
Recursive XML Schemas, Recursive XML Queries, and Relational Storage:
XML-to-SQL Query Translation

Rajasekar Krishnamurthy Venkatesan T. Chakaravarthy Raghav Kaushik Jeffrey F. Naughton
University of Wisconsin-Madison

{sekar,venkat,raghav,naughton}@cs.wisc.edu

Abstract

We consider the problem of translating XML queries into
SQL when XML documents have been stored in an RDBMS
using a schema-based relational decomposition. Surpris-
ingly, there is no published XML-to-SQL query transla-
tion algorithm for this scenario that handles recursive XML
schemas. We present a generic algorithm to translate path
expression queries into SQL in the presence of recursion
in the schema and queries. This algorithm handles a gen-
eral class of XML-to-Relational mappings, which includes
all techniques proposed in literature. Some of the salient
features of this algorithm are: (i) It translates a path ex-
pression query into a single SQL query, irrespective of how
complex the XML schema is, (ii) It uses the “with” clause in
SQL99 to handle recursive queries even over non-recursive
schemas, (iii) It reconstructs recursive XML subtrees with
a single SQL query and (iv) It shows that the support for
linear recursion in SQL99 is sufficient for handling path
expression queries over arbitrarily complex recursive XML
schema.

1. Introduction

This paper is the first to present a generic algorithm that
translates path expression queries to SQL in the presence
of recursion in the schema in the context of schema-based
XML Storage shredding of XML into relations. Here, we
refer to path expression queries having the descendant axis
(//) as recursive XML queries and to techniques that store
XML data into an RDBMS based on an XML schema (or
DTD) as schema-based XML Storage techniques.

The reader may justifiably be skeptical of this claim. Af-
ter all, there have been many schema-based techniques pro-
posed for shredding XML data into relations [3, 18, 20, 28].
There has also been a lot of work on schema-oblivious
shredding of XML into relations [9, 15, 24], where the tar-
get relational schema is fixed oblivious to the XML schema.

Moreover, there has been a great deal of work on translat-
ing XML queries into SQL [4, 12, 16, 21, 25, 27] in the
context of publishing existing relational data as XML (the
“XML Publishing” scenario). It seems plausible that some-
where in all this work must lie the solution to the problem
we claim to solve in this paper. Unfortunately, that is not the
case — none of this previous work solves the query trans-
lation problem for schema-based shredding in the presence
of recursion in the XML schema.

Firstly, while [20, 28] propose schema-based XML
shredding methods applicable over recursive XML
schemas, there has been no published work presenting
algorithms for translating XML queries into SQL in this
context. Secondly, while the schema-oblivious methods
(for example, the Edge approach [15]) can handle recursive
schemas and recursive queries with ease, the query trans-
lation algorithms for these approaches are not applicable
in the context of schema-based shredding. Finally, in
the “Publishing” domain the class of XML schemas that
have been considered includes only (non-recursive) tree
schemas.

At this point the reader may be wondering if this gap in
the literature exists because the problem is not well moti-
vated. We think that is not the case. In a recent study of
real-world DTDs [6], out of the 60 DTDs analyzed, more
than half (35) of them were recursive, which suggests that
recursive XML schemas are common in practice. Further-
more, recursion is ubiquitous in XML queries, as it ap-
pears in any path expression that uses the descendant axis
(//). Finally, there is a growing body of work suggest-
ing that for many query workloads, schema-based shred-
ding approaches yield far better performance than schema-
oblivious shredding [29, 30].

We present a generic algorithm that translates path ex-
pression queries to SQL in the presence of recursion in the
XML schema and queries in the context of schema-based
shredding of the XML into relations. This algorithm al-
ways outputs an SQL query of size polynomial in size of
the input XML-to-Relational mapping and the XML query.
An interesting aspect of this is that we need the SQL99 with

1

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



* *

*

*

*

*

caption image

figure

caption image

figure

section

book

title p

4

65

Book1

title2 author3 Section
Book.title

8

12 13

ptitle9 10

section
7

11

14 15

Section Figure

Figure

Section.title

Section.title

Figure.image

Para

Author

e1

e2

e2 : parentcode = 2

e1 : parentcode = 1

Figure.caption

Figure 1. Sample XML-to-Relational mapping
schema

construct to get this bound. This is not merely an artifact
of our algorithm, as we show that if we restrict ourselves to
only SPJU (select, project, join, union) relational queries,
then no algorithm can give this polynomial size guarantee
even for non-recursive schemas. We also show how the sup-
port for linear recursion in SQL99 is sufficient for translat-
ing a path expression query into a single SQL query for an
arbitrary XML-to-Relational mapping. We also show how
we can reconstruct recursive XML subtrees in a single SQL
query.

The rest of the paper is organized as follows. We first de-
scribe the class of XML-to-Relational mappings considered
in this paper in Section 2. We then present the algorithm
to translate path expression queries into SQL in Section 3
when both the XML schema and query may be recursive.
We then extend the algorithm to handle branching path ex-
pression queries and reconstruct XML subtrees in Section 4.
We discuss related work in Section 5 and present our con-
clusions.

2. Formal Model

In order to express our translation techniques, we need a
representation for XML to Relational mappings. Any rea-
sonable representation would serve our purpose; for con-
creteness, in this section we present a formal way to repre-
sent XML to Relational mappings that covers all the lossless
mapping techniques proposed in existing literature.

2.1. XML Schema Graph

An XML schema can be viewed as a directed graph
SG = (V, E), where V is the set of vertices and E is the
set of edges. The vertices correspond to elements and at-
tributes and the edges represent containment (parent-child)

relationships. The vertices are labeled with the name of the
element or attribute. The edges have an additional multi-
plicity label that can take a value from {?, ∗, +, ε}. A sam-
ple non-recursive schema graph is given in Figure 1. With
each schema node, we associate an integer to identify the
node. If the schema graph is a tree, then we call it a Tree
schema graph. If it is acyclic, we call it a DAG schema
graph (directed acyclic graph). Otherwise, it is a recursive
schema graph.

2.2. XML to Relational Mappings

We represent the mapping between XML elements and
relational columns through annotations on the schema
graph. For example, one way of mapping the XML schema
in Figure 1 into relations results in the following relational
schema.

