
1

©Silberschatz, Korth and Sudarshan24.1Database System Concepts

Chapter 24: Advanced Transaction ProcessingChapter 24: Advanced Transaction Processing

! Transaction-Processing Monitors

! Transactional Workflows

! High-Performance Transaction Systems

! Main memory databases

! Real-Time Transaction Systems

! Long-Duration Transactions

! Transaction management in multidatabase systems

2

©Silberschatz, Korth and Sudarshan24.2Database System Concepts

Transaction Processing MonitorsTransaction Processing Monitors

! TP monitors initially developed as multithreaded servers to
support large numbers of terminals from a single process.

! Provide infrastructure for building and administering complex
transaction processing systems with a large number of clients
and multiple servers.

! Provide services such as:

! Presentation facilities to simplify creating user interfaces

! Persistent queuing of client requests and server responses

! Routing of client messages to servers

! Coordination of two-phase commit when transactions access
multiple servers.

! Some commercial TP monitors: CICS from IBM, Pathway from
Tandem, Top End from NCR, and Encina from Transarc

3

©Silberschatz, Korth and Sudarshan24.3Database System Concepts

TP Monitor ArchitecturesTP Monitor Architectures

4

©Silberschatz, Korth and Sudarshan24.4Database System Concepts

TP Monitor Architectures (Cont.)TP Monitor Architectures (Cont.)

! Process per client model - instead of individual login session
per terminal, server process communicates with the terminal,
handles authentication, and executes actions.

! Memory requirements are high

! Multitasking- high CPU overhead for context switching between
processes

! Single process model - all remote terminals connect to a
single server process.

! Used in client-server environments

! Server process is multi-threaded; low cost for thread switching

! No protection between applications

! Not suited for parallel or distributed databases

5

©Silberschatz, Korth and Sudarshan24.5Database System Concepts

TP Monitor Architectures (Cont.)TP Monitor Architectures (Cont.)

! Many-server single-router model - multiple application
server processes access a common database; clients
communicate with the application through a single
communication process that routes requests.

! Independent server processes for multiple applications

! Multithread server process

! Run on parallel or distributed database

! Many server many-router model - multiple processes
communicate with clients.

! Client communication processes interact with router
processes that route their requests to the appropriate server.

! Controller process starts up and supervises other processes.

6

©Silberschatz, Korth and Sudarshan24.6Database System Concepts

Detailed Structure of a TP MonitorDetailed Structure of a TP Monitor

7

©Silberschatz, Korth and Sudarshan24.7Database System Concepts

Detailed Structure of a TP MonitorDetailed Structure of a TP Monitor
! Queue manager handles incoming messages

! Some queue managers provide persistent or durable
message queueing contents of queue are safe even if
systems fails.

! Durable queueing of outgoing messages is important

! application server writes message to durable queue as part of a
transaction

! once the transaction commits, the TP monitor guarantees
message is eventually delevered, regardless of crashes.

! ACID properties are thus provided even for messages sent
outside the database

! Many TP monitors provide locking, logging and recovery
services, to enable application servers to implement ACID
properties by themselves.

8

©Silberschatz, Korth and Sudarshan24.8Database System Concepts

Application Coordination Using TP MonitorsApplication Coordination Using TP Monitors

! A TP monitor treats each subsystem as a resource manager
that provides transactional access to some set of resources.

! The interface between the TP monitor and the resource
manager is defined by a set of transaction primitives

! The resource manager interface is defined by the X/Open
Distributed Transaction Processing standard.

! TP monitor systems provide a transactional remote
procedure call (transactional RPC) interface to their service

! Transactional RPC provides calls to enclose a series of RPC calls
within a transaction.

! Updates performed by an RPC are carried out within the scope of
the transaction, and can be rolled back if there is any failure.

Copyright: Silberschatz, Korth and
Sudarshan

9

Workflow SystemsWorkflow Systems

10

©Silberschatz, Korth and Sudarshan24.10Database System Concepts

Transactional WorkflowsTransactional Workflows

! Workflows are activities that involve the coordinated execution of
multiple tasks performed by different processing entities.

