
Turbyfill, Orji,Bitton: AS3AP 1 Second Draft

AS3AP -
An ANSI SQL Standard Scalable and Portable Benchmark

for Relational Database Systems
Carolyn Turbyfill

Cyril Orji

Dina Bitton*

1. Historical Perspective

In 1983, the first commercially available database machines were becoming available and new

prototypes, such as the GRACE Database Machine [Kit83], had been proposed. The Wisconsin

Benchmark [BDT83] was created in an attempt to compare backend database machine

architectures to software relational database systems running on a general purpose computer.

Specifically, the database machines tested were the Britton-Lee IDM 500 and Direct [Dew79],

and the software database systems were University Ingres on Berkeley Unix and commercial

Ingres on the VMS operating system [Ston86]. In attempting to compare these systems, we soon

realized that an appropriate benchmarking methodology for comparing database system

architectures was, in and of itself, a topic of research. Hence, the Wisconsin Benchmark was born

as an experiment in comparative benchmarking methodology.

The Wisconsin Benchmark is a single-factor, controlled experiment using a synthetic database and

a controlled workload. We expected, in the course of developing the benchmark, to encounter

confounding variables that would require revision of our methodology. In order to develop a

methodology for both benchmarking and analysis of results, we simplified the initial experiments,

intentionally ignoring factors that we knew to be important such as attribute type, data

distribution, database size, and number of users. We used only two data types: fixed length

strings and two byte integers. All data was uniformly distributed. The database was 5 megabytes

in size and the queries were not designed to scale with different size databases. The initial tests

were performed with only one user on the entire system (single-user and standalone). The

benchmark was also not designed to be extensible, although some extensions were possible

[BT84, BD84, BHT87]. While our preliminary work on the Wisconsin Benchmark and variants

of the benchmark did provide valuable insight into benchmarking methodology, the database and

* The initial version of this paper was written at the University of Illinois at Chicago. The authors current addresses are:
Carolyn Turbyfill, Sun Microsystems; Cyril Orji, University of Illinois at Chicago; Dina Bitton, DB Software Corporation, Palo
Alto, California.

Turbyfill, Orji,Bitton: AS3AP 2 Second Draft

queries as instantiated did not and were not intended to provide an adequate framework for

comparative benchmarking.

Shortly after it was first published, the Wisconsin Benchmark became a defacto industry standard.

With numerous relational database systems becoming commercially available, the need for an

evaluation and comparison tool emerged. The simplicity of the Wisconsin benchmark design was

a major contributing factor to its widespread use, as it was fairly easy to understand and

implement. Another factor in the success of the benchmark was the widespread availability of

numbers for different systems that provided a common point of comparison for a wide variety of

architectures and implementations [BT88]. Even though some of the test queries had

confounding variables such as predicate independence, which obscured the interpretation of the

results [Tur87], and the test suite was not comprehensive, the Wisconsin benchmark was a very

useful tool at the time it became available.

Currently, there is a need for a general benchmark that that can be used to compare relational

database systems with vastly different architectures and capabilities over a variety of workloads.

To achieve this goal in a cohesive and tractable benchmark, it is important that these criteria be

central to the design of the benchmark, as opposed to being added as an afterthought
to an

existing benchmark. This was the motivation for the design of the AS3AP benchmark [Tur87,

TOB89].

2. A Scalable Benchmark

The benchmark described in this paper is an ANSI SQL Standard Scalable and Portable (AS3AP)

benchmark for relational database systems. It is designed to:

• provide a comprehensive but tractable set of tests for database processing power.

• have built in scalability and portability, so that it can be used to test a broad range of

systems.

• minimize human effort in implementing and running the benchmark tests.

• provide a uniform metric, the equivalent database ratio, for a straightforward and non-

ambiguous interpretation of the benchmark results.

For a particular DBMS, the AS3AP benchmark determines an equivalent database size, which is

the maximum size of the AS3AP database for which the system is able to perform the designated

AS3AP set of single and multiuser tests in under 12 hours. The equivalent database size is an

absolute performance metric by itself. It can also provide a basis for comparing cost and

performance of systems, as follows: the cost per megabyte of a DBMS is the total cost of the

Turbyfill, Orji,Bitton: AS3AP 3 Second Draft

DBMS divided by the equivalent database size. The equivalent database ratio for two systems is

the ratio of their equivalent database sizes. Both the cost per megabyte and the equivalent

database ratio provide global comparison metrics.