• Book (id, title, . . . )

• Author (id, parentid, . . . )

• Section (id, parentid, parentcode, title, . . . )

• Para (id, parentid, . . . )

• Figure (id, parentid, caption, image, . . . )

The annotations on the schema graph in Figure 1 correspond
to this decomposition. Each non-leaf (internal) node in the
schema is associated with a relation name (shown next to
the node). Each leaf node is associated with a column name
as well. The relational schema into which we shred the
XML data is the set of relations that occur in the node anno-
tations. Each relation has an id field, which is the primary
key. In addition, parentid and parentcode fields are included
as required to preserve document structure.

A node annotation for a leaf node n, Annot(n), is of
the form R.C, where R denotes a relation and C denotes
a column in R. A node annotation for a non-leaf node n,
Annot(n), is of the form R indicating a relation name R.
If a node n in the schema has multiple in-coming edges,
then each of these edges is annotated with a condition of
the form parentcode = val, indicating a code for the parent
of an element matching n in the document. For a relational
column R.C, we define LeafNodes(R.C) to be the set of leaf
schema nodes annotated with R.C.

We now discuss what properties we expect from an
XML-to-Relational mapping.

• The decomposition algorithm that actually shreds the
XML data into relations must respect the mapping.

• All the XML data must be completely shredded into
relations and no part of the XML data must be stored
multiple times.

• There must be no data in the relations other than that
which is present in the XML document.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



• Enough information must be maintained in the re-
lational data to enable reconstruction of the original
XML data.

Every lossless decomposition scheme we have encountered
in the literature satisfies the above properties. We formalize
these as follows.

With every path p =<n1, . . . , nk>, we associate an
SQL query, SQL(p) as given in Figure 2. Intuitively, the
SQL query retrieves from the relational shredding the infor-
mation that appeared in portions of the original document
that match the path p.

procedure SQL(path p)
begin

add Annot(n1) to the From clause
for (i from 2 to k) do

Let e be the edge from ni−1 to ni

if (Annot(ni) is different from Annot(ni−1)) then
add Annot(ni) to the From clause
add Annot(ni−1).id = Annot(ni).parentid

to the Where clause
else if (Annot(e) is of the form parentcode = val) then

add Annot(ni) to the From clause
if (Annot(e) is of the form C = val) then

/* C may be parentcode */
Let the last relation added to the From clause be R
add R.C = val to the Where clause

Add Annot(nk) = R.C to the Select clause
/* if there are multiple instances of the relation R,

use the last instance */
end

Figure 2. Query associated with a path p

With a leaf (schema) node l, we associate a root-to-leaf
SQL query, RtoL(l) as follows. Let the root-to-leaf paths
to l be p1, . . . , pm. Then, RtoL(l) = ∪m

i=1SQL(pi). The
union operation here preserves duplicates. If the mapping
schema is recursive, the number of root-to-leaf paths will be
infinite for certain leaf nodes and the RtoL query for such
nodes is the union of infinitely many queries.

For example, for the schema in Figure 1, RtoL(9) is
given below.

select S2.title
from Book B, Section S1, Section S2
where B.id = S1.parentid and S1.parentcode = 1

and S1.id = S2.parentid and S2.parentcode = 2

Again, intuitively, RtoL(l) retrieves from the relations
the information that would be found in the original XML
document by starting at the route and traversing all paths
that match l. If the XML-to-Relational mapping satisfies the
properties mentioned above, then the following properties
also hold.

1. For each root-to-leaf path p, SQL(p) returns the val-
ues of all elements that satisfy p. This is under multiset
semantics.

2. For each leaf node l in the schema, RtoL(l) returns
the values of all elements (attributes) associated with
l. This is under multiset semantics.

3. For every relational column R.C with LeafN-
odes(R.C) �= φ, let Q be the SQL query: “se-
lect R.C from R”. Then,

Q =
⋃

l∈LeafNodes(R.C)

RtoL(l)

4. Consider edge e =<ni, nj> where Annot(ni) = Ri

and Annot(nj) = Rj or Rj .C. If Ri �= Rj , then e
must be annotated with the condition parentcode = i.

The final condition ensures that if a relation Rj “points to”
more than one relation, then by examining the parent code,
we can find out which relation is being pointed to by a given
tuple. This information is needed to reconstruct the origi-
nal XML data. We note here that if Rj points to only one
relation in the entire mapping, then this annotation can be
omitted.

We refer to the annotated schema graph illustrating the
XML-to-Relational mapping as the mapping schema graph.
Any mapping schema graph that satisfies the above men-
tioned properties is a valid mapping schema.

In general, we allow two additional features in the map-
ping: selection conditions as edge annotations and presence
of dummy nodes. Any edge e from n1 to n2 may have an
optional annotation of the form C = val, where C is a col-
umn in the relation Annot(n1). In XML documents, cer-
tain elements may be introduced just to group elements that
appear beneath them. We refer to such schema nodes as
dummy nodes. For example, we could have a dummy Sec-
tions node in-between nodes 1 and 4 to group together all
the sections in a book. An algorithm that shreds this doc-
ument into relations need not take any action on finding a
dummy node. We can detect that a shredding algorithm has
considered a node n to be a dummy node by the fact that
(1) n is a non-leaf node, (2) n is annotated with the same
relation as its parent, (3) each in-coming edge is labeled ε
and, (4) each in-coming edge has a null annotation. For
ease of exposition, we assume that any non-leaf node that
is not a dummy node has an elemid attribute that uniquely
identifies an element within an XML document.

2.2.1. Path Expression Queries

A simple path expression (SPE) can be denoted as “s1 l1 s2

l2 . . . sk lk,” where each of the li is a tag name and each
of the si is either / (denoting a parent-child traversal) or
// (denoting an ancestor-descendant traversal). Each si li

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



pair is a navigation step of the path expression and k is the
number of steps in the query.

A generalized simple path expression (GSPE) can be
denoted as “p1 p2 . . . pk” where each pi is of the form
p1

i |p2
i . . . pki

i (ki ≥ 1). Here, each pj
i is a simple path ex-

pression. Each pi thus denotes a disjunction of simple path
expressions. Also, the special tag name ‘*’ matches any tag
name in a GSPE query.

The result of a generalized path expression is the set of
all nodes that match the path expression query. This is sim-
ilar to XPath semantics, where the result is an ordered list
of matching nodes. We assume an unordered data model in
this paper and discuss how our algorithm can be modified
to work in an ordered model in Section 4.3. There are two
possible ways to return the set of matching nodes:

• Select mode: For leaf nodes, this corresponds to re-
turning the values of the elements. For non-leaf nodes,
we return the value of the corresponding elemid at-
tributes.

