
Chapter 14Chapter 14
Query OptimizationQuery Optimization

©Silberschatz, Korth and Sudarshan14.2Database System Concepts 3rd Edition

Chapter 14: Query OptimizationChapter 14: Query Optimization

! Introduction

! Catalog Information for Cost Estimation

! Estimation of Statistics

! Transformation of Relational Expressions

! Dynamic Programming for Choosing Evaluation Plans

©Silberschatz, Korth and Sudarshan14.3Database System Concepts 3rd Edition

IntroductionIntroduction

! Alternative ways of evaluating a given query

! Equivalent expressions

! Different algorithms for each operation (Chapter 13)

! Cost difference between a good and a bad way of evaluating a
query can be enormous

! Example: performing a r X s followed by a selection r.A = s.B is
much slower than performing a join on the same condition

! Need to estimate the cost of operations

! Depends critically on statistical information about relations which the
database must maintain

"E.g. number of tuples, number of distinct values for join
attributes, etc.

! Need to estimate statistics for intermediate results to compute cost
of complex expressions

©Silberschatz, Korth and Sudarshan14.4Database System Concepts 3rd Edition

Introduction (Cont.)Introduction (Cont.)

Relations generated by two equivalent expressions have the
same set of attributes and contain the same set of tuples,
although their attributes may be ordered differently.

©Silberschatz, Korth and Sudarshan14.5Database System Concepts 3rd Edition

Introduction (Cont.)Introduction (Cont.)

! Generation of query-evaluation plans for an expression involves
several steps:

1. Generating logically equivalent expressions

" Use equivalence rules to transform an expression into an
equivalent one.

2. Annotating resultant expressions to get alternative query plans

3. Choosing the cheapest plan based on estimated cost

! The overall process is called cost based optimization.

©Silberschatz, Korth and Sudarshan14.6Database System Concepts 3rd Edition

Overview of chapterOverview of chapter

! Statistical information for cost estimation

! Equivalence rules

! Cost-based optimization algorithm

! Optimizing nested subqueries

! Materialized views and view maintenance

©Silberschatz, Korth and Sudarshan14.7Database System Concepts 3rd Edition

Statistical Information for Cost Statistical Information for Cost
EstimationEstimation

! nr: number of tuples in a relation r.

! br: number of blocks containing tuples of r.

! sr: size of a tuple of r.

! fr: blocking factor of r — i.e., the number of tuples of r that
fit into one block.

! V(A, r): number of distinct values that appear in r for
attribute A; same as the size of ∏A(r).

! SC(A, r): selection cardinality of attribute A of relation r;
average number of records that satisfy equality on A.

! If tuples of r are stored together physically in a file, then:

!
!
!

!

"

#
#
#

#

$
=

rf
rn

rb

©Silberschatz, Korth and Sudarshan14.8Database System Concepts 3rd Edition

Catalog Information about IndicesCatalog Information about Indices

! fi: average fan-out of internal nodes of index i, for
tree-structured indices such as B+-trees.

! HTi: number of levels in index i — i.e., the height of i.

! For a balanced tree index (such as B+-tree) on attribute A
of relation r, HTi = $logfi(V(A,r))".

! For a hash index, HTi is 1.

! LBi: number of lowest-level index blocks in i — i.e, the
number of blocks at the leaf level of the index.

©Silberschatz, Korth and Sudarshan14.9Database System Concepts 3rd Edition

Measures of Query CostMeasures of Query Cost
! Recall that

! Typically disk access is the predominant cost, and is also
relatively easy to estimate.

! The number of block transfers from disk is used as a
measure of the actual cost of evaluation.

! It is assumed that all transfers of blocks have the same
cost.

"Real life optimizers do not make this assumption, and
distinguish between sequential and random disk access

! We do not include cost to writing output to disk.

! We refer to the cost estimate of algorithm A as EA

©Silberschatz, Korth and Sudarshan14.10Database System Concepts 3rd Edition

Selection Size EstimationSelection Size Estimation

! Equality selection σσσσA=v(r)
"SC(A, r) : number of records that will satisfy the selection

"$SC(A, r)/fr" — number of blocks that these records will
occupy

"E.g. Binary search cost estimate becomes

! Equality condition on a key attribute: SC(A,r) = 1

$ " 1
),(

)(log22 −!
!

"
#
#

$
+=

r
ra f

rASC
bE

©Silberschatz, Korth and Sudarshan14.11Database System Concepts 3rd Edition

Statistical Information for ExamplesStatistical Information for Examples

! faccount= 20 (20 tuples of account fit in one block)

! V(branch-name, account) = 50 (50 branches)

! V(balance, account) = 500 (500 different balance values)

! πaccount = 10000 (account has 10,000 tuples)

! Assume the following indices exist on account:
! A primary, B+-tree index for attribute branch-name

! A secondary, B+-tree index for attribute balance

©Silberschatz, Korth and Sudarshan14.12Database System Concepts 3rd Edition

Selections Involving ComparisonsSelections Involving Comparisons

! Selections of the form σA≤V(r) (case of σA ≥ V(r) is symmetric)

! Let c denote the estimated number of tuples satisfying the
condition.

