: 80~100, F:

60) for one-dimensional data domain [0 .. 100]. Suppose a query

range is [30 .. 90]. Then, the selectivity estimate for this query is

computed as follows: 20/50∙100 + 30/30∙40 + 10/20∙60 = 110.

In this paper, we explore how to construct an effective

histogram for selectivity estimates of range queries. We will focus

on the histograms for two or three dimensional geographic objects.

Let us consider cases of two-dimensional geographic data.

Rectangle-shaped regions are commonly used for the data spaces

of buckets. Each bucket has the specification of its data space or

region together with the frequency of data objects (i.e., total

number of data objects within it). Suppose that all the data objects

in the region of a bucket are uniformly distributed. When a query

is given, an estimated selectivity value for one bucket is computed

in proportion to the size of the overlapping region between the

query region and the bucket‟s region. The selectivity estimate for

a query is the sum of all the estimated values for all the buckets as

in Example 1.

Skewness Problem. Consider Example 1 again. While the region

of bucket B2 is fully contained in the query range, the regions of

buckets B1 and B3 partially overlap with the query range. (From

now on, for convenience, we will often use the term “bucket” to

denote the region of a bucket, i.e., data space associated with the

bucket, if there is no ambiguity.) In estimating a selectivity of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06...$10.00.

query, we do not have a problem for buckets fully contained in the

query range. However, buckets that partially overlap with the

query range may cause a problem. In the example, we have

computed the selectivity estimate under uniform distribution of

data in each bucket B1 and B3. However, if data distribution is

highly skewed in buckets B1 and B3, the selectivity estimate

computed in Example 1 can be significantly deviated from the

actual frequency of objects. Now, as an example of two

dimensional data space, consider a certain bucket B in a two

dimensional histogram that overlaps with a given query region as

shown in Figure 1. In bucket B, 22 objects out of 30 objects are

densely clustered, and this cluster of objects is outside the query

region. If selectivity estimation is made based on the uniform

distribution assumption, this cluster will cause an estimated

selectivity to deviate significantly from the actual frequency of

objects. Suppose the size of the overlapping region is one-third of

the size of bucket B. Then the estimated number of objects for this

overlapping region is (1/3)∙30 = 10, which is five times larger

than the actual frequency 2. Note that this problem stems from the

inappropriate organization of buckets in constructing a histogram.

In other words, a histogram should not have a bucket within

which there is a heavy cluster of objects such as bucket B in

Figure 1.

Many existing histograms do not cope with such clusters well.

In this paper, we propose a new histogram method, called the

Skew-Tolerant Histogram (STHistogram). When constructing a

histogram, the STHistogram detects and utilizes the clusters of

objects in data space. By directly utilizing clusters in organizing

buckets, our proposed method can provide an enhanced accuracy

in a robust manner over skewed distributions. Through extensive

performance experiments, we show a significant accuracy

improvement of the proposed method and its robustness to

skewed data distribution. Note that, in the histogram for the one

dimensional data space as in Example 1, the number of buckets

that partially overlap with the given query range is usually two.

But in the histogrtam for two or three dimensional geographic

space, the number of buckets that partially overlap with the given

query region is much larger than two in general.

The rest of the paper is organized as follows. Section 2

describes related work. In Section 3, we present most of main

ideas in this work and propose our basic histogram method.

Section 4 extends the basic method proposed in Section 3 to cover

the cases when the basic method only may not work effectively.

Section 5 provides the results of performance experiments with

six real-life data sets as well as one synthetic data set. We draw

our conclusions in Section 6.

2. RELATED WORK
Histograms on multiple attributes of a relation have been

widely used for various types of query processing, e.g., query

optimization, top-k query processing, skyline query processing,

load-balancing, spatio-temporal query processing. For query

optimization, histograms are popularly used in commercial

database systems to estimate the result sizes of (sub)queries and to

develop the most efficient query execution plans [14, 15]. For

top-k query processing, Bruno et al. [3] and Chaudhuri et al. [5]

utilize histograms for translating a top-k request into a single

range query that can be efficiently processed by existing database

engines. They have shown that the use of histograms can avoid

the requirement of a full sequential scans of the database and

significantly reduce the time required to support top-k queries. For

skyline query processing, Chaudhuri et al. [4] and Papadias et al.

[21] use the statistics of histograms, such as MinSkew [1], to

accurately estimate the result sizes of skyline queries. These

estimated values are shown to be useful for providing immediate

feedback to users and implementing skyline computation as an

operator within database systems. For load-balancing of parallel

hash joins, Poosala and Ioannidis [22] make use of histograms to

accurately estimate the cost required to perform the join operation,

and effectively balance the load across nodes that participate in

the parallel execution. For spatio-temporal query processing, the

authors of [6] use the MinSkew histogram [1] and extend it with

velocities to estimate the selectivity of spatio-temporal window

queries, i.e., the number of objects that will appear in the query

window at a given future time. For the same purpose, Tao et al.

[27] propose histogram-based solutions to effectively deal with

the dynamics of the moving objects. Sun et al. [26] use the

MinSkew histogram [1] to accurately estimate the selectivity of

spatio-temporal joins, i.e., given two sets S1 and S2 of objects, the

number of pairs <o1, o2> of objects such that o1
S1, o2

S2, and

the distance between the two objects at a given future time is

below a certain threshold.

So far, many studies have been carried out with different

approaches in order to enhance the accuracy of multi-dimensional

histograms. The basic assumption in using a multi-dimensional

histogram is that the histogram works well when data is uniformly

distributed in every bucket. However, the problem of organizing

buckets in such a way that the data is uniformly distributed in

every bucket has been shown to be NP-hard [20]. Therefore, most

existing methods use their own heuristics as follows.

The EquiDepth histogram method [19] partitions the data space,

one dimension at a time. Here, in each i-th dimension, the data

space is divided into vi intervals, each of which has the same

number of data objects. So, for a d-dimensional data set, a set of

v1 × v2 × ... × vd buckets is constructed, where each bucket

contains the same number of data objects. The EquiDepth

histogram may be faster to construct among other types of multi-

dimensional histograms. But, because of its rigid structure, it may

be not flexible to cope with various cases of data skew.

The MinSkew histogram method [1] initially divides the data

space into a uniform grid of rectangular regions. Then, it performs

repeatedly binary space partitioning, where a bucket is

partitioned into two sub-buckets. This partitioning approach may

Figure 1: A bucket containing a cluster of objects.

. An example of a bucket containing a cluster of objects.

a cluster of 22 objects

bucket B

(the number of objects: 30)

a query region
an estimate value: 10

(> the true selectivity 2)

construct histograms rapidly; however, it may not recognize

multi-dimensional subregions where data are not uniformly

distributed, which may degrade the accuracy of histograms. This

is because the partitioning heuristics of MinSkew is based on data

skew in only one-dimension at a time rather than considering the

skew of multiple dimensions at once. In this method, the number

of grid cells is a user-provided parameter. The estimation accuracy

of MinSkew may vary depending on this parameter [1]. In practice,

it is difficult for users to provide the optimal or a near optimal

value for the required parameter.