• Reconstruct mode: For leaf nodes, this corresponds
to returning the values of the elements. For non-leaf
nodes, we reconstruct the subtree rooted at the ele-
ment.

3. Query Translation Over Recursive XML
schemas

In this section, we present an XML-to-SQL query trans-
lation algorithm over recursive mapping schemas for the
class of generalized simple path expression (GSPE) queries
defined in Section 2.2.1. We will assume the Select mode
in this section and present our solution for the Reconstruct
mode in Section 4.2.

Evaluating a path expression query over an XML-to-
Relational mapping can be viewed as a two stage process:
(i) use the XML query to identify the paths in the XML
schema graph that satisfy the query, and (ii) use the annota-
tions from the XML-to-Relational mapping to construct an
equivalent relational query. We refer to these stages as the
PathId and SQLGen stages respectively. We explain the two
stages in the next two subsections.

3.1. PathId stage

In the PathId stage, we execute the GSPE query Q =
p1 . . . pk on a schema graph and identify the satisfying paths
in the schema graph. Since the mapping schema may be re-
cursive, the number of paths may be infinite, so we cannot
enumerate all the possible matching paths. Even when the
mapping schema is non-recursive, for DAG schema graphs,
it is possible for the number of matching paths to be ex-
ponential in the size of the mapping schema and the query.

So, we should not attempt to enumerate all complete paths.
Instead, just like the DAG schema graph represents shared
information across multiple paths in a compact fashion, we
represent the matching paths as a graph. This will allow us
to handle recursive and non-recursive mapping schemas in
a unified fashion. As an added benefit, we shall see later
how preserving the relationship across multiple paths that
existed in the original mapping schema will help us in the
SQLGen stage.

Consider the evaluation of a query Q over a mapping
schema S. We treat the mapping schema as an automaton
AS and the query as an automaton AQ. We construct the
cross-product automaton ASQ from AS and AQ. We elimi-
nate all the dead-states in ASQ and the resulting automaton
has all the matching paths in it. This approach is similar to
the one proposed in [14] for evaluating regular path queries
over graph schemas. We illustrate the main idea with an
example and explain the parts where our algorithm differs
from the one in [14]. The reader is referred to [14] for more
details.

Consider the schema S given in Figure 3, which is a
part of the schema in Figure 1. The corresponding au-
tomaton AS is shown next to it. Similarly, the query
Q = /book/section/title is translated into the automaton AQ,
where state 3 corresponding to the title element in Q is the
accepting state. We construct the cross-product automaton
ASQ and remove the dead states. The resulting automaton
ASQ is shown in the figure. A state with number (i, j) in
ASQ represents a combination of state i in AS with state j
in AQ. Since state 3 in AQ is an accepting state, all states
with state number (i, 3) are accepting states in ASQ (in
this case just (5, 3)). Notice how ASQ has simulated the
query over the mapping schema and identified the single
matching path. The state numbers in ASQ illustrate exactly
how each path matched the query. In general, AS and AQ

are non-deterministic, and as a result ASQ is also a non-
deterministic automaton. This cross-product automaton can
then be viewed as a mapping schema SSQ. The node (edge)
annotations for SSQ are the same as the underlying annota-
tions in S.

The PathId stage for the query Q1 = /book/section//title
is also shown in the figure. Notice how the // operation in
the query translates into a self-loop on node 2 in AQ1. Also,
there are two matching paths in the schema for this query.
So, there are two root-to-leaf paths in the cross-product au-
tomaton ASQ1.

For purposes of exposition, we assume that all accept-
ing states in SSQ correspond to a leaf node in the original
schema. If an accepting state s ∈ SSQ corresponds to a
non-leaf node n ∈ S, we add the state corresponding to the
elemid child of n as a final state in SSQ (instead of s). In-
formally, this corresponds to returning the elemid’s of non-
leaf nodes as the result of the query. This corresponds to the

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



section

title

section

7
title

book
1

9

5

4

S AS SQ

section

1

4

7

book

section

5

9

section
title

title

0,0

title

0

section

1,1

4,2

5,3

title

section
4,2

5,3

book
1,1

SSQ

1

2

section

book

3

title

AQ

0

book

Q: /book/section/title Q1: /book/section//title

0

1

2

section

book

3

title

AQ ASQ1

0,0

book

section

title

section

title

1,1

7,25,3

9,3

section

title

section
4,2

7,2

9,3

title
5,3

*
4,2

book
1,1

SSQ1

1

2

section

book

3

title

AQ1 A

0,0

book

section

title

section

title

1,1

7,25,3

9,3

section

title

section
4,2

7,2

9,3

title
5,3

*
4,2

book
1,1

S

0

A

Figure 3. Example to illustrate PathId

section

title

section

7
title

book
1

9

5

4

S

0

1

2

*

AQ

*

section

title

AS

section

1

4

7

book

section

5

9

section
title

title

0

Q2: //section//title

0,0

section

title

section

1,0

7,1

9,2

book

5,2

title

0

1

2

* − title

* − section

section

title

4,1

title

* − title

section

title

section
4,1

7,1

9,2

title
5,2

1,0
book

AQ A
SQD D

S
SQD

4,1

section

5,2

title section

ASQ

0,0

book

section

title

section

1,0

4,0

7,1

9,2

Figure 4. Example to illustrate duplicate counting in PathId

Select mode described in Section 2.2.1. We will present our
solution for the Reconstruct mode in Section 4.2.

3.1.1. Handling XPath semantics

According to XPath semantics, the result of a path expres-
sion query is a duplicate-eliminated sequence of nodes. So,
even if an element has multiple derivations with respect to
the query, it should appear in the query result only once.
For example, consider the evaluation of query Q2 = //sec-
tion//title. The cross-product automaton ASQ for this query
is given in Figure 4. Notice how there are two matching
paths in ASQ for the title node under the second-level sec-
tion (node 9). This is due to the fact that either of the sec-
tion nodes in S (4 or 7), can match the //section part of Q1.
For both the cases, the //title part of the query is matched
by the title node (node 9) in S. As a result, the /sec-
tion/section/title path in the schema is replicated twice in
ASQ. So, if we construct a SQL query based on this cross-
product automaton, we may get duplicate results. But, ac-
cording to XPath semantics, we should return each satisfy-
ing element exactly once. In this section, we explain our
approach to handling this issue.