Current relational database systems vary widely in their capabilities, performance, and cost. Thus

the task of defining meaningful measures of database processing power is complex and the need

for a scalable and portable benchmark is critical. There have been a number of previous attempts

at formalizing and standardizing a benchmarking methodology for database systems [BDT83,

Ano85, BT85, BHT87, RKC87, YHM87]. However previously proposed benchmarks fail to

provide a comprehensive and uniform measure of performance. For instance, one provides a

measure of transaction power for short on-line transactions [Ano85], while the other only tests

features of the query optimizer [BDT83, BT88], and none of them test important utilities such as

the database load and restore.

Benchmarks often require too much human effort to be implemented, ported, or realistically

scaled to evaluate a particular system. Finally, few benchmarks are designed to facilitate the

interpretation of their results and most fail to provide useful guidelines for fixing or improving the

system under test. We have addressed these problems in the design of AS3AP, by emphasizing

scalability, portability, and ease of use and interpretation.

3. Benchmark Scope

The AS3AP tests are divided into two modules:

• Single-user tests, including:

(a) utilities for loading and structuring the database,

(b) queries designed to test access methods and basic query optimization - selections,

simple joins, projections, aggregates, one-tuple updates,and bulk updates.

• Multiuser tests modelling different types of database workloads:

(a) on-line transaction processing (OLTP) workloads,

(b) information retrieval (IR) workloads,

(c) mixed workloads including a balance of short transactions, report queries, relation scan,

and long transactions.

The set of single-user tests are designed as a cross-section of the basic functions that a relational

DBMS must support, as defined by the ANSI SQL 2 Standard [ANSI90]. The multiuser tests

establish the maximum throughput for OLTP, measure degradation in response time as a function

of the system load, and provide measures of DBMS performance as a function of the workload

Turbyfill, Orji,Bitton: AS3AP 4 Second Draft

profile. In the multiuser tests, the mixed workload tests have been specifically designed to press

the state of the art in OLTP [Tur88]. In combination with the equivalent database size metric,

some of the single-user and multiuser tests are specifically designed to press the state of software

maturity in parallel and distributed systems (see Section 6).

A basic tradeoff we confronted in the design of this benchmark was tractability versus

completeness. The benchmark is not a test of SQL completeness and is not intended to model a

specific workload or query mix. We have achieved tractability by setting the time limit for the

benchmark at 12 hours. With respect to completeness, we prioritized the tests so that the most

fundamental and important queries and workloads will be included in the 12 hour limit, as

opposed to more specialized queries and workloads1.

The AS3AP database is designed so that special queries can be created to test: (i) correct

optimization in the presence of non-uniform distributions, correlated attributes, and program

variables; (ii) complex queries such as relational division, join-aggregates, recursive queries.

4. Systems under Test

Systems tested with the AS3AP benchmark are assumed to support common data types, and to

provide a complete relational interface with basic integrity, consistency, and recovery

mechanisms. Otherwise, they may range anywhere from a single-user microcomputer DBMS to a

high-performance parallel or distributed DBMS.

The only hardware normalization required is that the logical size of the AS3AP database used for

the benchmark be at least equal to the logical size of physical memory on the host(s). The logical

size of the AS3AP database is defined as the flat files storage requirements of the tables (see

Section 5 below):
(# tuples per relation) x (100 bytes/tuple) x (4 relations in database)

This condition avoids biasing the computation of the equivalent database ratio in favor of systems

that incur a high storage overhead for storing a database. It also makes testing main memory

database systems [BT86, BHT87] with the AS3AP benchmark meaningful, since the test database

can be as large as physical memory.

1 In previous work we have found that queries that take a few minutes when properly optimized can take hours when
improperly optimized [Tur87]. Hence, for queries to be included in the 12 hour limit, we have endeavored to design queries
that detect query optimization problems without completely dominating the benchmark if something goes wrong. For the same
reason, aspects of query optimization, such as prediction of selectivities in precompiled queries with program variables, are
tested only once and not in every possible query.

Turbyfill, Orji,Bitton: AS3AP 5 Second Draft

All systems, including micro DBMS's, should be tested with the first module, the single-user tests.