The GenHist histogram method [11, 12] uses multi-dimensional

grids of various sizes. In this method, high-frequency grid cells

are converted into buckets. More specifically, it iteratively

constructs a certain number of buckets by using grids. Being

different from the aforementioned approaches, this method

directly approximates multi-dimensional (i.e., joint) data

distributions. The authors of GenHist claim that the GenHist

histogram behaves more accurately in high dimension than the

previous approaches on selectivity estimation for multi-

dimensional queries, such as random sampling, Wavelet [29],

EquiDepth [19], and MinSkew [1].

The RK-Hist histogram method, which has been recently

proposed in [8], uses a special type of an r-tree index, i.e., Hilbert

packed R-tree [16], where the entire data objects are sorted based

on their positions along the Hilbert curve. The sorted objects are

divided into several (leaf) nodes, in which the size of each leaf

node is a disk block. Then, the RK-Hist method creates an initial

set of buckets, where each bucket is constructed by merging a

fixed number of leaf nodes. For each initial bucket, the skew of

data is computed and then some bucket with a high skew is split

into two in a repeatable manner, until the total number of buckets

becomes the predefined number or there is no improvement of the

total skew of data in buckets. The authors of RK-Hist claim that

the RK-Hist histogram outperforms other existing methods, such

as EquiDepth [19] and GenHist [11, 12] in terms of accuracy.

However, the RK-Hist method may introduce unnecessary buckets,

when a fixed number (say p) of leaf nodes is merged into an initial

bucket. For example, consider a node u with a very low skew that

is an ancestor of a large number of leaf nodes. If the number of

the descendant leaf nodes is much greater than p, several buckets

will be constructed from these leaf nodes. But, only one bucket

consisting of a single node u suffices to provide accurate

estimation of selectivity (instead of several buckets).

There are several approaches for bucket layout. In the grid

approach, buckets are arranged in rows and columns, e.g., as in

the well-known equal-width histogram. In the recursively

partitioning approach, an existing bucket is recursively divided

into two sub-buckets along some dimension, e.g., as in MinSkew

[1]. There are also other approaches for bucket layout that impose

fewer restrictions than the aforementioned approaches on the

arrangement of buckets, i.e., allow a newly created bucket to

cover a portion of data space in a more flexible way. For example,

in the methods of GenHist [11, 12] and RK-Hist [8], the regions

of buckets are allowed to overlap. There can be a nested approach,

where the region of any bucket, except the bucket whose region

covers the whole data space, is fully contained in the region of

some other bucket. Then, histograms from the nested construction

of buckets can be represented as hierarchies of buckets. Our

histogram proposed in this paper has nested layout of buckets.

Histograms are typically recomputed to reflect updates of the

underlying data in a periodic manner. There is another interesting

approach to maintaining histograms, called the self-tuning

histogram [2, 24]. This approach incrementally maintains buckets

in response to feedback from the query execution engine about the

actual cardinalities of range queries. Because these cardinalities

reflect data updates, the approach can gracefully adapt buckets to

the updates of the underlying data set. But there are following

limitations in this approach. First, because only the regions of

queries that have been processed are used, only buckets related to

those queries can be updated. That is, updates in the other regions

may not be reflected. Second, the feedback-based maintenance

inevitably incurs additional overhead on the query processing [2,

24]. There is other research on maintenance of histograms [9, 28].

3. THE PROPOSED METHOD
We present in this section our new histogram method, called

the Skew-Tolerant Histogram (STHistogram). We focus on the

histograms for two or three dimensional data used in geographic

information processing. In what follows, we will mainly use a

rectangular shaped two dimensional data space for simplicity of

our discussion.

In the proposed method, rectangular shaped cluster regions,

called “hotspots” are detected and exploited for organizing

buckets hierarchically. The use of hotspots in constructing

histograms can effectively reduce the accuracy degradation caused

by skewness mentioned in Section 1.

3.1 Sketch of the Proposed Method
We first describe a sketch of our proposed method that shows

the idea of a histogram constructed by STHistogram. In the

proposed method, hotspots in the data space are recursively found

and made as buckets, which forms a hierarchy of buckets called a

hotspot tree.

Figure 2 illustrates construction of a hotspot tree. Suppose a

data set and the total number of buckets for a histogram are given.

Initially, bucket Broot that is the minimum bounding rectangle for a

whole data set is made as the root of a hotspot tree. Next, within

bucket Broot, we find hotspots and organize them as children of

Broot in the hotspot tree, i.e., buckets B1 and B2 in the figure. The

number of children of Broot, “two” in this case, depends on both

the distribution of a data set and conditions for a certain region to

be a hotspot. The similar process continues until the total number

of buckets in the hotspot tree becomes the predefined number of

buckets for the histogram. How to find hotspots within a bucket,

conditions for a certain region to be a hotspot and the details of

how to organize a hotspot tree will be discussed in the following

B3

Bucket Broot

Broot

B1

B4

B2

B5

B1

B2

B3

B4

B5

(a) Regions of buckets (b) Hotspot tree

Figure 2: An example histogram constructed by the proposed

STHistogram.

sections. Note that a hotspot tree is our target histogram, so a

node in the hotspot tree and a bucket will be used interchangeably.

Note also that all the buckets, except Broot, are nested within other

buckets in the higher levels of the hotspot tree.

3.2 The Concept of a Hotspot
A hotspot in two dimensional data space is a rectangular region

where objects are closely located together with a high density, and

satisfies certain conditions described in Definition 2. Let the

“density” be “frequency/size”, as usual.

DEFINITION 1 (RELATIVE DENSITY OF A REGION). For a

subregion R in a bucket B, the relative density of R with respect to

bucket B, denoted by RelativeDensityB(R), is defined as

RelativeDensityB(R) = density(R)/density(B).

Informally, a hotspot R is the subregion whose density is at

least k times greater than the density of the enclosing bucket B, for

some k. The value k is the minimum value of the relative density

of region R to the enclosing bucket B so that region R can be a

hotspot.

EXAMPLE 2. Let R be a subregion in a bucket B. Suppose that

we use k = 2. Suppose also that size(R) = (1/4)∙size(B) and the

number of objects in R is the half of the number of objects in B.

Then, RelativeDensityB(R) = 2, i.e., the density of R is two times

greater than that of B, and hence R is a hotspot.

When bucket B is the nearest enclosing bucket of subregion R

(e.g., in Figure 2 the nearest enclosing bucket of bucket B3 is

bucket B1), we will use RelativeDensity(R) to denote

RelativeDensityB(R). That is, we omit “B” in RelativeDensityB(R)

if bucket B is the nearest enclosing bucket of region R.

In the following, we use two parameters f and s for definition of

a hotspot. Basically, determination of a hotspot is based on the

density of a region, which also depends on the size of a region and

the frequency of objects in that region. Thus, in the following

definition, instead of simply using the density parameter k as in

Example 2, we use the size parameter s and the frequency

parameter f. For a region R, let freq(R) denote the number of

objects in R. freq(R) will be called “the object frequency of R”.

DEFINITION 2 (HOTSPOT).

(1) Suppose there is a bucket B whose size and object

frequency are S and F, respectively. Given two variables s and f

such that s > 1 and s ≥ f, a rectangular subregion R of bucket B

that satisfies the following conditions (1.1), (1.2), and (1.3) is a

hotspot.

(1.1) size(R) ≤ S/s.

(1.2) freq(R) ≥ F/f.