We first examine what the primary reason for the pres-
ence of duplicate paths in ASQ is and how we can avoid
it. Going back to the above example, we see that the two
paths for book/section/section/title have the following prop-
erty: the first component of the nodes occurring in the two
paths are identical, while the second component differs in
(at least) one place. In other words, a single path in the
schema gets duplicated, once with each of the two different
derivations for the query. So, if the query automaton is a
DFA, then the cross-product automaton will not have any
schema path duplicated.

For an SPE query with k steps, we have an algorithm to
construct an equivalent DFA with k + 1 states. We explain
this algorithm using the query Q2. The resulting determin-
istic automaton AQD is shown in Figure 4. We partition
the query into blocks such that each block has a leading //
and there is no occurrence of // in that block. In this case,
there are two blocks, one each for //section and //title. Then,
we process these blocks from left to right. For the first
block //section, we create a start state (state 0) and add a
transition to state 1 on the label section. For any other la-
bel, since there is a leading //, we add a transition into state 0

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



procedure PathId(Q,S)
begin
1. Let AS be the automaton corresponding to S
2. If (Q is an SPE query) then
3. Let AQD be the DFA corresponding to Q
4. return the cross-product automaton ASQD

5. Else // Q is a GSPE query
6. Let AQ be the NFA corresponding to Q
7. Let A2

Q be the automaton that accepts all strings with
two or more accepting paths in AQ

8. Compute the cross-product automaton ASQ2

9. If (ASQ2 is empty) then
10. return the cross-product automaton ASQ

11. Else
12. Convert AQ into a DFA AQD

13. If (AQD does not have an exponential increase in size)
14. return the cross-product automaton ASQD

15. Else
16. return the cross-product automaton ASQ

17. // a distinct clause needs to be added in this case
18. // to the final SQL query
end

Figure 5. PathId stage

itself (the start state of the current block). In general, when
there are multiple steps in a block, there may be a partial
match with the current string and we may have to transition
not to the start state but to some intermediate state. This can
be found by identifying the longest suffix that matches the
current set of labels and is similar to the Knuth-Morris-Pratt
string matching algorithm [7]. State 1 is the final state for
this block and will act as the start state for the next block.
We repeat the process for //title and add state 2 and a tran-
sition from 1 to 2 on title. We also add transitions on other
labels for state 1. Since this is the last block, we also com-
pute the transitions from state 2 and set state 2 as the final
state for AQD . The general algorithm is omitted for want of
space.

LEMMA 1 For an SPE query Q having k steps, the equiv-
alent DFA having k + 1 states can be computed in O(k2)
time.

On the other hand, for GSPE queries, there are scenarios
when the smallest equivalent DFA is exponential in the size
of the query. In this case, we use the following approach.
Let AQ denote the NFA corresponding to the query Q. We
first compute an NFA A2

Q that accepts all input strings that
have two or more accepting paths in AQ. Then, we com-
pute the cross-product automaton ASQ2 between AS and
A2

Q. If this automaton is empty, then it means that the
cross-product automaton ASQ obtained from the original
query and schema automata (AQ and AS respectively) will
not have any duplicate schema paths and we use ASQ as
the output of the PathId stage. On the other hand, if ASQ2

is not empty, then we have two options: (1) convert AQ

into a DFA AQD and compute cross-product between AS

and AQD or (2) apply a distinct clause for the query ob-
tained from ASQ. We choose one of these options based on
whether there is a size explosion when we convert AQ into
a DFA1.

The PathId algorithm along with the above modifications
to handle the semantics of XPath is given in Figure 5.

3.1.2. Analysis of PathId stage

In this section, we present an analysis of the number of
states in the resulting cross-product automaton and the run-
ning time of the above algorithm. We omit the proofs due
to lack of space.

Let s and e be the number of nodes in the schema and
k be the number of steps in the query. Then the number of
states in AS is ns = s + 1 and the number of states in AQ

is nq = k + 1. For an SPE query, the number of states in
AQD = k + 1.

LEMMA 2 The number of states in the cross-product au-
tomaton ASQ is no greater than ns ∗ nq .

LEMMA 3 If S is a Tree schema and Q is an SPE query,
then the number of states in ASQD is no greater than ns.

For an SPE query Q, for every label x, let
ChildOccur(x, Q) denote the number of occurrences of the
pattern /x in Q. For example, for the query Q = /sec-
tion//section//title, ChildOccur(section,Q) = 1 and ChildOc-
cur(title,Q) = 0. Let MaxChildOccur(Q) denote the maxi-
mum across all values for ChildOccur(x, Q) over all labels.
In this case, MaxChildOccur(Q) = 1.

Let DescendantSteps(Q) denote the number of // steps
in Q. For the above example, DescendantSteps(Q) = 2. No-
tice how DescendantSteps(Q) + MaxChildOccur(Q) ≤ nq

LEMMA 4 For an SPE query Q, the number of states in
the cross-product automaton ASQD is no greater than ns∗
(DescendantSteps(Q) + MaxChildOccur(Q)).

Let us now consider the running time of the various steps
in the PathId stage.

From Lemma 1, we see that the DFA corresponding to a
query Q can be computed in time O(n2

q).

LEMMA 5 The cross-product automaton of two state ma-
chines with n1 and n2 states respectively can be computed
in O(n2

1 ∗ n2
2).

LEMMA 6 For a query Q, the automaton A2
Q can be com-

puted in O(n4
q).

1This can be achieved by placing a bound on the number of states ex-
plored in the NFA-to-DFA conversion

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



procedure SQLGen(SSQ)
begin
1. Identify strongly connected components (SCCs) in SSQ

2. Let C be the set of SCCs
3. Merge adjacent components in C that are acyclic

if one of them dominates the other
4. foreach (c ∈ C in top-down topological order) do
5. if (c is not recursive) then
6. generate the query for c using SQLForDAG(c)
7. else
8. generate the query for c using SQLForRecursive(c)

// a relational query T (n) is associated with
// each leaf node n now

endFor
9. Let finalQ be ∪

n is a leaf node “select * from T (n)”
10. If (duplicate elimination is required) then
11. Output the query “select distinct(*) from finalQ”
12. else output the query “select * from finalQ”
end

Figure 6. SQLGen Algorithm for recursive map-
ping schemas

THEOREM 1 The running time of the PathId stage for an
SPE query is O(n2

s ∗ n2
q), while for a GSPE query, the run-

ning time is O(n2
s ∗ n4

q).