! With the growth of networks, and the existence of multiple
autonomous database systems, workflows provide a convenient
way of carrying out tasks that involve multiple systems.

! Example of a workflow delivery of an email message, which goes
through several mails systems to reach destination.

! Each mailer performs a tasks: forwarding of the mail to the next
mailer.

! If a mailer cannot deliver mail, failure must be handled semantically
(delivery failure message).

! Workflows usually involve humans: e.g. loan processing, or
purchase order processing.

11

©Silberschatz, Korth and Sudarshan24.11Database System Concepts

Examples of WorkflowsExamples of Workflows

12

©Silberschatz, Korth and Sudarshan24.12Database System Concepts

Loan Processing WorkflowLoan Processing Workflow

! In the past, workflows were handled by creating and
forwarding paper forms

! Computerized workflows aim to automate many of the tasks.
But the humans still play role e.g. in approving loans.

13

©Silberschatz, Korth and Sudarshan24.13Database System Concepts

Transactional WorkflowsTransactional Workflows

! Must address following issues to computerize a workflow.

! Specification of workflows - detailing the tasks that must be carried out
and defining the execution requirements.

! Execution of workflows - execute transactions specified in the workflow
while also providing traditional database safeguards related to the
correctness of computations, data integrity, and durability.

! E.g.: Loan application should not get lost even if system fails.

! Extend transaction concepts to the context of workflows.

! State of a workflow - consists of the collection of states of its
constituent tasks, and the states (i.e. values) of all variables in the
execution plan.

14

©Silberschatz, Korth and Sudarshan24.14Database System Concepts

Workflow SpecificationWorkflow Specification

! Static specification of task coordination:

! Tasks and dependencies among them are defined before the execution
of the workflow starts.

! Can establish preconditions for execution of each task: tasks are
executed only when their preconditions are satisfied.

! Defined preconditions through dependencies:

" Execution states of other tasks.

“task ti cannot start until task tj has ended”

" Output values of other tasks.

“task ti can start if task tj returns a value greater than 25”

" External variables, that are modified by external events.

“task ti must be started within 24 hours of the completion of task tj”

15

©Silberschatz, Korth and Sudarshan24.15Database System Concepts

WorkflowWorkflow Specification (Cont.)Specification (Cont.)

! Dynamic task coordination
E.g. Electronic mail routing system in which the text to be
schedule for a given mail message depends on the
destination address and on which intermediate routers are
functioning.

16

©Silberschatz, Korth and Sudarshan24.16Database System Concepts

FailureFailure--Automicity RequirementsAutomicity Requirements

! Usual ACID transactional requirements are too
strong/unimplementable for workflow applications.

! However, workflows must satisfy some limited transactional
properties that guarantee a process is not left in an
inconsistent state.

! Acceptable termination states - every execution of a
workflow will terminate in a state that satisfies the failure-
atomicity requirements defined by the designer.

! Committed - objectives of a workflow have been achieved.

! Aborted - valid termination state in which a workflow has failed to
achieve its objectives.

! A workflow must reach an acceptable termination state even
in the presence of system failures.

17

©Silberschatz, Korth and Sudarshan24.17Database System Concepts

Execution of WorkflowsExecution of Workflows

Workflow management systems include:

! Scheduler - program that process workflows by submitting
various tasks for execution, monitoring various events, and
evaluation conditions related to intertask dependencies

! Task agents - control the execution of a task by a processing
entity.

! Mechanism to query to state of the workflow system.

18

©Silberschatz, Korth and Sudarshan24.18Database System Concepts

Workflow Management System ArchitecturesWorkflow Management System Architectures

! Centralized - a single scheduler schedules the tasks for all
concurrently executing workflows.

! used in workflow systems where the data is stored in a central
database.

! easier to keep track of the state of a workflow.