(1.3) The shape of R is the same as that of B.

(2) Any two hotspots in the same nearest enclosing bucket, i.e.,

any two sibling nodes in a hotspot tree, are mutually exclusive.

In the definition of a hotspot, condition (1.1) is called “size-

condition”, (1.2) is called “frequency-condition”, and (1.3) is

called “shape-condition”. Here, the definition of “the same shape”

in condition (1.3) is as follows: A rectangular region can be

defined by two points, i.e., a bottom-left point and a top-right

point. Consider a rectangular region Ra whose bottom-left and

top-right points are (ax1, ay1) and (ax2, ay2), respectively. Consider

also a rectangular region Rb defined by two points (bx1, by1) and

(bx2, by2) in the same manner. We say that the shapes of Ra and Rb

are the same if (ay2 − ay1)/(ax2 − ax1) = (by2 − by1)/(bx2 − bx1).

Condition (2), i.e., the last part of the definition, stipulates that a

set of hotspots in the same nearest enclosing bucket must not

overlap with one another.

The variable s in condition (1.1) is used to specify the size (i.e.,

less than or equal to S/s) of a hotspot. The variable f in condition

(1.2) is used to specify the minimum object frequency (i.e., F/f) of

a hotspot. For example, s = 4 and f = 2 says the following

condition: In order for a region R to be qualified as a hotspot, the

size of R must be at most one-fourth of the size of the enclosing

bucket B, and the object frequency of R must be at least one-half

of the object frequency of B. In our method, the values of s and f

are not user parameters, but are dynamically determined during

construction of a hotspot tree, based on the number of hotspots to

be detected and the degree of skew in data distribution. This will

be explained in Section 3.4. Condition (1.3), i.e., the shape-

condition, is only for computational simplicity. This is because

the complexity of the problem will be overwhelmingly high if

rectangles with all possible shapes are considered.

PROPERTY 1. For any bucket, the number of hotspots within it is

at most

EXAMPLE 3. Consider three rectangular subregions , , and

in region B as in Figure 3(a). The object frequencies and sizes of

B and three subregions are described in Figure 3(b). If we use s =

4 and f = 2, subregion is a hotspot while and are not.

Subregion does not satisfy the frequency-condition (i.e., 7 <

32/2), and subregion violates the shape-condition (i.e., the

shape of is not the same as that of B).

PROPERTY 2. For a hotspot R, RelativeDensity(R) is at least s/f.

This property is a direct consequence of Definition 1 and

Definition 2.

REMARK 1. In Definition 2, “s > f ” would be better than “s ≥ f ”

for the general meaning of a hotspot. We include the equality to

make our proposed method work well even for the case that data

is uniformly distributed. This will be explained in Section 3.4.

3.3 Detecting Hotspots
Let S and F denote the size and the object frequency of a region

D, respectively. s and f are parameters for a hotspot as in

Definition 2. To detect a hotspot in region D, we may need to

investigate all the subregions of D i) that have the same shape

Region B

Region

Region

Region

Region
Object

Frequency
Size

B 32 32

 22 8

 7 8

 16 6

(a) Region and subregions (b) Information about regions

Figure 3: An example of the hotspot.

f .

with D, and ii) whose sizes are less than or equal to S/s by

Definition 2. Though any subregion R satisfying the above

conditions can be a potential candidate for a hotspot, investigating

all such subregions is computationally intractable, i.e., the number

of such subregions is too much to be investigated. Thus, for

computational simplicity, we will use the rectangle of size S/s that

has the same shape with D as the basic unit for investigating a

hotspot. Besides computational convenience, this policy can

prevent too many hotpots from being produced, by clustering

several closely located tiny clusters into a single hotspot.

The following is a naive method that searches all subregions

satisfying the frequency condition, the shape condition, and the

size condition with the size equal to S/s.

(1) Consider every rectangle R that satisfies the following.

(a) The size of R is S/s.

(b) R has the same shape as the enclosing region D.

(c) The bottom-left corner of R is (xi, yi) such that xi is any

x-value of an object in region D and yi is any y-value of an

object in D. Here, the x-value (or y-value) of an object

denotes the value of the X-axis (or the Y-axis) of the object.

(2) Check if the number of objects in R is greater than or equal

to F/f.

Let N be the total number of objects, i.e., the object frequency

of a given region. The number of all the possible subregions is N2,

and the examination of each subregion on the frequency-condition

requires O(N) time. Therefore, the complexity of this naive

method is O(N3).

In what follows, we propose an algorithm that identifies

hotspots more efficiently. The MPF condition in Property 3 below

is useful to reduce the number of possible candidate regions.

DEFINITION 3. Let R be a hotspot in a region D. Let the bottom-

left corner and the top-right corner of R be (xi, yi) and (xj, yj),

respectively. The projected object frequency of R on the X-axis

denotes the number of objects in D whose x-values are in [xi .. xj].

The projected object frequency of R on the Y-axis is defined in the

same manner.

PROPERTY 3. (MINIMUM PROJECTED FREQUENCY (MPF)

CONDITION). Let R be a hotspot in a region whose object

frequency is F. Then, both of the projected object frequencies of R

on the X-axis and the Y-axis are greater than or equal to the

minimum object frequency (i.e., F/f) for the hotspot.

EXAMPLE 4. Suppose that f = 2 is the frequency-condition for a

hotspot. Let h be a hotspot in region D as shown in Figure 4. The

object frequencies of h and D are 22 and 32, respectively. The

projected object frequency of h on the X-axis and the projected

object frequency of h on the Y-axis of the hotspot are 24 and 28,

respectively. Each value is greater than the minimum object

frequency (= 32/2) for the hotspot.

In Figure 5, we present a hotspot detection algorithm for two

dimensional data, called Algorithm Detect2DiHotspots. In this

algorithm, we first compute the width and the height of hotspots

by using the size- (i.e., S/s) and shape-conditions. Then, for only

intervals of the X-axis whose projected object frequency is greater

The projected object frequency

on X-axis: 24

hotspot h

The projected

object frequency

on Y-axis: 28

Region D (object frequency: 32)

Figure 4: An example of the MPF condition.

ALGORITHM Detect2DiHotspots(D, O, s, f)

INPUT: D – a two dimensional region (object frequency = F).

 O – a set of two dimensional point objects in D,

each of which is represented by (xi , yi). xi and yi are

values of the X-axis and the Y-axis of the object.

 s – value specifying the size (= S/s) of a hotspot.

f – value specifying the minimum object frequency (= F/f) of a hotspot.

OUTPUT: SetOfHotspots – a set of hotspots.