All multiuser DBMS's should be tested with both modules, single-user and multiuser tests. For

micro DBMS's, the equivalent database ratio is computed based on the single-user tests only. For

other systems, it is computed based on the single-user and multiuser tests.

5. Measurements

The only measurement required by the AS3AP benchmark is query elapsed time, within the 12

hour window limit. Other performance data on CPU and I/O utilization must be collected for in

depth analysis of a DBMS performance. However, these additional measurements are not part of

the AS3AP metrics. All the AS3AP queries composing a run are embedded in a host program,

along with the required timing commands. All queries are precompiled, except for the multiuser

cross section queries listed in Table 8.1 and Appendix 4. For the multiuser tests, a number of

programs (processes) are forked concurrently, each running a simple script. The benchmark does

not use a terminal emulator and does not generate streams of job arrivals. There are no think time

or presentation services included in the measurements. Preliminary queries in the single-user tests

isolate the cost of different output modes. For all the other queries, the results are discarded

(e.g., redirected to /dev/null in Unix).

Because of these simplifications, the benchmark can be set up to run very easily. The tests are

grouped into a number of modules, according to
the component of the DBMS that they are

testing. It is a strict requirement that all the basic tests (single and multiuser) run in a total time of

less than 12 hours. The benchmark can be run as one large program, or as a set
of independent

modules if the host system is not available in standalone mode for a 12 hours interval of testing.

The database is not corrupted by the test suite as long as the user runs the complete suite in the

specified order. This is achieved by interleaving special queries that save deleted tuples, reinsert

the deleted tuples, and restore updated tuples to their original values

Turbyfill, Orji,Bitton: AS3AP 6 Second Draft

6. Test Database

6.1.Database Generator

The test database is generated using DBGEN [BMO88], a parameterized C-program, that

provides random generators of numbers and character strings, with a number of common

distributions (uniform, normal, exponential, zipfian2). It is parameterized so that the range,

number of unique values, mean, standard deviation, and correlation factors can be specified.

Four flat character files are generated for AS3AP. After these files are generated, they should be

loaded into four relations in the DBMS under test. The first AS3AP test consists of timing this

load operation. The load utility varies widely from one system to the other. Some systems

provide a simple file copy utility, while others include the cost of clustering the file and building

indices.

All four relations have the same average tuple width and the same number of tuples. The tuple

length is 100 bytes on the average. However, actual tuple lengths vary due to the variable length

string attribute address which has a minimum length of two bytes and a maximum length of 80

bytes (Table 6.3).

The size of the four relations can be scaled from 1 megabyte to 100 gigabytes by varying the

number of tuples from 10,000 to one billion. Table 6.1. summarizes the range of logical sizes for

one relation and for the database. The physical storage required to store the database in the

DBMS under test may be higher due to non standard implementation of data types and DBMS

overhead.

Table 6.1.: Scaling the AS3AP Database

relation size (tuples) relation size (bytes) logical database size (bytes)
10,000 1 megabyte 4 megabytes

100,000 10 megabytes 40 megabytes
1,000,000 100 megabytes 400 megabytes

10,000,000 1 gigabyte 4 gigabytes
100,000,000 10 gigabytes 40 gigabytes

2 Zipfian distributions are a family of non-uniform distributions that have been showed to accurately model text data. In the
Zipf distribution, for each value, the product of rank and frequency is a constant [Knu73]. Rank is an ordering according to
frequency of occurrence. In a zipfian (or Zipf-like distribution) the product of a power of the rank and frequency is a constant.
The power is called the decay factor. A decay factor of zero corresponds to the uniform distribution. The distribution becomes
more skewed as the decay factor increases

Turbyfill, Orji,Bitton: AS3AP 7 Second Draft

1,000,000,000 100 gigabytes 400 gigabytes

As defaults for the test database, we provide a one megabyte base relation (for micros) and a ten

megabyte base relation (for other systems). However, in order to get optimal rating of their

DBMS on the benchmark, implementors must estimate the maximum size of the test database that

will enable them to meet the 12 hour requirement.