! Partially distributed - has one (instance of a) scheduler for each
workflow.

! Fully distributed - has no scheduler, but the task agents coordinate
their execution by communicating with each other to satisfy task
dependencies and other workflow execution requirements.

! used in simplest workflow execution systems

! based on electronic mail

19

©Silberschatz, Korth and Sudarshan24.19Database System Concepts

Workflow SchedulerWorkflow Scheduler

! Ideally scheduler should execute a workflow only after
ensuring that it will terminate in an acceptable state.

! Consider a workflow consisting of two tasks S1 and S2. Let the
failure-atomicity requirement be that either both or neither of
the subtransactions should be committed.

! Suppose systems executing S1 and S2 do not provide prepared-
to-commit states and S1 or S2 do not have compensating
transactions.

! It is then possible to reach a state where one subtransaction is
committed and the other aborted. Both cannot then be brought to
the same state.

! Workflow specification is unsafe, and should be rejected.

! Determination of safety by the scheduler is not possible in
general, and is usually left to the designer of the workflow.

20

©Silberschatz, Korth and Sudarshan24.20Database System Concepts

Recovery of a WorkflowRecovery of a Workflow

! Ensure that is a failure occurs in any of the workflow-
processing components, the workflow eventually reaches
an acceptable termination state.

! Failure-recovery routines need to restore the state
information of the scheduler at the time of failure, including
the information about the execution states of each task.
Log status information on stable storage.

! Handoff of tasks between agents should occur exactly
once in spite of failure.

! Problem: Repeating handoff on recovery may lead to
duplicate execution of task; not repeating handoff may lead
to task not being executed.

! Solution: Persistent messaging systems

21

©Silberschatz, Korth and Sudarshan24.21Database System Concepts

Recovery of a Workflow (Cont.)Recovery of a Workflow (Cont.)

! Persistent messages: messages are stored in permanent
message queue and therefore not lost in case of failure.
! Described in detail in Chapter 19 (Distributed Databases)

! Before an agent commits, it writes to the persistent message
queue whatever messages need to be sent out.

! The persistent message system must make sure the messages
get delivered eventually if and only if the transaction commits.

! The message system needs to resend a message when the site
recovers, if the message is not known to have reached its
destination.

! Messages must be logged in stable storage at the receiving end to
detect multiple receipts of a message.

Copyright: Silberschatz, Korth and
Sudarshan

22

High Performance High Performance
Transaction SystemsTransaction Systems

23

©Silberschatz, Korth and Sudarshan24.23Database System Concepts

HighHigh--Performance Transaction SystemsPerformance Transaction Systems

! High-performance hardware and parallelism help improve
the rate of transaction processing, but are insufficient to
obtain high performance:

! Disk I/O is a bottleneck — I/O time (10 milliseconds) has no
decreased at a rate comparable to the increase in processor
speeds.

! Parallel transactions may attempt to read or write the same
data item, resulting in data conflicts that reduce effective
parallelism

! We can reduce the degree to which a database system is
disk bound by increasing the size of the database buffer.

24

©Silberschatz, Korth and Sudarshan24.24Database System Concepts

MainMain--Memory DatabaseMemory Database

! Commercial 64-bit systems can support main memories of
tens of gigabytes.

! Memory resident data allows faster processing of
transactions.

! Disk-related limitations:

! Logging is a bottleneck when transaction rate is high.

! Use group-commit to reduce number of output operations (Will
study two slides ahead.)

! If the update rate for modified buffer blocks is high, the disk
data-transfer rate could become a bottleneck.

! If the system crashes, all of main memory is lost.

25

©Silberschatz, Korth and Sudarshan24.25Database System Concepts

MainMain--Memory Database OptimizationsMemory Database Optimizations

! To reduce space overheads, main-memory databases can
use structures with pointers crossing multiple pages. In disk
databases, the I/O cost to traverse multiple pages would be
excessively high.