1: SortedListX Sort objects in O based on the x-values

in nondecreasing order;

2: SortedListY Sort objects in O based on the y-values

in nondecreasing order;

3: w (1/s1/2)∙the-width-of-D; /* w is the width of the hotspot */

4: h (1/s1/2)∙the-height-of-D; /* h is the height of the hotspot */

5: Let oi represented by (xi , yi) be the first object in SortedListX;

6: WHILE (oi exists) DO {

/* Let W denote the range [xi .. (xi + w)], i.e., a width interval on the X-axis. */

/* Let freq(W) denote a frequency of objects whose x-values are in W. */

7: IF (freq(W) ≥ F/f) THEN {

/* Examine sub-regions whose width is [xi .. (xi + w)]. */

8: SortedCandiListY Sort objects in SortedListY based on the y-values

whose x-values are in W;

9: Let oj represented by (xj, yj) be the first object in SortedCandiListY;

10: WHILE (oj exists) DO {

/* Let H denote the range [yj .. (yj + h)], i.e., a height interval on the Y-axis. */

/* Let freq(H) denote a frequency of objects in SortedCandiListY

whose y-values are in H. */

11: IF (freq(H) ≥ F/f) THEN {

/* Let a rectangle whose bottom-left and top-right points

are (xi , yj) and (xi + w, yj + h) be R. */

12: R’ AdjustDataSpace(R);

13: IF (the rectangle R’ does not overlap with any rectangle

in SetofHotspots) THEN {

14: Add R’ into SetOfHotspots;

15: Remove objects inside R’ from SortedListX and SortedListY.

16: oj the next object in SortedCandiListY whose

y-value is greater than (yj + h);

17: }

18: }

19: ELSE oj the next object in SortedCandiListY;

20: } // END-OF-WHILE

21: }

22: ELSE oi the next object in SortedListX;

23: } // END-OF-WHILE

24: RETURN SetOfHotspots;

Figure 5: A hotspot detection algorithm.

than or equal to the minimum object frequency (i.e., F/f) for the

hotspot, we continue the exploration (Line 7). That is, for each

height interval of the Y-axis, check if each candidate region

satisfies the frequency-condition for the hotspot (Line 11). In the

algorithm, a width (or height) interval is equal to (1/s1/2)*width-

(or height)-of-region-D. This stems from the size-condition (i.e.,

S/s) and the shape-condition. When a region satisfying the size-,

shape-, and frequency-conditions does not overlap with any other

hotpots ever detected, it is decided to be a hotspot (Lines 12~14).

AdjustDataSpace in Line 12. R’ in Line 12 denotes the minimum

bounding rectangle of the objects in R, as shown in Figure 6. R

and R’ may be the same rectangle in some cases, but the size of R’

will be less than that of R in general. Since the objective of

Algorithm Detect2DiHotspots is to find a region in which a

collection of objects is densely clustered, R’ captures more

accurate data space information for the cluster of objects than R

does.

Accelerating the algorithm. The proposed algorithm exploits the

MPF condition on the X-axis in Property 3 to reduce the search

space. In other words, if the MPF condition on the X-axis is not

satisfied in Line 7, we skip subregions whose width is [xi .. (xi +

w)], and advance to the next step in Line 22. We can also utilize

the following to make a hotspot detection procedure more

efficient:

 Swift Examination of the MPF condition. Line 7, which

examines the MPF condition on the X-axis, can be performed

in a constant time as follows: Let the position of oi in the

SortedListX be p. The MPF condition is satisfied, if and only

if the x-value of the object in SortedListX[p + (F/f) – 1] is less

than or equal to xi + w. Similarly, Line 11 can be performed in

a constant time.

 Rapid Acquisition of the SortedCandiListY. Line 8 sorts

objects based on the values of the Y-axis, whose x-values are

in W. This step can be performed in O(N) by retrieving the

objects from the SortedListY, whose x-values are in W.

 Pruning the last part of the SortedCandiListY (or

SortedListX). In Line 10, even though there exists an object in

SortedCandiListY, we can stop the loop of Lines 10~20 if the

total number of objects left in SortedCandiListY is not enough

to satisfy the frequency-condition (i.e., is less than F/f).

Likewise, in Line 6, we stop the hotspot detection process if

the total number of objects left in SortedListX is less than F/f.

THEOREM 1. The worst case time complexity of Algorithm

Detect2DiHotspots is O(N

2), where N is the object frequency of

the given region.

PROOF. In Figure 5, Lines 1~2 take O(N∙logN) time to sort N

objects. The while-loop starting from Line 6 repeats at most (N –

(N/f) + 1) times by using the pruning the last part of the

SortedListX. Line 7 takes a constant time by using the swift

examination of the MPF condition. Line 8 takes O(N) time by

using the rapid acquisition of the SortedCandiListY. Lines 10~20

iterate at most (N – (N/f) + 1) times by using the pruning the last

part of the SortedCandiListY. Line 11 also takes a constant time

by using the swift examination of the MPF condition.

Consequently, the complexity of Algorithm DetectHotspots is

O(N2). □

We can easily extend Algorithm Detect2DiHotspots to the

algorithm for three dimensional data. This algorithm, called

Algorithm Detect3DiHotspots, is a straightforward extension of

Algorithm Detect2DiHotspots. Because of space limitation, we

omit the details of Algorithm Detect3DiHotspots in this paper.

The following corollary, though the details of the algorithm as

well as the proof of it are omitted, is an immediate consequence of

the fact that Algorithm Detect3DiHotspots is a straightforward

extension of Algorithm Detect2DiHotspots to handle one more

dimension in the data.

COROLLARY 1. The worst case time complexity of Algorithm

Detect3DiHotspots is O(N3), where N is the object frequency of

the given region.

For convenience, Algorithm Detect2DiHotspots and Algorithm

Detect3DiHotspots will be collectively called Algorithm

DetectHotspots if there is no ambiguity.

Note that, depending on the policy to detect hotspots, there can

be various algorithms that are different from our Algorithm

DetectHotspots. The number of hotspots and their locations found

in different algorithms can be different from those found in

Algorithm DetectHotspots. However, any hotspot detection

algorithm can be used in Algorithm ConstructHotspotTree

discussed in the next section as long as if it correctly finds

hotspots that satisfy only condition (2) in Definition 2, i.e., any

two hotspots found in the current bucket are mutually exclusive.

3.4 Constructing Histograms Based on

Hotspots
In this section, we present how to construct our proposed

histogram. The proposed method detects hotspots by using

Algorithm DetectHotspots, and organizes them into a hierarchy of

buckets, i.e., a hotspot tree. We start with bucket Broot that

corresponds to the minimum bounding rectangle for a given entire

data set, and construct a hotspot tree rooted by the node Broot.

Figure 7 shows the proposed algorithm ConstructHotspotTree that

recursively constructs a hotspot tree. This algorithm requires as

input a bucket B, a set of objects O, and the number of buckets NB

to be constructed within B. The initial call of the algorithm is

ConstructHotspotTree(Broot, DataSet, p), where DataSet and p are

the entire data set and the number of buckets to be constructed in

Broot, respectively. At each recursive call to ConstructHotspotTree,

we first determine the size and minimum object frequency for a

hotspot in this recursive step (Lines 1~2), i.e., the input

parameters s and f of Algorithm DetectHotspots. We then detect

hotspots in bucket B by using Algorithm DetectHotspots (Line 3).

The detected hotspots are organized as children of bucket B in the

hotspot tree (Line 4). Here, for each newly created node h, the

Region D

R : a rectangle detected in Line 12

of Algorithm DetectHotspots

R’ : the minimum

bounding rectangle

of the objects in R

Figure 6: Adjustment of data space for a hotspot.

related statistics, i.e., data space and object frequency are

maintained within h. We use NB for the value of f, which makes

the number of hotspots detected be less than or equal to NB

according to Property 1. If the number of hotspots detected is

equal to NB, the current recursive step completes its execution and

returns. Otherwise, we proceed to construct more buckets that will

become the next level nodes in the hotspot tree (Lines 6~11). That

is, for each hotspot h found at the current step, we detect hotspots

within h. These hotspots will be organized as children of h at the

next recursive step. This process continues until no more buckets

can be constructed.