! If min(A,r) and max(A,r) are available in catalog

"C = 0 if v < min(A,r)

"C =

! In absence of statistical information c is assumed to be nr / 2.

),min(),max(

),min(
.

rArA

rAv
nr −

−

©Silberschatz, Korth and Sudarshan14.13Database System Concepts 3rd Edition

Implementation of Complex SelectionsImplementation of Complex Selections

! The selectivity of a condition θi is the probability that a tuple in
the relation r satisfies θi . If si is the number of satisfying tuples
in r, the selectivity of θi is given by si /nr.

! Conjunction: σθ1∧ θ2∧ . . . ∧ θn (r). The estimate for number of

tuples in the result is:

! Disjunction:σθ1∨ θ2 ∨ . . . ∨ θn (r). Estimated number of tuples:

! Negation: σ¬θ(r). Estimated number of tuples:
nr – size(σθ(r))

n
r

n
r n

sss
n

∗∗∗∗ . . . 21

%%
&

'
((
)

*
−∗∗−∗−−∗)1(...)1()1(1 21

r

n

rr
r n

s

n

s

n

s
n

©Silberschatz, Korth and Sudarshan14.14Database System Concepts 3rd Edition

Join Operation: Running ExampleJoin Operation: Running Example

Running example:
depositor customer

Catalog information for join examples:

! ncustomer = 10,000.

! fcustomer = 25, which implies that
bcustomer =10000/25 = 400.

! ndepositor = 5000.

! fdepositor = 50, which implies that
bdepositor = 5000/50 = 100.

! V(customer-name, depositor) = 2500, which implies that , on
average, each customer has two accounts.

Also assume that customer-name in depositor is a foreign key
on customer.

©Silberschatz, Korth and Sudarshan14.15Database System Concepts 3rd Edition

Estimation of the Size of JoinsEstimation of the Size of Joins

! The Cartesian product r x s contains nr .ns tuples; each tuple
occupies sr + ss bytes.

! If R ∩ S = ∅ , then r s is the same as r x s.

! If R ∩ S is a key for R, then a tuple of s will join with at most
one tuple from r
! therefore, the number of tuples in r s is no greater than the

number of tuples in s.

! If R ∩ S in S is a foreign key in S referencing R, then the
number of tuples in r s is exactly the same as the number of
tuples in s.

"The case for R ∩ S being a foreign key referencing S is
symmetric.

! In the example query depositor customer, customer-name in
depositor is a foreign key of customer
! hence, the result has exactly ndepositor tuples, which is 5000

©Silberschatz, Korth and Sudarshan14.16Database System Concepts 3rd Edition

Estimation of the Size of Joins (Cont.)Estimation of the Size of Joins (Cont.)

! If R ∩ S = {A} is not a key for R or S.
If we assume that every tuple t in R produces tuples in R S, the
number of tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate
one.

),(sAV
nn sr ∗

),(rAV
nn sr ∗

©Silberschatz, Korth and Sudarshan14.17Database System Concepts 3rd Edition

Estimation of the Size of Joins (Cont.)Estimation of the Size of Joins (Cont.)

! Compute the size estimates for depositor customer without
using information about foreign keys:

! V(customer-name, depositor) = 2500, and
V(customer-name, customer) = 10000

! The two estimates are 5000 * 10000/2500 - 20,000 and 5000 *
10000/10000 = 5000

! We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.

©Silberschatz, Korth and Sudarshan14.18Database System Concepts 3rd Edition

Size Estimation for Other OperationsSize Estimation for Other Operations

! Projection: estimated size of ∏A(r) = V(A,r)

! Aggregation : estimated size of AggggF(r) = V(A,r)

! Set operations

! For unions/intersections of selections on the same relation: rewrite
and use size estimate for selections

"E.g. σθ1 (r) ∪ σθ2 (r) can be rewritten as σθ1 σθ2 (r)

! For operations on different relations:

"estimated size of r ∪ s = size of r + size of s.

"estimated size of r ∩ s = minimum size of r and size of s.

"estimated size of r – s = r.

"All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

©Silberschatz, Korth and Sudarshan14.19Database System Concepts 3rd Edition

Size Estimation (Cont.)Size Estimation (Cont.)