This limit on the benchmark run time determines the equivalent database size for the DBMS

under test. When choosing the size of their test database, implementors must balance two

conflicting factors: the database size and the total time required to run the benchmark. In order to

obtain shorter elapsed times for the test queries, they will want to have a smaller database. On

the other hand, in order to compare favorably with other systems, implementors will want to run

the benchmark with the largest possible database since the AS3AP comparison metric is the

equivalent database ratio.

6.2 Structure of the Database

The AS3AP database contains five relations. One, the tiny relation, is a one tuple, one column

relation, used only to measure overhead. The other are the four relations generated by the

database generator, with the appropriate scaling. These relations are named as follows:

uniques. A relation where all attributes have unique values.

hundred. A relation where most of the attributes have exactly 100 unique values, and are

correlated. This relation provides absolute selectivities of 100, and projections

producing exactly 100 multi-attribute tuples3.

tenpct. A relation where most of the attributes have 10% unique values. This relation

provides relative selectivities of 10%.

updates. A relation customized for updates. Different distributions are used and three types

of indices are built on this relation.

The four relations have the same ten attributes (columns) with the same names and types, and if

needed to comply with tuple width specification, a fill attribute. The attributes (Table 6.2) cover

the range of commonly used data types: signed and unsigned integer, floating point, exact

decimal, alphanumeric, fixed and variable length strings, and an 8 character date type. The

3 To support projections producing 100 single attribute tuples, it is sufficient to have an attribute with 100 unique values. In
order to obtain 100 tuples by projecting on more than one attribute, we generated correlated attribute values so that projecting
any subset of nonunique values also produces exactly 100 unique values.

Turbyfill, Orji,Bitton: AS3AP 8 Second Draft

precision of floating point numbers is within the limits of the IEEE Standard floating point

number. Furthermore, only range predicates (i.e. float between 998 and 1000) are used with

floating point numbers as precision differences make equality predicates (such as float = 999) less

portable.

The attribute lengths sum up to 100 bytes if the DBMS support all the required data type with a

standard length (i.e. 4 byte integers, 8 byte floating points, etc.) An additional attribute, fill, is

provided to comply with the 100 byte tuple width requirement, when the DBMS does not support

one or several of the data types as specified in Table 6.2. For systems that do not support the

needed data types or do not store them efficiently, portability of the test database is enforced by

providing precise substitution rules. For instance, if variable length character strings are not

supported, the tenth attribute, address, should be a fixed length character string of 80 bytes, and

the tuple width will be 160 bytes. Thus a DBMS that does not support variable length strings is

penalized by higher storage requirements for the test database. If another data type, say exact

decimal, is not supported and the implementor substitutes a shorter type for it, then the fill

attribute should make up for the difference in storage requirement between the required type,

exact decimal, and the substitute. Only integer values are generated by the test database

generator so that all predicates on a numeric value will select the same values when a 4 byte

integer is substituted for any numeric type.

Table 6.2: Attribute Names, Types, and Length in Bytes

Attribute Number and Name4 Type Length
1. key integer 4
2. int unsigned integer 4
3. signed signed integer 4
4. float floating point 4
5. double double precision 8
6. decimal exact decimal 18.2
7. date datetime 8
8. code alphanumeric 10
9. name character string 20 (fixed)

10. address variable length string 2 to 80 (20 avg)
11. fill char string as needed

total=100 (avg)

4 Certain DBMS's do not allow using the same attribute name in 2 relations. In that case, we suggest prefixing the attribute
names with their relation name.

Turbyfill, Orji,Bitton: AS3AP 9 Second Draft

The SQL schema for the test database is provided in Appendix 1, where the data types are as

specified in Table 2 and the tuple width is 100 bytes. An example is also provided where

substitution rules require a fill attribute with 6 characters.

In the test database, the values of every attribute are randomly generated, with a uniform or a

non-uniform distribution. Table 6.3 contains a detailed description of the attributes, including their

type, the range and distribution of their values, whether they constitute a key or a foreign key, the

type of index built on the attribute, if any, and how many unique values they have. We describe

indices as: clustered or nonclustered, primary or secondary, B-tree or hashed. Indices are

specified on subsets of attributes, here called the index key, not to be confused with the primary

key of a relation. In a clustered index, the index determines the physical placement of the data.