Input parameters s and f of Algorithm DetectHotspots (Lines 1

and 2 in Figure 7). Let us consider NB ≥ 2 first. We use NB for the

value of f if NB ≥ 2. This is because if we use f = NB, the number

of hotspots found in a bucket B, denoted by NB’, does not exceed

NB by Property 1.

Now, consider the value of k that denotes the minimum relative

density for a hotspot. In general, k can be any real number greater

than or equal to 1. Note that k = 1 means the density of a hotspot

can be at least the same as the density of its enclosing bucket. It

also means s = f by Property 2. This implies that the size of a

subregion to be investigated for a hotspot in Algorithm

DetectHotspots is 1/NB of the size of B because we use f = NB as

mentioned above. Suppose k = 1 and the entire data set has

perfectly uniform distribution. Then, our hotspot tree will have

only two levels, i.e., all the nodes except the root node are at the

same level, which effectively reduces to a histogram similar to the

conventional one. Suppose k = 1 but the distribution of data is

skewed. In bucket B (that is Broot in the initial case), consider NB

number of disjoint subregions, each size of which is 1/NB of the

size of B. Some of them are dense subregions and the others are

sparse subregions. Since sparse subregions are not hotspots by

definition, the number of dense subregions will be less than NB.

Then, the recursive step of our algorithm will continue. We will

use k = 1 in our algorithm in Figure 7, which allows our algorithm

to work well regardless of uniform distribution or skewed

distribution of data. This implies that NB is used for the value of s

if NB ≥ 2. The exceptional case is NB = 1. Since a child bucket

with s = 1 (i.e., finding a subregion whose size is equal to the size

of the enclosing bucket) does not make sense we use s = 2 and f =

2 in this case.

If a value greater than one is used for k, there is a possibility

that Algorithm DetectHotspots may not find any hotspot in some

recursive step. This case occurs when the data in a bucket within

which we want to find hotspots is uniformly distributed. Thus, if

we use the value of k greater than one, the algorithm in Figure 7

needs a little modification to handle the case that Algorithm

DetectHotspots does not find any hotspot. We will not discuss this

case further because we will use k = 1, i.e., s = f = NB if NB ≥ 2 in

our algorithm.

Compute NBi, i.e., the number of buckets to be constructed in

bucket Bi (Line 7 in Figure 7). If the number of hotspots found

in bucket B is less than the predefined number of buckets (i.e., NB’

< NB in Line 5), then for each bucket Bi constructed at the current

step, Algorithm ConstructHotspotTree is invoked recursively to

construct more buckets (Line 9). At this time, the number of

buckets to be constructed in Bi, denoted by NBi, needs to be

determined (Line 7). We compute NBi in proportion to the relative

skew of Bi defined below.

DEFINITION 4 (RELATIVE SKEW OF A BUCKET). Let a bucket B

have n children. For a child node bucket Bi, i = 1, … , n, of

bucket B, the relative skew of Bi, denoted by RelativeSkew(Bi), is

defined as follows.

RelativeSkew(Bi) = skew(Bi)

Here, skew(Bi) denotes the skew of distribution in bucket Bi.

skew(Bi) is computed as [10], i.e., the sum of squares of

absolute errors for all the locations within Bi. xr is the real object

frequency at location r and is the estimate of the object

frequency based on the uniform distribution assumption within Bi.

Note that, in the definition, the unit of location is a cell when

the entire data space is considered as a grid, as commonly used in

the literature [10, 20].

EXAMPLE 5. Consider a construction process of a hotspot tree

as in Figure 8. Suppose that the number of buckets to be

ALGORITHM ConstructHotspotTree(B, O, NB)

INPUT: B – a bucket that is the root node of a hotspot tree for a data set O.

 O – a set of geographic objects in bucket B.

 /* We assume that O is either a set of two-dimensional point objects

 or a set of three-dimensional point objects. */

NB – the number of buckets to be constructed within B.

OUTPUT: a hierarchy of buckets rooted by bucket B.

/* Determine the input parameters s and f of

Algorithm DetectHotspots. */

1: s max(NB, 2); /* explained later. */

2: f max(NB, 2); /* explained later. */

/* Detect hotspots within bucket B by using

Algorithm DetectHotspots. */

3: SetOfBuckets DetectHotspots(a minimum bounding region

for objects in B, O, s, f);

4: Make buckets in SetOfBuckets children of B;

/* NB’ denotes the number of buckets in SetOfBuckets. */

/* Note that NB’ ≤ NB. */

5: IF (NB’ < NB) THEN {

6: FOR EACH bucket Bi in SetOfBuckets DO {

/* NBi denotes the number of buckets to be constructed in Bi. */

7: Compute NBi for bucket Bi; /* explained later. */

8: IF (NBi ≥ 1) THEN {

/* Detect hotspots within bucket Bi recursively. */

9: ConstructHotspotTree(Bi, a data set in Bi, NBi);

10: }

11: } // END-OF-FOR-EACH

12:}

Figure 7: A hotspot tree construction algorithm.

B3

Bucket Broot

Broot

B1

B4

B2

B1

B2

B3

B4

(a) Regions of buckets (b) Hotspot tree

Figure 8: An example of a construction process of a hotspot.

()r r
r

 x x 2

rx

 ...ni

iii .Bskew/B skew= BewRelativeSk
1

)()()(

constructed in bucket Broot is 4. Suppose also that within Broot, two

hotspots are found, i.e., buckets B1 and B2 in the figure. Then, we

need to construct two more buckets within B1 and B2. Each

number of buckets to be constructed in B1 and B2, i.e., NB1 and

NB2 is computed in proportion to the relative skew of B1 and B2.

That is,

If the skew of distribution in B1 is much higher than that in B2,

then NB1 = 2 and NB2 = 0. Hence, only within B1, we attempt to

find hotspots and organize them as children of B1, i.e., buckets B3

and B4 in the figure.

Let B1, B2, … , Bn be the children of bucket B, and m be the

number of buckets to be constructed in some of B1, B2, … , Bn.

Then, as in Example 5, NBi = m∙RelativeSkew(Bi).

THEOREM 2. Let F(N) be the worst case computing time for

Algorithm DetectHotspots where N is the number of objects in the

whole data set. Then the worst case time complexity of Algorithm

ConstructHotspotTree is O(p∙F(N)), where p is the number of

buckets for a histogram.

PROOF. Let T(N) denote the computing time of Algorithm

ConstructHotspotTree for N objects. If the initial step of

ConstructHotspotTree finds h number of hotspots, then T(N) =

T(N1) + T(N2) + … + T(Nh) + f(N). Here, Ni denotes the number of

objects in the i-th hotspot and f(N) denotes the computing time for

DetectHotspots. The worst case of the algorithm occurs when only

a single hotspot is found, i.e., h = 1, whose object frequency is N

– 1, at every recursive step. In this case, the above equation can be

rewritten as T(N) = T(N – 1) + f(N) = T(N – 2) + f(N – 1) + f(N) =

f(N – p + 1) + … + f(N – 1) + f(N). Since F(N) is the worst case of

f(N), the proof follows. □

Note that the worst case time complexity of Algorithm

ConstructHotsptTree that uses Algorithm DetectHotspots

described in Section 3.3 is O(p∙N

2) for a two-dimensional data set

and is O(p∙N

3) for a three-dimensional data set. However, if we

can come up with a new hotspot detection algorithm whose worst

case time complexity is better than Algorithm DetectHotspots in

Section 3.3, then the worst case time complexity of Algorithm

ConstructHotsptTree can also be improved.