! Outer join:

! Estimated size of r s = size of r s + size of r

"Case of right outer join is symmetric

! Estimated size of r s = size of r s + size of r + size of s

©Silberschatz, Korth and Sudarshan14.20Database System Concepts 3rd Edition

Estimation of Number of Distinct ValuesEstimation of Number of Distinct Values

Selections: σθ (r)

! If θ forces A to take a specified value: V(A,σθ (r)) = 1.
"e.g., A = 3

! If θ forces A to take on one of a specified set of values:
V(A,σθ (r)) = number of specified values.
" (e.g., (A = 1 V A = 3 V A = 4)),

! If the selection condition θ is of the form A op r
estimated V(A,σθ (r)) = V(A.r) * s
"where s is the selectivity of the selection.

! In all the other cases: use approximate estimate of
min(V(A,r), nσθ (r))

! More accurate estimate can be got using probability theory, but
this one works fine generally

©Silberschatz, Korth and Sudarshan14.21Database System Concepts 3rd Edition

Estimation of Distinct Values (Cont.)Estimation of Distinct Values (Cont.)

Joins: r s

! If all attributes in A are from r
estimated V(A, r s) = min (V(A,r), n r s)

! If A contains attributes A1 from r and A2 from s, then estimated
V(A,r s) =

min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr s)

! More accurate estimate can be got using probability theory, but this
one works fine generally

©Silberschatz, Korth and Sudarshan14.22Database System Concepts 3rd Edition

Estimation of Distinct Values (Cont.)Estimation of Distinct Values (Cont.)

! Estimation of distinct values are straightforward for projections.

! They are the same in ∏A (r) as in r.

! The same holds for grouping attributes of aggregation.

! For aggregated values

! For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes

! For other aggregates, assume all values are distinct, and use V(G,r)

©Silberschatz, Korth and Sudarshan14.23Database System Concepts 3rd Edition

Transformation of Relational Transformation of Relational
ExpressionsExpressions

! Two relational algebra expressions are said to be equivalent if on
every legal database instance the two expressions generate the
same set of tuples

! Note: order of tuples is irrelevant

! In SQL, inputs and outputs are multisets of tuples

! Two expressions in the multiset version of the relational algebra are
said to be equivalent if on every legal database instance the two
expressions generate the same multiset of tuples

! An equivalence rule says that expressions of two forms are
equivalent

! Can replace expression of first form by second, or vice versa

©Silberschatz, Korth and Sudarshan14.24Database System Concepts 3rd Edition

Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

4. Selections can be combined with Cartesian products and
theta joins.

a. σθ(E1 X E2) = E1 θ E2

b. σθ1(E1 θ2 E2) = E1 θ1∧ θ 2 E2

))(())((
1221

EE θθθθ σσσσ =

))(()(
2121

EE θθθθ σσσ =∧

)())))((((
121

EE ttntt Π=ΠΠΠ !!

©Silberschatz, Korth and Sudarshan14.25Database System Concepts 3rd Edition

Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan14.26Database System Concepts 3rd Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
E1 θ E2 = E2 θ E1

6. (a) Natural join operations are associative:

(E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

(E1 θ1 E2) θ2∧ θ 3 E3 = E1 θ2∧ θ 3 (E2 θ2 E3)

where θ2 involves attributes from only E2 and E3.

©Silberschatz, Korth and Sudarshan14.27Database System Concepts 3rd Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation
under the following two conditions:
(a) When all the attributes in θ0 involve only the attributes of one

of the expressions (E1) being joined.

σθ0(E1 θ E2) = (σθ0(E1)) θ E2

(b) When θ 1 involves only the attributes of E1 and θ2 involves
only the attributes of E2.

σθ1∧ θ2 (E1 θ E2) = (σθ1(E1)) θ (σθ2 (E2))

©Silberschatz, Korth and Sudarshan14.28Database System Concepts 3rd Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

8. The projections operation distributes over the theta join operation
as follows:

(a) if Π involves only attributes from L1 ∪ L2:

(b) Consider a join E1 θ E2.

! Let L1 and L2 be sets of attributes from E1 and E2, respectively.

! Let L3 be attributes of E1 that are involved in join condition θ, but are
not in L1 ∪ L2, and

! let L4 be attributes of E2 that are involved in join condition θ, but are
not in L1 ∪ L2.

))(())(()(2......12.......1 2121
EEEE LLLL ∏∏=∏ ∪ θθ

)))(())((().....(2......121 42312121
EEEE LLLLLLLL ∪∪∪∪ ∏∏∏=∏ θθ

©Silberschatz, Korth and Sudarshan14.29Database System Concepts 3rd Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E1 ∪ E2 = E2 ∪ E1
E1 ∩ E2 = E2 ∩ E1

! (set difference is not commutative).