3.2. SQLGen stage

Once we have identified all matching paths in the schema
S corresponding to query Q, we have a cross-product
schema SSQ with all the matching paths encoded in it. In-
formally, the union of all root-to-leaf paths in SSQ corre-
sponds to the query result. A simple algorithm to gener-
ate an SQL query corresponding to Q is to return RQ =⋃

RtoL(l) over all leaf nodes in SSQ. While this is a good
algorithm when SSQ is a tree, it does not suffice when SSQ

is a DAG or is recursive. If SSQ is a DAG, then the num-
ber of matching paths may be exponential. Moreover, by
unfolding a DAG we may also be missing shared computa-
tion in the form of common subexpressions in the final SQL
query. So, we need to somehow reflect the DAG structure
of SSQ in the SQL query. Similarly, if SSQ is recursive,
then RQ is the union of infinite queries. In this section, we
show how using the support for linear recursion in SQL99
(with operator) along with the outer union approach, we can
construct the equivalent (finite!) SQL query for a recursive
cross-product schema.

In order to illustrate our algorithm for handling complex
cross-product schema, we use the schema graph S in Fig-
ure 7. Notice how this schema has a DAG part and a recur-
sive part. The edge annotations are omitted for clarity. We
use the shorthand i to denote the schema node correspond-
ing to element Ei and refer to the elemid node as node 11.

E0

E1 E2

E3

E4 E5

E6

E7 E8

E9

E10

* *

* *
*

*
* *

* *

*
*

*

* *

R0

R1 R2

R10

R9
*

R8R7R4

R6

R3

R5

elemid
R10.elemid

Figure 7. Sample recursive schema

We explain the algorithm by running through the evaluation
of the query Q = /E0//E10 on the schema graph S in
Figure 7. The PathId stage will result in a cross-product
schema SSQ identical to S. Notice how since E10 is a leaf
node, we add the elemid attribute node to SSQ and make
that the accepting state.

The outline of the algorithm is given in Figure 6. We
first identify the components in SSQ that are recursive. The
rest of the nodes are grouped into a set of non-recursive
components. We perform this computation by first iden-
tifying the strongly connected components in SSQ (step 1)
and then merging adjacent non-recursive components wher-
ever possible (step 3). Recall that a component c1 domi-
nates component c2 if every path from the root to a node in
c2 passes through some node in c1. After the first 3 steps
in Figure 6, there are three components in C. They are
c1 = {0, 1, 2, 3, 4, 5, 6}, c2 = {7, 8, 9} and c3 = {10, 11}
(Here node 11 refers to the elemid node). We then process
these components in top-down topological order, namely c1

followed by c2 followed by c3. For each component, we
generate the appropriate relational queries. In the process,
we associate a temporary relation T (n) with every schema
node n that is either a leaf node or has a child node in a dif-
ferent component. Once we have processed all components,
we generate the final relational query in steps 10-12 using
the temporary relations defined earlier.

The algorithm for generating SQL queries corresponding
to a non-recursive and a recursive component are given in
Figures 8 and 9 respectively. We discuss these in the next
two subsections.

3.2.1. Handling a non-recursive component

For non-recursive components, a straightforward approach
is to translate each path in the DAG component into a SQL
query and take the union of all these queries. However, the
number of paths can be exponential in the size of the com-
ponent. The question arises whether there is any way in

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



procedure SQLFromDAG(c)
begin
1.Let N be the set of nodes in c with either

a parent or a child in a different component
2.Add any node in c to N if it corresponds

to a leaf node in S.
3.Add all nodes in c with > one in-coming edge to N
4.Add all nodes in c with > one out-going edge to N
5.With each node n ∈ N , associate a unique temporary

relation T (n)
6.foreach (n ∈ N in top-down topological order) do
7. //generate SQL fragment to populate T (n)
8. foreach (in-coming edge e into n) do
9. Backtrack along e till either a node m ∈ N

or a node m /∈ c is obtained.
10. Let the unique m to n path be p
11. Generate SQL(p) using T (m) as the relation

corresponding to m
12. //Other node and edge annotations in SSQ are

//same as underlying ones in the mapping S
13. Call this query SQL(e)
14. T (n) is defined as the union of all the SQL(e)
15.endFor
end

Figure 8. SQLGen Algorithm for DAG component

which we can at least guarantee a query that is polynomial
in the size of the DAG component. We show that this is im-
possible if we only consider relational queries involving the
select, project, join and union operations (SPJU queries).
We formalize this claim as follows. Let C1 denote the class
of relational queries whose relational algebra expression has
the select, project, join and union operators. Let the size of
a query SQ ∈ C1, RelInst(SQ), be the number of relation
instances in the relational algebra expression. Then we have
the following result.

THEOREM 2 There is a family of mapping schemas SG
such that, for each schema Si ∈ SG, there is a simple path
expression query pi that has the following property. No re-
lational query SQ ∈ C1, whose size is polynomial in the
size of Si and pi, is a correct translation for pi.

The proof for the above theorem is based on the fact that
there are instances of acyclic Deterministic Finite Automata
(DFA) whose minimum equivalent regular expression is of
length O(nlg n) [11].

It turns out that we can use the with clause to solve this
problem. Even though the with clause was primarily in-
troduced for supporting recursive queries, it also provides
us with a mechanism for creating temporary relations in a
SQL query. So, whenever there is some computation that
can be shared by multiple paths, we create a temporary re-
lation corresponding to this shared computation, which can

be used repeatedly in the rest of the query. Notice how cre-
ating temporary relations in the query allows us to reduce
the size of the generated SQL query from (potentially) ex-
ponential in the size of the component to a guaranteed poly-
nomial bound.