3.5 Estimating Selectivities Using Our

Proposed Histogram
In this section, we explain how to compute a selectivity for a

given query based on the histogram constructed by our method.

EXAMPLE 6. Consider a histogram H consisting of five buckets

Broot, B1, B2, B3, and B4. Visual representation in two dimensional

space and the hotspot tree representation of H are shown in

Figures 9(a) and 9(b), respectively. The object frequencies,

ranges of the X-axis, ranges of the Y-axis, and sizes of buckets

are described in Figure 9(c). Consider also a query q whose

region is (25 ≤ X ≤ 67, 5 ≤ Y ≤ 55). Then, the selectivity of q

based on H is computed as follows. We first find leaf nodes in the

hotspot tree, i.e., buckets B2, B3, and B4 in the figure. Let size(Bi,

q) denote the size of Bi that overlaps with the region of query q.

Then,

size(B2, q) = (67 − 55)∙(35 − 10) = 300,

 size(B3, q) = (29 − 25)∙(48 − 39) = 36, and

 size(B4, q) = (35 − 25)∙(36 − 27) = 90.

Let est(Bi, q) denote the selectivity estimate for the overlapping

region between bucket Bi and query q.

est(Bi, q) = size(Bi, q)/size(Bi)∙freq(Bi).

Thus, est(B2, q) = 300/1000∙36 = 10.8, est(B3, q) = 36/126∙8 = 2.3,

and est(B4, q) = 90/126∙6 = 4.3. Next, we go up to the parent

nodes of buckets B2, B3, and B4, i.e., buckets B1 and Broot in the

figure. Now, for each bucket B1 and Broot, check if the selectivities

of its all the children have already been computed. Bucket B1 is

the only case. In the region of B1, selectivity estimates of q for

buckets B3 and B4 have already been computed. Let Bi’ denote the

region of Bi that does not overlap with those of its children.

Then, size(B1’) = size(B1) – [size(B3) + size(B4)] = 748,

size(B1’, q) = size(B1, q) – [size(B3, q) + size(B4, q)] = 374,

and freq(B1’) = freq(B1) – [freq(B3) + freq(B4)] = 26.

Since there is no hotspot in B1’, we assume that 26 objects are

uniformly distributed in B1’ whose size is 748. So, est(B1’, q) =

size(B1’, q)/size(B1’)∙freq(B1’)= 374/748∙26 = 13. Thus, est(B1, q)

= est(B3, q) + est(B4, q) + est(B1’, q) = 2.3 + 4.3 + 13 = 19.6. Now,

since selectivity estimates of all the children of Broot have been

computed, we can compute the selectivity estimate of Broot using

the same procedure just mentioned.

size(Broot’) = size(Broot) – [size(B1) + size(B2)] = 4000,

the region of query qBroot

B1

B2

B3

(a) Representation in 2-dimensional space (c) Information about buckets and query q

Region
Object

Frequency
X-range Y-range Size

Broot 100 0~100 0~60 6000

B1 40 5~45 25~50 1000

B2 36 55~95 10~35 1000

B3 8 15~29 39~48 126

B4 6 21~35 27~36 126

q ? 25~67 5~55 2100

B4

B3

Broot

(b) Hotspot tree

B1

B4

B2

Figure 9: Selectivity estimation based on the histogram constructed by our method.

1 2
1 2

1 2 1 2

() ()
2 2 .

() () () ()
B B

skew B skew B
N and N

skew B skew B skew B skew B

size(Broot’, q) = size(Broot, q) – [size(B1, q) + size(B2, q)] = 1300,

freq(Broot’) = freq(Broot) – [freq(B1) + freq(B2)] = 24, and

est(Broot’, q) = 1300/4000∙24 = 7.8.

Thus, est(Broot, q) = est(B1, q) + est(B2, q) + est(Broot’, q)

= 19.6 + 10.8 + 7.8 = 38.2.

Let Bc denote a child node of bucket B, and B’ denote a region

of B except its children. The equation that computes est(B, q), i.e.,

the selectivity estimate of a query q for bucket B, is as follows.

...

(,)
()

()
(,)

(,)
(,) ()

()
c

c n

size B q
freq B if B is a leaf node,

size B
est B q

size B' q
est B q freq B' otherwise.

size B'

1

Algorithm ComputeSelectivity in Figure 10 computes a

selectivity estimate of a given query q using our proposed hotspot

tree. Note that Algorithm ComputeSelectivity as well as

Algorithm ConstructHotspotTree is not affected by the dimension

of data.

4. HOTSPOT FOREST
Until now, our proposed histogram is constructed based on the

existence of hotspots only. This strategy may have a small

problem when query ranges are in the areas where no hotspot is

found. Consider the bucket Broot that is the minimum bounding

rectangle for the entire data space. Suppose that two hotspots B1

and B2 within Broot are found by Algorithm DetectHotspots. Let B‟

be the subregion of Broot that does not overlap with B1 and B2.

According to our algorithms described so far, all the remaining

buckets will be constructed within B1 and B2, and no bucket will

be formed in B‟. Note that even though there is no hotspot in B‟,

this does not necessarily mean that data is uniformly distributed in

B‟. No existence of a hotspot in B‟ simply means that within B‟

there is no subregion that satisfies the hotspot conditions in

Definition 2. For a query whose range overlaps with B1 or B2, our

histogram will give a good estimate in general. However, for a

query whose entire range or most of whose range overlaps with B‟,

the accuracy of our estimate could depend on the distribution of

B‟. Figure 11 illustrates this case. Suppose that the minimum

object frequency for a hotspot is 7 in Figure 11(a). In the figure,

B1 and B2 are hotspots while the region R is not. This is because in

R there are only 6 objects, which does not satisfy the frequency-

condition for our hotspot. Consider two query ranges Q1 and Q2

shown in Figure 11(b). Our histogram will give a good estimate

for Q1, but will not for Q2. If a distribution of query ranges (with

respect to the locations in the data space) is uniform, i.e. query

ranges such as Q1 and Q2 will be given equally likely, we also

need to care about subregions such as R in the figure.

To alleviate the problem mentioned above, we can use slightly

modified approach such that we build more than one hotspot tree,

each of which covers a different subregion of the entire data space.

Let p be the number of buckets to be constructed for a histogram.

Initially, we partition the entire data space into p disjoint

segments of approximately equal sizes. Remove segments that

have no data. Then, combine two adjacent segments Si and Sj if

skew(Si Sj) ≤ skew(Si) + skew(Sj) where Si Sj denotes a

segment that results from combining Si and Sj. This process is

repeated until no two adjacent segments are combined. Then, we

construct a hotspot tree for each segment resulting from the above

process. This set of hotspot trees is called the hotspot forest. As in

Section 3.4, the number of buckets to be constructed in each

hotspot tree is computed in proportion to its relative skew. Note

that the worst case time complexity for constructing a hotspot

forest does not change, i.e. is equal to the one in Theorem 2. Now,

given a range query, a selectivity estimate of the query is the total

sum of estimates for each hotspot tree.