10. Set union and intersection are associative.

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)
(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

11. The selection operation distributes over ∪ , ∩ and –.
σθ (E1 – E2) = σθ (E1) – σθ(E2)

and similarly for ∪ and ∩ in place of –

Also: σθ (E1 – E2) = σθ(E1) – E2

and similarly for ∩ in place of –, but not for ∪
12. The projection operation distributes over union

ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2))

©Silberschatz, Korth and Sudarshan14.30Database System Concepts 3rd Edition

Transformation ExampleTransformation Example

! Query: Find the names of all customers who have an account at
some branch located in Brooklyn.
Πcustomer-name(σbranch-city = “Brooklyn”

(branch (account depositor)))

! Transformation using rule 7a.
Πcustomer-name

((σbranch-city =“Brooklyn” (branch))
(account depositor))

! Performing the selection as early as possible reduces the size of
the relation to be joined.

©Silberschatz, Korth and Sudarshan14.31Database System Concepts 3rd Edition

Example with Multiple TransformationsExample with Multiple Transformations

! Query: Find the names of all customers with an account at a
Brooklyn branch whose account balance is over $1000.
Πcustomer-name((σbranch-city = “Brooklyn” ∧ balance > 1000

(branch (account depositor)))

! Transformation using join associatively (Rule 6a):
Πcustomer-name((σbranch-city = “Brooklyn” ∧ balance > 1000

(branch (account)) depositor)

! Second form provides an opportunity to apply the “perform
selections early” rule, resulting in the subexpression

σbranch-city = “Brooklyn” (branch) σ balance > 1000 (account)

! Thus a sequence of transformations can be useful

©Silberschatz, Korth and Sudarshan14.32Database System Concepts 3rd Edition

Multiple Transformations (Cont.)Multiple Transformations (Cont.)

©Silberschatz, Korth and Sudarshan14.33Database System Concepts 3rd Edition

Projection Operation ExampleProjection Operation Example

! When we compute

(σbranch-city = “Brooklyn” (branch) account)
we obtain a relation whose schema is:
(branch-name, branch-city, assets, account-number, balance)

! Push projections using equivalence rules 8a and 8b; eliminate
unneeded attributes from intermediate results to get:
Π customer-name ((

Π account-number ((σbranch-city = “Brooklyn” (branch) account))
depositor)

Πcustomer-name((σbranch-city = “Brooklyn” (branch) account) depositor)

©Silberschatz, Korth and Sudarshan14.34Database System Concepts 3rd Edition

Join Ordering ExampleJoin Ordering Example

! For all relations r1, r2, and r3,

(r1 r2) r3 = r1 (r2 r3)

! If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2) r3

so that we compute and store a smaller temporary relation.

©Silberschatz, Korth and Sudarshan14.35Database System Concepts 3rd Edition

Join Ordering Example (Cont.)Join Ordering Example (Cont.)

! Consider the expression

Πcustomer-name ((σbranch-city = “Brooklyn” (branch))
account depositor)

! Could compute account depositor first, and join result
with

σbranch-city = “Brooklyn” (branch)
but account depositor is likely to be a large relation.

! Since it is more likely that only a small fraction of the
bank’s customers have accounts in branches located
in Brooklyn, it is better to compute

σbranch-city = “Brooklyn” (branch) account

first.

©Silberschatz, Korth and Sudarshan14.36Database System Concepts 3rd Edition

Enumeration of Equivalent ExpressionsEnumeration of Equivalent Expressions

! Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

! Conceptually, generate all equivalent expressions by repeatedly
executing the following step until no more expressions can be
found:
! for each expression found so far, use all applicable equivalence

rules, and add newly generated expressions to the set of expressions
found so far

! The above approach is very expensive in space and time

! Space requirements reduced by sharing common subexpressions:
! when E1 is generated from E2 by an equivalence rule, usually only the

top level of the two are different, subtrees below are the same and
can be shared

"E.g. when applying join associativity

! Time requirements are reduced by not generating all expressions
! More details shortly

©Silberschatz, Korth and Sudarshan14.37Database System Concepts 3rd Edition

Evaluation PlanEvaluation Plan

! An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

©Silberschatz, Korth and Sudarshan14.38Database System Concepts 3rd Edition

Choice of Evaluation PlansChoice of Evaluation Plans

! Must consider the interaction of evaluation techniques when
choosing evaluation plans: choosing the cheapest algorithm for
each operation independently may not yield best overall
algorithm. E.g.

! merge-join may be costlier than hash-join, but may provide a sorted
output which reduces the cost for an outer level aggregation.

! nested-loop join may provide opportunity for pipelining

! Practical query optimizers incorporate elements of the following
two broad approaches:

1. Search all the plans and choose the best plan in a
cost-based fashion.

2. Uses heuristics to choose a plan.

©Silberschatz, Korth and Sudarshan14.39Database System Concepts 3rd Edition

CostCost--Based OptimizationBased Optimization

! Consider finding the best join-order for r1 r2 . . . rn.

! There are (2(n – 1))!/(n – 1)! different join orders for above
expression. With n = 7, the number is 665280, with n = 10, the
number is greater than 176 billion!