! No need to pin buffer pages in memory before data are
accessed, since buffer pages will never be replaced.

! Design query-processing techniques to minimize space
overhead - avoid exceeding main memory limits during
query evaluation.

! Improve implementation of operations such as locking and
latching, so they do not become bottlenecks.

! Optimize recovery algorithms, since pages rarely need to
be written out to make space for other pages.

26

©Silberschatz, Korth and Sudarshan24.26Database System Concepts

Group CommitGroup Commit

! Idea: Instead of performing output of log records to stable
storage as soon as a transaction is ready to commit, wait until

! log buffer block is full, or

! a transaction has been waiting sufficiently long after being ready to
commit

! Results in fewer output operations per committed transaction,
and correspondingly a higher throughput.

! However, commits are delayed until a sufficiently large group of
transactions are ready to commit, or a transaction has been
waiting long enough-leads to slightly increased response time.

! Above delay acceptable in high-performance transaction
systems since log buffer blocks will fill up quickly.

27

©Silberschatz, Korth and Sudarshan24.27Database System Concepts

RealReal--Time Transaction SystemsTime Transaction Systems

! In systems with real-time constraints, correctness of execution
involves both database consistency and the satisfaction of
deadlines.
! Hard deadline – Serious problems may occur if task is not completed

within deadline

! Firm deadline - The task has zero value if it completed after the
deadline.

! Soft deadline - The task has diminishing value if it is completed after
the deadline.

! The wide variance of execution times for read and write operations
on disks complicates the transaction management problem for time-
constrained systems
! main-memory databases are thus often used

! Waits for locks, transaction aborts, contention for resources remain as
problems even if data is in main memory

! Design of a real-time system involves ensuring that enough
processing power exists to meet deadline without requiring
excessive hardware resources.

28

©Silberschatz, Korth and Sudarshan24.28Database System Concepts

Long Duration TransactionsLong Duration Transactions

Traditional concurrency control techniques do not work

well when user interaction is required:

! Long duration: Design edit sessions are very long

! Exposure of uncommitted data: E.g., partial update to
a design

! Subtasks: support partial rollback

! Recoverability: on crash state should be restored even
for yet-to-be committed data, so user work is not lost.

! Performance: fast response time is essential so user
time is not wasted.

29

©Silberschatz, Korth and Sudarshan24.29Database System Concepts

LongLong--Duration TransactionsDuration Transactions

! Represent as a nested transaction

! atomic database operations (read/write) at a lowest level.

! If transaction fails, only active short-duration transactions
abort.

! Active long-duration transactions resume once any short
duration transactions have recovered.

! The efficient management of long-duration waits, and the
possibility of aborts.

! Need alternatives to waits and aborts; alternative techniques
must ensure correctness without requiring serializability.

30

©Silberschatz, Korth and Sudarshan24.30Database System Concepts

Concurrency ControlConcurrency Control

! Correctness without serializability:

! Correctness depends on the specific consistency constraints
for the databases.

! Correctness depends on the properties of operations
performed by each transaction.

! Use database consistency constraints as to split the
database into subdatabases on which concurrency can be
managed separately.

! Treat some operations besides read and write as
fundamental low-level operations and extend concurrency
control to deal with them.

31

©Silberschatz, Korth and Sudarshan24.31Database System Concepts

Concurrency Control (Cont.)Concurrency Control (Cont.)

A non-conflict-serializable
schedule that preserves
the sum of A + B

32

©Silberschatz, Korth and Sudarshan24.32Database System Concepts

Nested and Multilevel TransactionsNested and Multilevel Transactions

! A nested or multilevel transaction T is represented by a set
T = {t1, t2, ..., tn} of subtransactions and a partial order P on T.

! A subtransaction ti in T may abort without forcing T to abort.

! Instead, T may either restart ti, or simply choose not to run ti.

! If ti commits, this action does not make ti, permanent (unlike
the situation in Chapter 15). Instead, ti, commits to T, and may
still abort (or require compensation) if T aborts.