For instance, in a clustered B-tree index, the data is sorted on the index key. In a clustered

hashed index, the page or bucket a row is placed in is determined by a hash function on the index

key. In a nonclustered index, the data is not sorted on the index key. The index is used to locate

a pointer to a row or rows containing the index key value. In a nonclustered B-tree index, the

leaves of the tree usually contain one instance of each unique index key paired with pointers to

each row containing attributes corresponding to the index key value. In a nonclustered hashed

index, a hash function on the indexed key is used to locate pointers to the desired row(s). A

primary index is an index on the relation primary key. A primary index is usually a clustered

index. A secondary index is an index on attributes other than the primary key. A secondary index

is usually nonclustered.

We assume that three types of indices are supported by the DBMS under test:

(1) A B-tree clustered index (abbreviated cl. btree in Table 6.3), which, for all the relations,

is built as the primary index on the key field,

(2) A B-tree secondary nonclustered index (abbreviated sec. btree in Table 6.3), and

(3) A hashed secondary nonclustered index (abbreviated sec. hash in Table 6.3).

We have one composite primary clustered index on the key and code attributes of the tenpcnt

relation. Multiple secondary indices are built on the relations, as indicated in Table 6.3. A

secondary hash index is built on the alphanumeric field code for all four relations.

With respect to physical database design, the following substitution rules apply:

• Any desired index can be substituted for a clustered B-tree index specified in Table 6.3.

If available, a clustered index must be substituted instead of a nonclustered index.

• Any desired nonclustered index can be substituted for a nonclustered B-tree index

specified in Table 6.3.

Turbyfill, Orji,Bitton: AS3AP 10 Second Draft

• Any desired nonclustered index can be substituted for the nonclustered hashed index

specified in Table 6.3. If available, it must be different from the nonclustered B-tree

index or the index substituted for the nonclustered B-tree.

Of course, systems that automatically invert or otherwise encode all attributes or tuples are

allowed to do so.

The range of values for an attribute is determined by its type and by the size of the relation. For

some numeric types, two types of ranges are included, dense and sparse. In a dense range, every

integer value in the range is represented in the table. For instance, the key in the updates has the

range of 0 to (# of tuples) in the updates table. In the 4 megabyte database, the key in the updates

table has a range from 0 to 10,000. In the 400 gigabyte database, its range is from 0 to 1 billion.

With all dense ranges, the value 1 is omitted to allow “not-found-scans” for a value within the

range of attribute. These scans measure the rate at which data can be read and tested.

Dense ranges are used to phrase queries with fixed selectivities independent of the database size,

such as the query o_mode_100k:

select * from updates where key <=100

which always selects 100 tuples. In a sparse range, the range is independent of the database size.

For instance, the key attribute in the uniques relation is an integer with values in the range 0-109,

to allow for up to 109 distinct values. When the number of tuples needed is smaller than 109, the

range is sparse (see Table 6.3.). Sparse ranges are used to phrase queries with relative

selectivities that are a function of the database size, such as the query sel_10pct_cl :

select key,int,signed,code,double,name
from uniques
where key <= 100000000

which always selects 10% of the tuples in the uniques relation.

The range and distribution of attributes with the same name may be different in the different

relations, in order to provide the functionality required by the queries. For instance, the range of

the key attribute in uniques is 0 to 109 and it is sparse. In the hundred relation, the range for the

same attribute is 0 to number of tuples and it is dense (except for the value "1" which is missing);

And the double attribute has a normal distribution in the uniques relation but a uniform

distribution in the hundred relation.

Ranges are defined for all ten attributes so that scaling of the database is straightforward, and the

queries are not changed when the database is scaled. Once the number of tuples in the database

relations is specified (104 to 109), the generator program will generate the appropriate attribute

values. The queries are designed to automatically scale with the database. In particular, the

Turbyfill, Orji,Bitton: AS3AP 11 Second Draft

attribute ranges are specified so that the query selectivities remain unchanged and all the required

constant values used in the predicates remain unchanged when the relation size is scaled.