Component c1 is non-recursive and an example of a DAG
component. We use the algorithm for generating the re-
lational query corresponding to a DAG component given
in Figure 8. We associate temporary relations with any
node that is either a leaf node (part of the final query re-
sult), has a parent or child in a different component, or
represents shared computation (multiple incoming/outgoing
edges). For component c1, the set N is N = {2, 3, 6}. So,
we generate SQL with clauses for three temporary relations
corresponding to T (2), T (3) and T (6) in that order. The
query corresponding to T (3) is given below.

with T3 as (
select R3.*
from R0, R1, R3
where R0.id = R1.parentid and

R1.id=R3.parentid and R3.parentcode=1
union all
select R3.*
from T2, R3
where T2.id=R3.parentid and R3.parentcode=2

)

Notice how the query is the union of two subqueries, one
corresponding to each in-coming edge into node 3. Also
note how we use T 2 in the definition of T 3, as node 2 ∈ N
and has a temporary relation associated with it. In a similar
fashion, the query for T 6 will have T 3 in it. This illustrates
how shared computation can be efficiently reflected in the
relational query. We would like to point out that the use of
the with clause has two benefits. Firstly, it avoids the po-
tential size blowup for complex DAG schema. Secondly, it
represents the shared computation across different root-to-
leaf paths explicitly. The relational optimizer can choose
from the two options of either sharing computation across
different fragments in the final execution plan or unfolding
the with clause into the union of several conjunctive queries.
In fact, we know of one commercial RDBMS whose opti-
mizer does this exploration. On the other hand, if we did
not use the with clause in the SQL query, then the relational
optimizer has the additional task of finding common subex-
pressions, which is known to be a difficult task.

3.2.2. Handling a recursive component

Let us now look at how to generate the relational query for
a recursive component. This algorithm is given in Figure 9.
For each recursive component c, we associate a temporary
relation TR whose schema is the outer-union of the schemas
of relations annotating some node in TR and generate a re-
cursive query for TR as follows. A recursive query has two

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



procedure SQLFromRecursive(c)
begin
1. Let TR be a temporary relation whose schema is the

outer union of all relations in c
//Construct the initialization query for TR

2. foreach (in-coming edge e into c from node n /∈ c) do
3. Let n′ ∈ c be the target of e
4. Let Qe be the query:

select R2.*, id(n)
from T (n) R1, Annot(n′) R2
where Annot(e) and R2.parentid = R1.id”

5. Null pad Qe appropriately to reflect outer-union schema
6. Let Qinit be ∪Qe over all in-coming edges e

//Construct the recursive part for TR

7. foreach (edge e with both end-points in c) do
8. Let e be from n1 to n2

9. if (e corresponds to a join edge) then
10. Let Qe be the query:

select R2.*, id(n2)
from TR R1, Annot(n2) R2
where R1.schemanode = id(n1) and

R2.parentid = R1.id and Annot(e)
11. else

//e corresponds to a selection or n2 is a dummy node
12. Let Qe be the query:

select R1.*, id(n2)
from TR R1
where R1.schemanode = id(n1) and Annot(e)

13. Null pad Qe appropriately
14. Let Qrec be ∪Qe where the union is taken over

edges e with both end-points in c
15.TR is a recursive query defined with Qinit as the

initialization condition and Qrec as the
recursive component

16. With each node n ∈ c we associate the query T (n):
select * from TR where schemanode = id(n)

end

Figure 9. SQLGen Algorithm for recursive com-
ponent

parts, an initialization part and a recursive part. The initial-
ization part for the query defining TR (steps 2-6) captures
all incoming edges into c from a different component. For
the component c2, there are two such edges (2, 8) and (3, 7)
and the initialization part will be the union of two conjunc-
tive queries, one for each incoming edge. The recursion
in the component c is captured by the recursive part of the
definition of TR. Each edge in c is translated into a query
as shown in steps 8-13 and the recursive part of the query
defining TR is the union across all edges within the compo-
nent. For the component c2, there are four edges and so the
recursive query Qrec is the union of four recursive queries.
In this case, all four edges are join edges. For example, the
edge (8, 7) will translate to the following query:

select R7.*, id(7)
from TR, R7
where R7.parentid=TR.id and TR.schemanode=id(8)

and R7.parentcode=8

Notice how the condition TR.schemanode ensures that
the parent tuple corresponds to schema node 8 and the other
conditions capture the annotations on the edge. By project-
ing the id of the child node, we ensure that the queries for
outgoing edges from node 7 can be correctly constructed.

Returning to the example query, finally, component c3

is non-recursive and we generate the equivalent relational
query using the algorithm in Figure 8.

If SSQ has two root-to-leaf paths matching the same path
in S, then duplicate elimination is required and we add the
distinct clause (recall discussion in previous section, step 16
in Figure 5). In such a scenario, for each leaf node n ∈ SSQ,
the id of n and the key column of R, where Annot(n) =
R.C also have to be projected along with Annot(n) while
creating the temporary relations T (n).

For a recursive component C, let NC denote the number
of columns in the outer union schema for C. This is the sum
of the number of columns over all relations annotating some
node in C. For a mapping schema S, let Nmax

C (S) denote
the maximum across all values for NC over all recursive
components in S.

THEOREM 3 For a mapping schema S and query Q, let the
output of the PathId stage, ASQ have V nodes and E edges.
The equivalent SQL query can be obtained using the SQL-
Gen algorithm in O((V + E) ∗ Nmax

C (ASQ)) time.

The proof is omitted due to lack of space.

3.3. Preliminary Evaluation of Running Time

We implemented the above algorithm for evaluating SPE
queries over a generic XML-to-Relational mapping. Using
the XMark benchmark schema [31] and SPE query frag-
ments that appear in the associated query test suite, we eval-
uated the equivalent SQL queries using the above query
translation algorithm. The XML-SQL query translation
process took less than 6ms for each SPE query. The XML-
to-Relational mapping schema has 101 nodes. We also ob-
served that in all cases, the size of the cross-product schema
was less than 100 nodes (the size of the schema).

In order to test the running time of the algorithm un-
der extreme scenarios, when the cross-product schema may
have ns ∗nq states, we used a more complex XML schema.
This mapping schema was a complete graph of n nodes
and all transitions were on a single label x. We then
measured the running time of the query translation for the
query //x//x//x//x//x, which has 5 steps. The cross-product
automaton has approximately 4n states and 4n2 transitions.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



Table 1. Execution time of translation algo-
rithm

Clique size (n) Time Taken (ms)
5 6
10 19
20 80

The running time for different values of n are given in Ta-
ble 1.

Notice how while the running time shows a quadratic
growth due to the quadratic increase in the number of tran-
sitions in the schema, it is still small for reasonable clique
sizes. The size of every recursive component that we have
seen in real-world DTDs has been less than 10. So we be-
lieve that the running time of our translation algorithm will
be small in practice.

4. Extensions to more complex path expres-
sions

In this section, we briefly describe our approach to han-
dle branching path expression queries and reconstruct XML
subtrees.

4.1. Branching path expression queries

Let us first consider the class of branching path expres-
sion (BPE) queries that have a single predicate at the end of
the path expression. These queries are of the form p1[p2] or
p1[p2 op value], where p1 and p2 are GSPE queries.