! No need to generate all the join orders. Using dynamic
programming, the least-cost join order for any subset of
{r1, r2, . . . rn} is computed only once and stored for future use.

©Silberschatz, Korth and Sudarshan14.40Database System Concepts 3rd Edition

Dynamic Programming in OptimizationDynamic Programming in Optimization

! To find best join tree for a set of n relations:

! To find best plan for a set S of n relations, consider all possible
plans of the form: S1 (S – S1) where S1 is any non-empty
subset of S.

! Recursively compute costs for joining subsets of S to find the
cost of each plan. Choose the cheapest of the 2n – 1
alternatives.

! When plan for any subset is computed, store it and reuse it
when it is required again, instead of recomputing it

"Dynamic programming

©Silberschatz, Korth and Sudarshan14.41Database System Concepts 3rd Edition

Join Order Optimization AlgorithmJoin Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost ≠ ∞)

return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
for each non-empty subset S1 of S such that S1 ≠ S

P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

©Silberschatz, Korth and Sudarshan14.42Database System Concepts 3rd Edition

Left Deep Join TreesLeft Deep Join Trees

! In left-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

©Silberschatz, Korth and Sudarshan14.43Database System Concepts 3rd Edition

Cost of OptimizationCost of Optimization

! With dynamic programming time complexity of optimization with
bushy trees is O(3n).
! With n = 10, this number is 59000 instead of 176 billion!

! Space complexity is O(2n)

! To find best left-deep join tree for a set of n relations:
! Consider n alternatives with one relation as right-hand side input

and the other relations as left-hand side input.

! Using (recursively computed and stored) least-cost join order for
each alternative on left-hand-side, choose the cheapest of the n
alternatives.

! If only left-deep trees are considered, time complexity of finding
best join order is O(n 2n)
! Space complexity remains at O(2n)

! Cost-based optimization is expensive, but worthwhile for queries
on large datasets (typical queries have small n, generally < 10)

©Silberschatz, Korth and Sudarshan14.44Database System Concepts 3rd Edition

Interesting Orders in CostInteresting Orders in Cost--Based OptimizationBased Optimization

! Consider the expression (r1 r2 r3) r4 r5

! An interesting sort order is a particular sort order of tuples
that could be useful for a later operation.

! Generating the result of r1 r2 r3 sorted on the attributes
common with r4 or r5 may be useful, but generating it sorted on
the attributes common only r1 and r2 is not useful.

! Using merge-join to compute r1 r2 r3 may be costlier, but may
provide an output sorted in an interesting order.

! Not sufficient to find the best join order for each subset of the
set of n given relations; must find the best join order for each
subset, for each interesting sort order

! Simple extension of earlier dynamic programming algorithms

! Usually, number of interesting orders is quite small and doesn’t
affect time/space complexity significantly

©Silberschatz, Korth and Sudarshan14.45Database System Concepts 3rd Edition

Heuristic OptimizationHeuristic Optimization

! Cost-based optimization is expensive, even with
dynamic programming.

! Systems may use heuristics to reduce the number of
choices that must be made in a cost-based fashion.

! Heuristic optimization transforms the query-tree by
using a set of rules that typically (but not in all cases)
improve execution performance:

! Perform selection early (reduces the number of tuples)

! Perform projection early (reduces the number of
attributes)

! Perform most restrictive selection and join operations
before other similar operations.

! Some systems use only heuristics, others combine
heuristics with partial cost-based optimization.

©Silberschatz, Korth and Sudarshan14.46Database System Concepts 3rd Edition

Steps in Typical Heuristic OptimizationSteps in Typical Heuristic Optimization

1. Deconstruct conjunctive selections into a sequence of single
selection operations (Equiv. rule 1.).

2. Move selection operations down the query tree for the
earliest possible execution (Equiv. rules 2, 7a, 7b, 11).

3. Execute first those selection and join operations that will
produce the smallest relations (Equiv. rule 6).

4. Replace Cartesian product operations that are followed by a
selection condition by join operations (Equiv. rule 4a).

5. Deconstruct and move as far down the tree as possible lists
of projection attributes, creating new projections where
needed (Equiv. rules 3, 8a, 8b, 12).

6. Identify those subtrees whose operations can be pipelined,
and execute them using pipelining).

©Silberschatz, Korth and Sudarshan14.47Database System Concepts 3rd Edition

Structure of Query OptimizersStructure of Query Optimizers

! The System R/Starburst optimizer considers only left-deep join
orders. This reduces optimization complexity and generates
plans amenable to pipelined evaluation.
System R/Starburst also uses heuristics to push selections and
projections down the query tree.

! Heuristic optimization used in some versions of Oracle:

! Repeatedly pick “best” relation to join next

"Starting from each of n starting points. Pick best among these.

! For scans using secondary indices, some optimizers take into
account the probability that the page containing the tuple is in the
buffer.