Turbyfill, Orji,Bitton: AS3AP 12 Second Draft

Table 6.3. : Description of the Attributes of the 4 Test Relations
attr. name attr. type uniques hundred tenpct updates

1. key integer(4) 0 - 109 0 - #tuples 0 - 109 0 - #tuples
prim. key 1 missing 1 missing 1 missing 1 missing

sparse dense sparse dense
uniform uniform uniform uniform
cl. btree cl. btree cl. btree cl. btree

2. int integer(4) 0 - 109 0 - 109 0 - 109 0 - #tuples
 unsigned 1 missing 1 missing 1 missing 1 missing

sparse sparse sparse dense
uniform uniform uniform uniform

sec. btree sec. btree

3. signed integer(4) ± 5•108 100 - 199 ± 5•108 ± 5• 108

 nullable sparse dense sparse sparse
uniform uniform uniform uniform

foreign key sec. btree
for updates

4. float real(4) ± 5•108 ± 5•108 ± 5•108 ± 5• 108

zipf uniform uniform zipf
100 uniques 10% uniques 10 uniques

sec. btree

5. double double(8) ± 109 ± 109 ± 109 ± 109

normal distn uniform uniform normal distn
100 uniques 10% uniques all unique

sec. btree sec. btree

6. decim numeric(18,2) ± 109 ± 109 ± 109 ± 109

100 uniques 10% uniques all unique
sec. btree sec. btree

7. date datetime 1/1/1900 - 1/1/1900 - 1/1/1900 - 1/1/1900 -
8 bytes 12/1/2000 12/1/2000 12/1/2000 12/1/2000

uniform uniform uniform uniform

8. code char(10) alphanumeric alphanumeric alphanumeric alphanumeric
cand. key sec. hash sec. hash cl. btree sec. hash

sec. hash

9. name char(20) alphanumeric alphanumeric alphanumeric alphanumeric
100 uniques 10 uniques all unique

sec. hash

Turbyfill, Orji,Bitton: AS3AP 13 Second Draft

10. address var char(80) alphanumeric alphanumeric alphanumeric alphanumeric
100 uniques 10% uniques all unique

11. fill char(?) alphanumeric alphanumeric alphanumeric alphanumeric

7. Single-User Tests

Single-user tests are logically divided into operational issues and user queries. Operational issues

include load, backup, building indices, and a check of referential integrity. Queries include

retrievals, single-tuple updates, and bulk updates. All are run in standalone mode, and the elapsed

time for each test or query is measured. In our single-user tests, as the database gets larger,

systems will be penalized if they do not use parallel and distributed algorithms in the execution of

utilities or large retrievals. On the other hand, some of the simple queries, that access only a few

database pages, will be fairly insensitive to database size as long as relevant indices remain in

memory. Our purpose is to identify systems that are truly capable of supporting large databases

and processing large quantities of data. This is in contrast to the Debit-Credit benchmark, where

systems which do not employ parallel or distributed algorithms in the execution of a single query

can perform quite well, both in elapsed time and in cost/performance metrics. What the Debit-

Credit benchmark does not show the user is the time required to load, backup, or restore the

database, or how any query that required processing large amounts of data, such as a batch or

report query, would perform. A system could perform the random accesses required to perform

the Debit-Credit benchmark superbly, and still be completely inadequate when performing other

functions expected of a relational database system.

Table 7 shows the amount of time required to access data by access type (sequential or random).

By way of illustration, assume a relatively rapid time of 20 milliseconds for each random access

to 8K bytes, and assume sequential accesses proceed at the rate of 3 million bytes per second.

These are optimistic numbers for serial access to data at the application level. At 20 milliseconds

per 8K of data, it would take 2.44 seconds to process a megabyte of data and 28.26 days to

process a terabyte of data. With a sequential access rate of 3 megabytes per second, it would take

0.33 seconds to access one megabyte of data and 3.86 days to access a terabyte of data. Table 6

illustrates the fact that queries that process large amounts of data cannot be efficiently executed

without the use of distributed and parallel algorithms for the execution a single query. This is

referred to as intra-query parallelism, as opposed to inter-query parallelism where several queries

are executed in parallel. In practice, when new parallel and distributed architectures are

implemented, the first software ported to the distributed or parallel hardware supports inter-query

Turbyfill, Orji,Bitton: AS3AP 14 Second Draft

parallelism by dedicating a different CPU to each query. Systems capable of intra-query

parallelism represent the current state-of-the-art in software maturity.