The PathId stage works as follows. First, we compute
the set of all satisfying paths for the GSPE query p1. Let
ASQ be the resulting cross-product automaton and let F be
the set of final states. For each f ∈ F , we compute an aux-
iliary automaton, Apred(f), that corresponds to evaluating
the path expression query p2 with f as the start state.

In the SQLGen stage, we first compute the SQL query
corresponding to ASQ without the predicates. Now, for
each final state f ∈ F , we add the SQL fragment corre-
sponding to the predicate as follows. Let T (f) be the tem-
porary relation corresponding to the state f . Then we add a
with clause of the form

with T_Pred as (
select *
from T
where exists (PQ)

)

where PQ is the query corresponding to the predicate au-
tomaton Apred(f). The final query is the union of all the
T Pred relations.

Let us now consider a more general BPE query with one
or more predicates occurring in any step of the path expres-
sion. This query is of the form p1{Pred1}. . .pk{Predk},
where each pi is a GSPE query and each Predi is
of the form pj or pjop value. An example query is
Q =//section[//caption = ‘v1’]//title. Our algorithm pro-
ceeds as follows:

In the PathId stage, we first apply the above procedure
to evaluate p1{Pred1}. Let F be the set of final states in
the resulting automaton. Then with F as the set of start
states, we compute p2{Pred2}. We continue this process
k times to obtain the automaton for the entire query. The
SQLGen stage is also extended in a similar manner to pro-
cess the resulting automaton.

Let PrimaryPath(Q) be the query PP(Q) = p1p2. . .pk.
If the cross-product automaton obtained from AS and
APP (Q) is not empty, then the above algorithm may gen-
erate duplicate results and we add a distinct clause to the
final SQL query. We illustrate why this is needed with an
example. Consider the evaluation of Q over the mapping
schema in Figure 1. The section nodes 4 and 7 match the
path expression //section. In other words, any instance el-
ement e in an XML document corresponding to either of
these schema nodes will match this path expression. On the
other hand, whether e will match //section[caption = ‘v1’] is
going to depend on whether e satisfies the predicate. Notice
how while (incoming) structural conditions can be verified
during query translation time (without looking at the data),
predicate conditions depend on the data. So, given a pair of
parent-child section elements, e1 and e2, matching nodes 4
and 7, while we can be sure that both match //section, we
cannot be sure of whether one or both of them will match
the predicate at query translation time. So, the SQL query
has to handle all possible cases and as a result, it may pro-
duce duplicate results (when both of them satisfy the predi-
cate, then the child of e2 will appear twice in the result).

4.2. Reconstructing XML subtrees

In [12, 26], algorithms were presented for reconstructing
XML subtrees when the mapping schema is a tree. In this
section, we describe how to handle the reconstruction of a
recursive component and a DAG component.

Notice that the SQLGen algorithm for handling a recur-
sive component in Figure 9 actually reconstructs the XML
data corresponding to the entire recursive component. But,
what is missing in order to reconstruct the XML subtree is
structural information about the different elements. Recall
that in [12, 26], this could be determined statically as for a
tree XML schema, the number of distinct root-to-leaf paths
is fixed. On the other hand, for recursive components, we
need to construct the root-to-leaf path dynamically. Notice
that the schemanode column in relation TR keeps track of

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



the schema node corresponding to the tuple. We maintain
an additional rtol column that keeps track of the path from
the root of the subtree being constructed. This is similar to
the approach proposed in [29] for constructing dewey num-
bers dynamically.

In order to handle a DAG component, we have two op-
tions. We could either unroll the DAG into a tree and apply
prior techniques. If this may lead to a size explosion, we
could reconstruct a DAG directly by keeping track of the
root-to-leaf path as mentioned above.

4.3. Handling order in XPath semantics

According to XPath semantics, the results of a path ex-
pression query have to be returned in document order. In
order to support this, the schema-based shredding of XML
into relations will need to maintain the relative position
among sibling XML elements in some form. This was the
primary focus of [29], where solutions were proposed to
handle order in XML for an arbitrary query translation al-
gorithm. Hence, in particular, their techniques can be inte-
grated with our algorithm in a straightforward fashion.

5. Related Work

The prior literature on XML-to-SQL query translation
can be broadly classified into three areas : (1) schema-based
XML storage, (2) schema-oblivious XML storage and (3)
XML Publishing.

A number of approaches have been proposed for using
an RDBMS to store and query XML data in a schema-based
fashion [3, 18, 20, 28, 29]. The main focus of [3, 18, 20, 28]
was defining a “good” relational schema for the given XML
schema. In [28] the general approach to translating XML
queries into SQL is illustrated with examples without any
algorithmic details. In [29], the focus is on supporting
order-based queries. The authors give an algorithm for
the schema-oblivious scenario and briefly mention how the
ideas for adding support to order-based queries can be ap-
plied with any existing schema-based approach. We are not
aware of any published XML-to-SQL query translation al-
gorithm in this scenario.

Several techniques have been proposed for the schema-
oblivious XML storage scenario [9, 15, 24, 32] approaches.
Each of these approaches (except [9]) proposed a fixed re-
lational schema for storing the XML data and algorithms
were presented for translating path expression queries into
SQL. In [9], the relational schema is decided based on the
XML data. Since the techniques are schema-oblivious, they
are applicable irrespective of whether the XML schema is
recursive or not. The techniques also consider the presence
of the // axis in path expression queries. In [8], an algorithm
for translating more general XQuery queries into SQL is

presented. Our work is complementary to these techniques
because we consider the query translation problem in the
schema-based XML storage scenario. In [29, 30], it was
shown that for many query workloads over non-recursive
XML schema, schema-based shredding approaches yield
far better performance than schema-oblivious shredding.
So, it is conceivable that the same result holds in a num-
ber of scenarios even when the XML schema and/or query
is recursive.

In the XML Publishing scenario, there has been a lot
of work on translating complex XML queries into SQL [4,
10, 12, 13, 16, 19, 21, 25, 26]. While the class of XML
queries considered are fairly complex in these approaches
(a significant subset of XQuery/XSLT), the focus is on
(non-recursive) tree XML schemas. In contrast, our fo-
cus is on XML-to-SQL query translation over recursive
XML schema. While some of the above techniques han-
dle // in the XML query by enumerating all satisfying paths,
we present a different solution that represents all satisfying
paths in a more compact manner.