! Intricacies of SQL complicate query optimization

! E.g. nested subqueries

©Silberschatz, Korth and Sudarshan14.48Database System Concepts 3rd Edition

Structure of Query Optimizers (Cont.)Structure of Query Optimizers (Cont.)

! Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

! System R and Starburst use a hierarchical procedure based on
the nested-block concept of SQL: heuristic rewriting followed by
cost-based join-order optimization.

! Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

! This expense is usually more than offset by savings at query-
execution time, particularly by reducing the number of slow
disk accesses.

©Silberschatz, Korth and Sudarshan14.49Database System Concepts 3rd Edition

Optimizing Nested Optimizing Nested SubqueriesSubqueries****

! SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of
values
! Parameters are variables from outer level query that are used in the

nested subquery; such variables are called correlation variables

! E.g.
select customer-name
from borrower
where exists (select *

from depositor
where depositor.customer-name =

borrower.customer-name)

! Conceptually, nested subquery is executed once for each tuple in
the cross-product generated by the outer level from clause
! Such evaluation is called correlated evaluation

! Note: other conditions in where clause may be used to compute a join
(instead of a cross-product) before executing the nested subquery

©Silberschatz, Korth and Sudarshan14.50Database System Concepts 3rd Edition

Optimizing Nested Optimizing Nested Subqueries Subqueries (Cont.)(Cont.)

! Correlated evaluation may be quite inefficient since

! a large number of calls may be made to the nested query

! there may be unnecessary random I/O as a result

! SQL optimizers attempt to transform nested subqueries to joins
where possible, enabling use of efficient join techniques

! E.g.: earlier nested query can be rewritten as
select customer-name
from borrower, depositor
where depositor.customer-name = borrower.customer-name
! Note: above query doesn’t correctly deal with duplicates, can be

modified to do so as we will see

! In general, it is not possible/straightforward to move the entire
nested subquery from clause into the outer level query from clause

! A temporary relation is created instead, and used in body of outer
level query

©Silberschatz, Korth and Sudarshan14.51Database System Concepts 3rd Edition

Optimizing Nested Optimizing Nested SubqueriesSubqueries (Cont.)(Cont.)
In general, SQL queries of the form below can be rewritten as shown

! Rewrite: select …
from L1
where P1 and exists (select *

from L2
where P2)

! To: create table t1 as
select distinct V
from L2
where P2

1

select …
from L1, t1
where P1 and P2

2

! P2
1 contains predicates in P2 that do not involve any correlation variables

! P2
2 reintroduces predicates involving correlation variables, with

relations renamed appropriately

! V contains all attributes used in predicates with correlation variables

©Silberschatz, Korth and Sudarshan14.52Database System Concepts 3rd Edition

Optimizing Nested Optimizing Nested SubqueriesSubqueries (Cont.)(Cont.)

! In our example, the original nested query would be transformed to
create table t1 as

select distinct customer-name
from depositor
select customer-name

from borrower, t1
where t1.customer-name = borrower.customer-name

! The process of replacing a nested query by a query with a join
(possibly with a temporary relation) is called decorrelation.

! Decorrelation is more complicated when
! the nested subquery uses aggregation, or

! when the result of the nested subquery is used to test for equality, or

! when the condition linking the nested subquery to the other
query is not exists,

! and so on.

©Silberschatz, Korth and Sudarshan14.53Database System Concepts 3rd Edition

Materialized Views**Materialized Views**

! A materialized view is a view whose contents are computed and
stored.

! Consider the view
create view branch-total-loan(branch-name, total-loan) as
select branch-name, sum(amount)
from loan
groupby branch-name

! Materializing the above view would be very useful if the total loan
amount is required frequently

! Saves the effort of finding multiple tuples and adding up their
amounts

©Silberschatz, Korth and Sudarshan14.54Database System Concepts 3rd Edition

Materialized View MaintenanceMaterialized View Maintenance

! The task of keeping a materialized view up-to-date with the
underlying data is known as materialized view maintenance

! Materialized views can be maintained by recomputation on every
update

! A better option is to use incremental view maintenance

! Changes to database relations are used to compute changes to
materialized view, which is then updated

! View maintenance can be done by

! Manually defining triggers on insert, delete, and update of each
relation in the view definition

! Manually written code to update the view whenever database
relations are updated

! Supported directly by the database

©Silberschatz, Korth and Sudarshan14.55Database System Concepts 3rd Edition

Incremental View MaintenanceIncremental View Maintenance

! The changes (inserts and deletes) to a relation or expressions
are referred to as its differential

! Set of tuples inserted to and deleted from r are denoted ir and dr

! To simplify our description, we only consider inserts and deletes

! We replace updates to a tuple by deletion of the tuple followed by
insertion of the update tuple

! We describe how to compute the change to the result of each
relational operation, given changes to its inputs