The underlying philosophy for building hotspot forest instead

of a single hotspot tree can be roughly stated as follows: For a

subregion R of size 1/p of the entire data space, we want to

allocate at least one bucket unless there is any region enclosing R

whose skew is lower than the skew of R. Note that when a data set

is perfectly uniform, a hotspot forest will be the same as the

histogram of the well-known equal-width approach.

Figure 12(a) shows the two-dimensional Sequoia data set [25],

which is a well-known real-life data set. This data set is publicly

available and has been used in performance analysis tasks [6, 30].

Figure 12(b) provides our hotspot forest histogram for the

Sequoia data set. We also present the MinSkew [1], GenHist [11,

12], and RK-Hist [8] histograms for the data set in Figure 12(c),

12(d), and 12(e), respectively.

5. PERFORMANCE EXPERIMENTS
In order to study the effectiveness of our proposed histogram,

we have conducted extensive experiments with real-life data as

ALGORITHM ComputeSelectivity(H, q)

INPUT: H – a hotspot tree rooted by bucket Broot, q – a query.

OUTPUT: the selectivity of query q.

(1) /* Processing at the leaf nodes: */

Let SetLeaf be a set of leaf nodes, i.e., buckets, in H

whose regions overlap with the region of q.

For each node Bi in SetLeaf, compute

If the entire region of q is contained in the region of

return

Otherwise, for each Bi in SetLeaf, go up to the parent node

and continue Step (2).

(2) /* Processing at the nonleaf nodes: */

Let SetNonLeaf be a set of nodes, each of which is the parent

of some node Bi whose est(Bi, q) has been computed.

If |SetNonLeaf| = 1, return est(B, q), where B is the sole node in SetNonLeaf.

Otherwise, find a node B that is in the lowest level of

the hotspot tree among nodes in SetNonLeaf, and compute est(B, q).

Go up to the parent node, and repeat this step, i.e., Step (2).

Figure 10: The selectivity estimation algorithm for our
proposed histogram.

Broot

B1

B2

R

Q1

(a) Hotspot tree

Broot

B1

B2

(b) Two query ranges Q1 and Q2

Q2

Figure 11: A hotspot tree and two query ranges.

(,) (,) / () ().i i i iest B q size B q size B freq B

ii
B

i i qBest).,(

well as synthetic data, and compared the accuracy of our results

with those of the MinSkew [1], GenHist [11, 12], and RK-Hist [8]

histograms. (MinSkew and GenHist require initially to divide the

data space into a grid of cells. We used a grid with 104 cells as in

[1].) In evaluating our method, we have used hotspot forests

described in the previous section. All experiments reported in this

section have been performed on a Windows server 2003

workstation with two Xeon 3GHz quad-core processors and 8GB

memory. The algorithms have been implemented in Visual C++

2008.

Data sets. We generated synthetic data sets, referred to Cluster

data sets, with many clusters and therefore high correlations

between attributes, as suggested in [12]. The parameters of the

data generator are i) the dimension of the data space, ii) the total

number of clusters, and iii) the maximum size of a cluster,

represented by the ratio of the cluster size to the domain size, set

to 2 (and 3), 50, and 1%, respectively in our experiments. The

clusters each defined as a hyper-rectangle are randomly located

within the data space and data within each cluster are randomly

distributed. Each synthetic data set contains 1,000,000 data

objects in the space of [1, 1000]d, where d is the dimension of the

data. For our real-life data experiments, we used the following

data sets: i) the Sequoia data set [25], which contains 62,556

locations in California. ii) the Digital Chart of the World data set1,

which contains 19,499 populated places in the United States of

America and Mexico. iii) the North East data set2, which contains

123,593 postal addresses in three metropolitan areas, i.e., New

York, Philadelphia, and Boston. iv) the Greece Cities data set3,

which contains 5,922 cities and villages in Greece. v) the Geevor

data set from the Practical Geostatistics 2000 [7], which contains

5,445 locations of tin mines in Cornwall, England and the grade

of tin from each tin mine. vi) the Sample data set from the

Practical Geostatistics 2000 [7], which contains 21,577 locations

of gold mines and the degree of gold from each gold mine. Figure

13 shows all the data sets except that shown in Figure 12(a). Note

1, 2, 3http://www.rtreeportal.org

that the Sequoia, the Digital Chart of the World, the North East,

and the Greece Cities data sets are two dimensional data sets

while the Geevor and the Sample data sets are three dimensional

data sets. The Cluster (2D) and the Cluster (3D) data sets are

synthetic data sets, each of which is two dimensional and three

dimensional, respectively.

Buckets, Quality Measure, and Test Queries. To test the

accuracy of histograms with various number of buckets, we

constructed histograms with various number of buckets (50~1000

buckets). Our comparisons are based on the average relative error,

which is commonly used as a performance metric in the selectivity

estimation, described below: Let θ be the actual object frequency

of a query q, and θ' be the estimated object frequency of q by a

histogram. Then, the absolute error eabs and the relative error erel

are defined as follows:

eabs = |θ − θ'|. erel = eabs / max{1, θ} = |θ − θ'| / max{1, θ}.

For a set of queries, the average relative error Erel is defined as the

sum of the relative errors for all the queries divided by the number

of queries. For the test queries, we used 100,000 queries in each

experiment, whose regions are randomly located within the data

space.

In the experiments, the performance of the histograms was

evaluated using the following parameters:

(1) The number of buckets in the histogram.

(2) The size of a query region (simply called the query size).

Figure 14 shows how varying the number of buckets affects the

performance of histograms for the real-life data sets and the

synthetic data sets. Note that the Y-axis is shown on a log scale

and the size of queries is set to 5%. In general, average relative

errors tend to be reduced in all the methods with the increasing

number of buckets. This is because when the number of buckets

increases, more accurate statistics can be obtained. Note that the

histograms of the proposed method denoted by STHistogram

work significantly better than those of other methods in many

cases. The primary reason for the noticeable improvement is that

Figure 13: Geographic data sets.

Figure 12: Sequoia two-dimensional data and various histograms (50 buckets).

(c) MinSkew histogram (b) Our proposed histogram (d) GenHist histogram (e) RK-Hist histogram (a) Sequoia data

(a) Digital Chart of the World data (b) North East data (c) Greece Cities data (d) Cluster (3D) data (e) Geevor (3D) data (f) Sample (3D) data

our method effectively handles the clusters that may significantly

degrade the accuracy of the histograms. That is, our method

effectively detects hotspots and exploits them in constructing

buckets. Figure 15 shows how varying the query sizes affect the

performance of the histograms for the various data sets. Note that

the Y-axis is shown on a log scale and the number of buckets is

set to 500. In this figure, as the query size increases, the accuracy

of the histogram tends to increase in all the methods. This is

because when the query size increases, the number of buckets that

are fully contained in the query region also increases in the

methods. That is, the effect of buckets that partially overlap with

the query region, which are the sources of incorrect selectivity

estimation, reduces with the increase of the query size. As seen in

the figures in Figure 15, the performance of the proposed

STHistogram is much better than other methods in many cases.