In [2], an algorithm for reconstructing a recursive XML
view was presented. Their solution does not use the support
for recursion in SQL and simulates the recursion in middle-
ware instead. In contrast, we show how we can use the sup-
port for linear recursion in SQL99 and by combining it with
the “outer union” approach construct a single SQL query to
reconstruct a recursive XML subtree.

A more detailed description of the existing published
work on XML-to-SQL query translation in the above three
scenarios is given in [17].

There has been some work on optimizing queries in a
semi-structured framework [5, 14, 22] using graph schemas.
These techniques are similar to the PathId stage of query
translation, and we adapted the cross-product automaton
technique proposed in [14], for the PathId algorithm in Sec-
tion 3.1.

In [1, 23], algorithms for minimizing tree pattern queries,
both in the presence and absence of XML schema infor-
mation, are presented. These algorithms remove redundant
parts of the XML query that are implied by either other parts
of the query or by the XML schema or a combination of
both. These algorithms are complementary to our algorithm
and can be used as the first stage to minimize the input XML
queries.

6. Conclusions

We presented a generic algorithm to translate path ex-
pression queries to SQL in the presence of recursion in the
XML schema and queries. This algorithm is applicable over
a wide class of techniques for schema-based shredding of
XML into relations. We also showed how the with clause
in SQL99 is useful in XML-to-SQL query translation over

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



DAG XML schema and how the support for linear recur-
sion in SQL99 is sufficient for translating path expression
queries into a single SQL query over an arbitrary (recursive)
XML-to-Relational mapping.

The algorithm presented in this paper for translating path
expression queries into SQL can be adapted to the “Pub-
lishing” domain as well. The details of the algorithm will
change based on the view definition language, but the main
ideas about how to handle recursive schemas, DAG schemas
and recursive queries remain the same.

There are a number of avenues for future research.
Extending the work in this paper to perform XML-to-
SQL query translation for more complex FLWOR XQuery
queries, when the XML schema is recursive, is open. Com-
paring the schema-based and schema-oblivious solutions
for XML storage in the presence of recursive XML schema
is another important area for future research. Similarly,
combining the interval-based techniques used in XML-to-
SQL query translation in the schema-oblivious scenario
along with the techniques proposed in this paper is another
interesting avenue for future work.
Acknowledgement: This work was supported in part by
NSF grants ITR-0086002 and CCR-0208013, and a Mi-
crosoft fellowship.

References

[1] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Sri-
vastava. Minimization of tree pattern queries. In SIGMOD,
2001.

[2] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and
A. Zhou. DTD-Directed Publishing with Attribute Transla-
tion Grammars. In VLDB, 2002.

[3] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
In ICDE, 2002.

[4] P. Bohannon, H. Korth, P. Narayan, S. Ganguly, and
P. Shenoy. Optimizing view queries in ROLEX to support
navigable tree results. In VLDB, 2002.

[5] P. Buneman, S. B. Davidson, M. F. Fernández, and D. Suciu.
Adding structure to unstructured data. In ICDT, 1997.

[6] B. Choi. What Are Real DTDs Like. In WebDB, 2002.
[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-

tion to Algorithms. MIT Press, 1990.
[8] D. DeHaan, D. Toman, M. P. Consens, and T. Ozsu. A Com-

prehensive XQuery to SQL Translation using Dynamic In-
terval Encoding. In SIGMOD, 2003.

[9] A. Deutsch, M. Fernández, and D. Suciu. Storing semistruc-
tured data with STORED. In SIGMOD, 1999.

[10] A. Deutsch and V. Tannen. MARS: A System for Publishing
XML from Mixed and Redundant Storage. In VLDB, 2003.

[11] A. Ehrenfeucht and P. Zeiger. Complexity measures for reg-
ular expressions. Journal of Computer and System Sciences,
12, 1976.

[12] M. Fernandez, A. Morishima, and D. Suciu. Efficient Eval-
uation of XML Middle-ware Queries. In SIGMOD, 2002.

[13] M. Fernández, D. Suciu, and W. Tan. SilkRoute: Trading
Between Relations and XML. In WWW9, 2000.

[14] M. F. Fernandez and D. Suciu. Optimizing regular path ex-
pressions using graph schemas. In ICDE, 1998.

[15] D. Florescu and D. Kossman. Storing and Querying XML
Data using an RDBMS. Data Engineering Bulletin, 22(3),
1999.

[16] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT Pro-
grams to Efficient SQL Queries. In WWW, 2002.

[17] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-
SQL Query Translation Literature: The State of the Art and
Open Problems. In XML Database Symposium, 2003.

[18] D. Lee and W. Chu. Constraints-preserving Transforma-
tion from XML Document Type Definition to Relational
Schema. In ER, 2000.

[19] C. Li, P. Bohannon, H. Korth, and P. Narayan. Compos-
ing XSL Transformations with XML Publishing Views. In
SIGMOD, 2003.

[20] M. Mani and D. Lee. XML to relational conversion using
theory of regular tree grammars. In VLDB Workshop on
EEXTT, 2002.

[21] I. Manolescu, D. Florescu, and D. Kossman. Answering
XML queries over heterogeneous data sources. In VLDB,
2001.

[22] J. McHugh and J. Widom. Compile-time path expansion in
lore. In Workshop on Query Processing for SemiStructured
Data and Non-Standard Data Formats, January 1999.

[23] P. Ramanan. Efficient algorithms for minimizing tree pattern
queries. In SIGMOD, 2002.

[24] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Effi-
cient Relational Storage and Retrieval of XML Documents.
In WebDB, 2000.

[25] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
VLDB, 2001.

[26] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently Pub-
lishing Relational Data as XML Documents. In VLDB,
2000.

[27] J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Krishna-
murthy, S. D. Viglas, J. Naughton, and I. Tatarinov. A gen-
eral technique for querying xml documents using a relational
database system. SIGMOD Record, 30(3), 2001.

[28] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
Witt, and J. Naughton. Relational Databases for Querying
XML Documents: Limitations and Opportunities. In VLDB,
1999.

[29] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In SIGMOD, 2002.

[30] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The design and
performance evaluation of alternative xml storage strategies.
SIGMOD Record, 31(1), 2002.

[31] Xmark: The xml benchmark project.
http://monetdb.cwi.nl/xml/index.html.

[32] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: a path-based approach to storage and retrieval of
XML documents using relational databases. ACM Trans-
actions on Internet Technology (TOIT), 1(1):110–141, 2001.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 