! We then outline how to handle relational algebra expressions

©Silberschatz, Korth and Sudarshan14.56Database System Concepts 3rd Edition

Join OperationJoin Operation

! Consider the materialized view v = r s and an update to r

! Let rold and rnew denote the old and new states of relation r

! Consider the case of an insert to r:

! We can write rnew s as (rold ∪ ir) s

! And rewrite the above to (rold s) ∪ (ir s)

! But (rold s) is simply the old value of the materialized view, so the
incremental change to the view is just ir s

! Thus, for inserts vnew = vold ∪ (ir s)

! Similarly for deletes vnew = vold – (dr s)

©Silberschatz, Korth and Sudarshan14.57Database System Concepts 3rd Edition

Selection and Projection OperationsSelection and Projection Operations

! Selection: Consider a view v = σθ(r).
! vnew = vold ∪σ θ(ir)

! vnew = vold - σθ(dr)

! Projection is a more difficult operation
! R = (A,B), and r(R) = { (a,2), (a,3)}

! ∏A(r) has a single tuple (a).

! If we delete the tuple (a,2) from r, we should not delete the tuple (a)
from ∏A(r), but if we then delete (a,3) as well, we should delete the
tuple

! For each tuple in a projection ∏A(r) , we will keep a count of how
many times it was derived
! On insert of a tuple to r, if the resultant tuple is already in ∏A(r) we

increment its count, else we add a new tuple with count = 1

! On delete of a tuple from r, we decrement the count of the
corresponding tuple in ∏A(r)

" if the count becomes 0, we delete the tuple from ∏A(r)

©Silberschatz, Korth and Sudarshan14.58Database System Concepts 3rd Edition

Aggregation OperationsAggregation Operations

! count : v = Aggggcount(B)
(r).

! When a set of tuples ir is inserted

"For each tuple r in ir, if the corresponding group is already present in v,
we increment its count, else we add a new tuple with count = 1

! When a set of tuples dr is deleted

" for each tuple t in ir.we look for the group t.A in v, and subtract 1 from
the count for the group.

– If the count becomes 0, we delete from v the tuple for the group t.A

! sum: v = Aggggsum (B)
(r)

! We maintain the sum in a manner similar to count, except we add/subtract
the B value instead of adding/subtracting 1 for the count

! Additionally we maintain the count in order to detect groups with no tuples.
Such groups are deleted from v

"Cannot simply test for sum = 0 (why?)

! To handle the case of avg, we maintain the sum and count
aggregate values separately, and divide at the end

©Silberschatz, Korth and Sudarshan14.59Database System Concepts 3rd Edition

Aggregate Operations (Cont.)Aggregate Operations (Cont.)

! min, max: v = Aggggmin (B) (r).

! Handling insertions on r is straightforward.

! Maintaining the aggregate values min and max on deletions may be
more expensive. We have to look at the other tuples of r that are in
the same group to find the new minimum

©Silberschatz, Korth and Sudarshan14.60Database System Concepts 3rd Edition

Other OperationsOther Operations

! Set intersection: v = r ∩ s
! when a tuple is inserted in r we check if it is present in s, and if so

we add it to v.

! If the tuple is deleted from r, we delete it from the intersection if it is
present.

! Updates to s are symmetric

! The other set operations, union and set difference are handled in a
similar fashion.

! Outer joins are handled in much the same way as joins but with
some extra work

! we leave details to you.

©Silberschatz, Korth and Sudarshan14.61Database System Concepts 3rd Edition

Handling ExpressionsHandling Expressions

! To handle an entire expression, we derive expressions for
computing the incremental change to the result of each sub-
expressions, starting from the smallest sub-expressions.

! E.g. consider E1 E2 where each of E1 and E2 may be a
complex expression

! Suppose the set of tuples to be inserted into E1 is given by D1

"Computed earlier, since smaller sub-expressions are handled
first

! Then the set of tuples to be inserted into E1 E2 is given by
D1 E2

"This is just the usual way of maintaining joins

©Silberschatz, Korth and Sudarshan14.62Database System Concepts 3rd Edition

Query Optimization and Materialized Query Optimization and Materialized
ViewsViews

! Rewriting queries to use materialized views:

! A materialized view v = r s is available

! A user submits a query r s t

! We can rewrite the query as v t

"Whether to do so depends on cost estimates for the two alternative

! Replacing a use of a materialized view by the view definition:

! A materialized view v = r s is available, but without any index on it

! User submits a query σA=10(v).

! Suppose also that s has an index on the common attribute B, and r has
an index on attribute A.

! The best plan for this query may be to replace v by r s, which can
lead to the query plan σA=10(r) s

! Query optimizer should be extended to consider all above
alternatives and choose the best overall plan

©Silberschatz, Korth and Sudarshan14.63Database System Concepts 3rd Edition

Materialized View SelectionMaterialized View Selection

! Materialized view selection: “What is the best set of views to
materialize?”.