MinSkew shows relatively good accuracy for three-dimensional

data sets, as shown in Figures 14(f)-(h) and 15(f)-(h). However, as

noted in [1], the accuracy of MinSkew is affected by the number

of grid cells. Sometimes, the accuracy of MinSkew considerably

decreases, when the number of grid cells increases. In the

experiments with the 106 number of grid cells, we have found that

the average relative errors of MinSkew significantly increase,

compared with those in Figures 14(f)-(h) and 15(f)-(h).

Overall, our experimental results show that the proposed

STHistogram provides better accuracy than other existing

methods for real-life data sets as well as synthetic data sets.

0.1

1

10

100

1000

10000

100000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

1

10

100

1000

10000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

1

10

100

1000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

0.1

1

10

100

1000

10000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

1

10

100

1000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

1

10

100

1000

10000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

1

10

100

1000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

1

10

100

1000

0 5 10 15 20

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Query size (%)

Figure 15: Average relative errors for varying query sizes.

1

10

100

1000

10000

100000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

10000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

10000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

10000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

1

10

100

1000

0 200 400 600 800 1000

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

(%
)

Number of buckets

Figure 14: Average relative errors for varying number of buckets.

(a) Cluster (2D) data (b) Sequoia data (c) Digital Chart of the World data (d) North East data

(e) Greece Cities data (g) Geevor (3D) data (h) Sample (3D) data (f) Cluster (3D) data

STHistogram MinSkew GenHist RK-Hist

(c) Digital Chart of the World data (d) North East data

(g) Geevor (3D) data (f) Cluster (3D) data (e) Greece Cities data

(a) Cluster (2D) data (b) Sequoia data

STHistogram MinSkew GenHist RK-Hist

(h) Sample (3D) data

6. CONCLUSIONS
The histogram, which is a simple representation for distribution

of a large data set, is widely used for selectivity estimation that

has many applications for various types of query processing.

Estimates for the histogram buckets that partially overlap with the

query region are computed based on the assumption that all the

objects in a bucket are uniformly distributed. However, it has

been shown to be intractable to organize histogram buckets such

that data objects in every bucket are uniformly distributed. Thus,

in most heuristic histogram methods, there often exist clusters of

data objects in the histogram buckets, which degrades the

accuracy of the estimates. In this work, we have attempted to

organize histogram buckets in such a way that the degree of skew

due to clusters of data objects can be minimized. Our focus is on

the histograms for two or three dimensional geographic data

objects that have many applications in practice, such as

geographic information processing. Through extensive

performance experiments, we have shown that our proposed

method provides better performance than other existing methods.

Our proposed method does not require any user-provided

parameters to construct a histogram, which is not the case in some

existing methods. In our proposed method, the parameters s and f

used to specify the size and the minimum object frequency of the

hotspot are dynamically determined for each bucket when a

histogram is constructed.

7. ACKNOWLEDGMENT
This work was supported by the National Research Foundation

of Korea (NRF) grant funded by the Korea government (MEST)

(No. 2009-0083055). We also thank Dr. Kyoung-Gu Woo and

Data Analytics Project members (SAIT, Samsung Electronics) for

their support.

8. REFERENCES
[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity

estimation in spatial databases. In SIGMOD, pages 13-24, 1999.

[2] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a

multidimensional workload-aware histogram. In SIGMOD,

pages 211-222, 2001.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection

queries over relational databases: mapping strategies and

performance evaluation. ACM Trans. Database Syst.,

27(2):153-187, 2002.

[4] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardinality

and cost estimation for skyline operator. In ICDE, page 64,

2006.

[5] S. Chaudhuri and L. Gravano. Evaluating top-k selection

queries. In VLDB, pages 397-410, 1999.

[6] Y. J. Choi and C. W. Chung. Selectivity estimation for spatio-

temporal queries to moving objects. In SIGMOD, pages 440-

451, 2002.

[7] I. Clark and W. Harper. Practical Geostatistics 2000. Ecosse

North America Llc, Columbus, Ohio, USA, 2000.

[8] T. Eavis and A. Lopez. RK-Hist: an r-tree based histogram for

multi-dimensional selectivity estimation. In CIKM, pages 475-

484, 2007.

[9] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental

maintenance of approximate histograms. ACM Trans.

Database Syst., 27(3):261-298, 2002.

[10] S. Guha, K. Shim, and J. Woo. REHIST: relative error

histogram construction algorithms. In VLDB, pages 300-311,

2004.

[11] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.

Approximating multi-dimensional aggregate range queries over

real attributes. In SIGMOD, pages 463-474, 2000.

[12] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.

Selectivity estimators for multidimensional range queries over

real attributes. VLDB J., 14(2):137-154, 2005.

[13] P. J. Haas and A. N. Swami. Sequential sampling procedures

for query size estimation. In SIGMOD, pages 341-350, 1992.

[14] Y. E. Ioannidis. The history of histograms. In VLDB, pages 19-

30, 2003.

[15] Y. E. Ioannidis. Query Optimization. ACM Comput. Surv.,

28(1):121-123, 1996.

[16] I. Kamel and C. Faloutsos. On Packing R-trees. In CIKM,

pages 490-499, 1993.

[17] J. Lee, D. Kim, and C. Chung. Multi-dimensional selectivity

estimation using compressed histogram information. In

SIGMOD, pages 205-214, 1999

[18] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based

histograms for selectivity estimation. In SIGMOD, pages 448-

459, 1998.

[19] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for

estimating selectivity factors for multidimensional queries. In

SIGMOD, pages 28-36, 1988.

[20] S. Muthukrishnan, V. Poosala, and T. Suel. On Rectangular

Partitionings in Two Dimensions: Algorithms, Complexity,

and Applications. In Int’l Conf. Database Theory, pages 236-

256, 1999.

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline

computation in database systems. ACM Trans. Database Syst.,

30(1):41-82, 2005.

[22] V. Poosala and Y. E. Ioannidis. Estimation of query-result

distribution and its application in parallel-join load balancing.

In VLDB, pages 448-459, 1996.

[23] V. Poosala and Y. E. Ioannidis. Selectivity estimation without

the attribute value independence assumption. In VLDB, pages

486-495, 1997.

[24] U. Srivastava, P. J. Haas, V. Markl, N. Megiddo, M. Kutsch,

and T. M. Tran. ISOMER: consistent histogram construction

using query feedback. In ICDE, page 39, 2006.

[25] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The

SEQUOIA 2000 storage benchmark. In SIGMOD, pages 2-11,

1993.

[26] J. Sun, Y. Tao, D. Papadias, and G. Kollios. Spatio-temporal

join selectivity. Inf. Syst., 31(8):793-813, 2006.

[27] Y. Tao, J. Sun, and D. Papadias. Selectivity estimation for

predictive spatio-temporal queries. In ICDE, pages 417-428,

2003.

[28] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic

multidimensional histograms. In SIGMOD, pages 428-439,

2002.

[29] J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation

and histograms via wavelets. In CIKM, pages 96-104, 1998.

[30] X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for

parallel spatial join processing. GeoInformatica, 2(2):175-204,

1998.