! An execution of T must not violate the partial order P, i.e., if an
edge ti → ti appears in the precedence graph, then ti → ti must
not be in the transitive closure of P.

33

©Silberschatz, Korth and Sudarshan24.33Database System Concepts

Nested and Multilevel Transactions (Cont.)Nested and Multilevel Transactions (Cont.)

! Subtransactions can themselves be nested/multilevel
transactions.

! Lowest level of nesting: standard read and write operations.

! Nesting can create higher-level operations that may enhance
concurrency.

! Types of nested/ multilevel transactions:

!Multilevel transaction: subtransaction of T is permitted to
release locks on completion.

!Saga: multilevel long-duration transaction.

!Nested transaction: locks held by a subtransaction ti of T are
automatically assign to T on completion of ti.

34

©Silberschatz, Korth and Sudarshan24.34Database System Concepts

Example of NestingExample of Nesting

! Rewrite transaction T1 using subtransactions Ta and Tb
that perform increment or decrement operations:

! T1 consists of

" T1,1, which subtracts 50 from A

" T1,2, which adds 50 to B

! Rewrite transaction T2 using subtransactions Tc and Td
that perform increment or decrement operations:

! T2 consists of

" T2,1, which subtracts 10 from B

" T2,2, which adds 10 to A

! No ordering is specified on subtransactions; any
execution generates a correct result.

35

©Silberschatz, Korth and Sudarshan24.35Database System Concepts

Compensating TransactionsCompensating Transactions

! Alternative to undo operation; compensating transactions deal
with the problem of cascading rollbacks.

! Instead of undoing all changes made by the failed transaction,
action is taken to “compensate” for the failure.

! Consider a long-duration transaction Ti representing a travel
reservation, with subtransactions Ti,1, which makes airline
reservations, Ti,2 which reserves rental cars, and Ti,3 which
reserves a hotel room.
! Hotel cancels the reservation.

! Instead of undoing all of Ti, the failure of Ti,3 is compensated for by
deleting the old hotel reservation and making a new one.

! Requires use of semantics of the failed transaction.

36

©Silberschatz, Korth and Sudarshan24.36Database System Concepts

Implementation IssuesImplementation Issues

! For long-duration transactions to survive system crashes, we
must log not only changes to the database, but also changes to
internal system data pertaining to these transactions.

! Logging of updates is made more complex by physically large
data items (CAD design, document text); undesirable to store both
old and new values.

! Two approaches to reducing the overhead of ensuring the
recoverability of large data items:

! Operation logging. Only the operation performed on the data item
and the data-item name are stored in the log.

! Logging and shadow paging. Use logging from small data items; use
shadow paging for large data items. Only modified pages need to be
stored in duplicate.

37

©Silberschatz, Korth and Sudarshan24.37Database System Concepts

Transaction Management in Transaction Management in
Multidatabase Multidatabase SystemsSystems

! Transaction management is complicated in multidatabase
systems because of the assumption of autonomy

! Global 2PL -each local site uses a strict 2PL (locks are released at
the end); locks set as a result of a global transaction are released
only when that transaction reaches the end.

" Guarantees global serializability

! Due to autonomy requirements, sites cannot cooperate and execute
a common concurrency control scheme

" E.g. no way to ensure that all databases follow strict 2PL

! Solutions:

! provide very low level of concurrent execution, or

! use weaker levels of consistency

38

©Silberschatz, Korth and Sudarshan24.38Database System Concepts

Transaction ManagementTransaction Management

! Local transactions are executed by each local DBMS, outside of
the MDBS system control.

! Global transactions are executed under multidatabase control.

! Local autonomy - local DBMSs cannot communicate directly to
synchronize global transaction execution and the multidatabase
has no control over local transaction execution.

! local concurrency control scheme needed to ensure that DBMS’s
schedule is serializable

! in case of locking, DBMS must be able to guard against local
deadlocks.