! This decision must be made on the basis of the system workload

! Indices are just like materialized views, problem of index
selection is closely related, to that of materialized view
selection, although it is simpler.

! Some database systems, provide tools to help the database
administrator with index and materialized view selection.

End of ChapterEnd of Chapter

(Extra slides with details of selection cost estimation
follow)

©Silberschatz, Korth and Sudarshan14.65Database System Concepts 3rd Edition

Selection Cost Estimate ExampleSelection Cost Estimate Example

! Number of blocks is baccount = 500: 10,000 tuples in the
relation; each block holds 20 tuples.

! Assume account is sorted on branch-name.

! V(branch-name,account) is 50

! 10000/50 = 200 tuples of the account relation pertain to
Perryridge branch

! 200/20 = 10 blocks for these tuples

! A binary search to find the first record would take
$log2(500)" = 9 block accesses

! Total cost of binary search is 9 + 10 -1 = 18 block
accesses (versus 500 for linear scan)

σbranch-name = “Perryridge”(account)

©Silberschatz, Korth and Sudarshan14.66Database System Concepts 3rd Edition

Selections Using IndicesSelections Using Indices

! Index scan – search algorithms that use an index; condition is
on search-key of index.

! A3 (primary index on candidate key, equality). Retrieve a
single record that satisfies the corresponding equality condition
EA3 = HTi + 1

! A4 (primary index on nonkey, equality) Retrieve multiple
records. Let the search-key attribute be A.

! A5 (equality on search-key of secondary index).
! Retrieve a single record if the search-key is a candidate key

EA5 = HTi + 1

! Retrieve multiple records (each may be on a different block) if the
search-key is not a candidate key. EA3 = HTi + SC(A,r)

!
!

"
#
#

$
+=

r
iA f

rASC
HTE

),(
4

©Silberschatz, Korth and Sudarshan14.67Database System Concepts 3rd Edition

Cost Estimate Example (Indices)Cost Estimate Example (Indices)

! Since V(branch-name, account) = 50, we expect that
10000/50 = 200 tuples of the account relation pertain
to the Perryridge branch.

! Since the index is a clustering index, 200/20 = 10 block
reads are required to read the account tuples.

! Several index blocks must also be read. If B+-tree
index stores 20 pointers per node, then the B+-tree
index must have between 3 and 5 leaf nodes and the
entire tree has a depth of 2. Therefore, 2 index blocks
must be read.

! This strategy requires 12 total block reads.

Consider the query is σbranch-name = “Perryridge”(account), with the
primary index on branch-name.

©Silberschatz, Korth and Sudarshan14.68Database System Concepts 3rd Edition

Selections Involving ComparisonsSelections Involving Comparisons

! A6 (primary index, comparison). The cost estimate is:

where c is the estimated number of tuples satisfying
the condition. In absence of statistical information c is
assumed to be nr/2.

! A7 (secondary index, comparison). The cost estimate:

where c is defined as before. (Linear file scan may be
cheaper if c is large!).

selections of the form σA≤V(r) or σA ≥ V(r) by using a linear file
scan or binary search, or by using indices in the following
ways:

!
!

"
#
#

$
+=

r
iAB f

c
HTE

c
n

cLB
HTE

r

i
iA +⋅+=7

©Silberschatz, Korth and Sudarshan14.69Database System Concepts 3rd Edition

Example of Cost Estimate for Complex Example of Cost Estimate for Complex
SelectionSelection

! Consider a selection on account with the following condition:
where branch-name = “Perryridge” and balance = 1200

! Consider using algorithm A8:

! The branch-name index is clustering, and if we use it the cost
estimate is 12 block reads (as we saw before).

! The balance index is non-clustering, and
V(balance, account = 500, so the selection would retrieve
10,000/500 = 20 accounts. Adding the index block reads,
gives a cost estimate of 22 block reads.

! Thus using branch-name index is preferable, even though its
condition is less selective.

! If both indices were non-clustering, it would be preferable to
use the balance index.

©Silberschatz, Korth and Sudarshan14.70Database System Concepts 3rd Edition

Example (Cont.)Example (Cont.)

! Consider using algorithm A10:

! Use the index on balance to retrieve set S1 of pointers to
records with balance = 1200.

! Use index on branch-name to retrieve-set S2 of pointers to
records with branch-name = Perryridge”.

! S1 ∩ S2 = set of pointers to records with branch-name =
“Perryridge” and balance = 1200.

! The number of pointers retrieved (20 and 200), fit into a
single leaf page; we read four index blocks to retrieve the
two sets of pointers and compute their intersection.

! Estimate that one tuple in 50 * 500 meets both conditions.
Since naccount = 10000, conservatively overestimate that
S1 ∩ S2 contains one pointer.

! The total estimated cost of this strategy is five block reads.