! need additional mechanisms to ensure global serializability

39

©Silberschatz, Korth and Sudarshan24.39Database System Concepts

TwoTwo--Level Level SerializabilitySerializability

! DBMS ensures local serializability among its local transactions,
including those that are part of a global transaction.

! The multidatabase ensures serializability among global
transactions alone- ignoring the orderings induced by local
transactions.

! 2LSR does not ensure global serializability, however, it can fulfill
requirements for strong correctness.

1. Preserve consistency as specified by a given set of constraints

2. Guarantee that the set of data items read by each transaction is
consistent

! Global-read protocol : Global transactions can read, but not
update, local data items; local transactions do not have access to
global data. There are no consistency constraints between local
and global data items.

40

©Silberschatz, Korth and Sudarshan24.40Database System Concepts

TwoTwo--Level Serializability (Cont.)Level Serializability (Cont.)

! Local-read protocol : Local transactions have read access to
global data; disallows all access to local data by global
transactions.

! A transaction has a value dependency if the value that it writes to
a data item at one site depends on a value that it read for a data
item on another site.

! For strong correctness: No transaction may have a value
dependency.

! Global-read-write/local-read protocol; Local transactions have
read access to global data; global transactions may read and
write all data;

! No consistency constraints between local and global data items.

! No transaction may have value dependency.

41

©Silberschatz, Korth and Sudarshan24.41Database System Concepts

Global Global SerializabilitySerializability

! Even if no information is available concerning the structure of the
various concurrency control schemes, a very restrictive protocol
that ensures serializability is available.

! Transaction-graph : a graph with vertices being global
transaction names and site names.

! An undirected edge (Ti, Sk) exists if Ti is active at site Sk.

! Global serializability is assured if transaction-graph contains no
undirected cycles.

42

©Silberschatz, Korth and Sudarshan24.42Database System Concepts

Ensuring Global Ensuring Global SerializabilitySerializability

! Each site Si has a special data item, called ticket

! Every transaction Tj that runs at site Sk writes to the ticket at site
Si

! Ensures global transactions are serialized at each site,
regardless of local concurrency control method, so long as the
method guarantees local serializability

! Global transaction manager decides serial ordering of global
transactions by controlling order in which tickets are accessed

! However, above protocol results in low concurrency between
global transactions.

Copyright: Silberschatz, Korth and
Sudarshan

43

End of ChapterEnd of Chapter

44

©Silberschatz, Korth and Sudarshan24.44Database System Concepts

Weak Levels ConsistencyWeak Levels Consistency

! Use alternative notions of consistency that do not ensure
serializability, to improve performance.

! Degree-two consistency avoids cascading aborts without
necessarily ensuring serializability.

! Unlike two-phase locking, S-locks may be released at any time, and
licks may be acquired at any time.

! X-locks be released until the transaction either commits or aborts.

45

©Silberschatz, Korth and Sudarshan24.45Database System Concepts

Example Schedule with DegreeExample Schedule with Degree--Two ConsistencyTwo Consistency

Nonserializable schedule with degree-two consistency (Figure 20.5)
where T3 reads the value if Q before and after that value is written
by T4.

T3 T4

lock-S (Q)
read (Q)

unlock (Q)

lock-S (Q)
read (Q)

unlock (Q)

lock-X (Q)
read (Q)
write (Q)

unlock (Q)

46

©Silberschatz, Korth and Sudarshan24.46Database System Concepts

Cursor StabilityCursor Stability

! Form of degree-two consistency designed for programs
written in general-purpose, record-oriented languages (e.g.,
Pascal, C, Cobol, PL/I, Fortran).

! Rather than locking the entire relation, cursor stability
ensures that

! The tuple that is currently being processed by the iteration is
locked in shared mode.

! Any modified tuples are locked in exclusive mode until the
transaction commits.

! Used on heavily accessed relations as a means of
increasing concurrency and improving system
performance.

! Use is limited to specialized situations with simple
consistency constraints.