Turbyfill, Orji,Bitton: AS3AP 15 Second Draft

Table 7: Time to Access Large Amounts of Data by Access Type
Table Size in Bytes Random Access Sequential Access

 @8KB / 20 msec @ 3 MB/sec
1 megabyte 2.44 seconds 0.33 seconds
1 gigabyte 40.69 minutes 5.56 minutes
1 terabyte 28.26 days 3.86 days

Below, the operational tests are described first. Then the queries, organized according to

function, are described. The tests and queries expressed in SQL are listed in Appendix 2. The

order in which Section 7 and Appendix 2 list the queries is not the order in which they are run in

the benchmark. AS3AP uses a particular ordering of the queries to prevent the data of one query

to be memory resident as a consequence of the previous query. It addition, the query order is

designed to facilitate memory residence of relevant indices when this is appropriate. A run-time

sequence has been determined that differs from the logical organization presented below. The

actual AS3AP run sequence is shown in Appendix 3.

Queries and operational tests are interleaved so that each query will access a relation different

from the one(s) accessed by the previous query. This avoids lengthy operations that would

otherwise be needed to flush the buffers. The probability of cache hits in main memory is also

reduced as the database gets larger.

7.1. Operational Issues

After the AS3AP database is created, and the schema specified, the first measurement performed

is the time to load the four data files generated

relations. The data files may be loaded from disk or tape. Then, one of the relations, the updates

relation, is backed up to tape or other archive device and the backup time is measured. A

recovery of the updates relation is included in the multiuser tests.

We measure the time to build both clustered and secondardy indices. Usually, the load utility will

cluster the file with respect to the declared primary key and build the appropriate primary index.

In the event that the load does not include this function, the time for building a clustered index

should be measured. Building the required indices (clustered indices if not handled by the load,

and secondary indices as needed by the test queries) is interleaved with the queries. In the

uniques, hundred, and updates relations, the clustered index is on the key attribute. The tenpct

relation has a composites primary clustered index on the key and code attributes. We measure the

time for building two types of secondary indices. For example, we build a secondary B-tree

Turbyfill, Orji,Bitton: AS3AP 16 Second Draft

index on the integer attribute int of the tenpct relation; we build a secondary hashed index on

the code attribute of each relations: uniques, hundred, updates andtenpct .

A table scan is included to test sequential I/O performance (table_scan):

select * from uniques where int=1

Since the value "1" is not present and no index is built on the int column, this query scans the

entire table but retrieves no tuple. Partial table scans that retrieve 100 and 1000 sequential tuples

to the screen or to a file are also included in the tests of output mode (see Section 6.2.1. below).

7.2. Test Queries

7.2.1. Output mode Queries

The first set of tests exercises the three different output modes that a query may use. Results of a

query may be (i) retrieved to the screen; (ii) stored in a file; (iii) stored in a database relation. We

measure the overhead associated with each of these three output modes, per query (selection on

tiny relation) and as a function of the amount of data retrieved (1k, 10k, or 100k bytes)5. The

output mode queries are briefly described in Table 7.1. Measurements for these queries and a

comparison to the table scans provide a precise estimate for the time required by the DBMS to

format, display, and store the result of a query. After this first set of tests, the results of all

queries are discarded, so that a query elapsed time measures the effectiveness of query

optimization independently of the output mode. In order to further normalize the measurements

of query elapsed time, the width of the result tuple is kept equal to 50 bytes for most test

queries.

Table 7.1.: Output Mode Queries.
Each Query Repeated with Output To Screen, File, and Relation

Query Name Description

o_mode_tiny selection on tiny relation

o_mode_1K selection of 10 tuples

o_mode_10K selection of 100 tuples

o_mode_100K selection of 1000 tuples

5 In this context, 1k=1,000 bytes exactly. 1k corresponds to ten average logical tuples. The actual data moved may vary with
implementations.

Turbyfill, Orji,Bitton: AS3AP 17 Second Draft

7.2.2. Selections

The speed at which a DBMS can process a selection query depends primarily on the storage

organization of the relation and on the selectivity factor of the query. These two parameters are

controlled in our tests for selections. There are seven selection queries, as listed in Table 7.2. A

selection query selects one tuple, or a range of 100 tuples or 10% of the tuples. For each of these

three selectivities, the query comes in two versions: one version uses a clustered index, and the

other uses a secondary B-tree index. Finally, one selection query, variable_select, is a range

selection with a secondary B-tree index, where the range is defined by a program variable. This

query tests the ability of the query optimizer to correctly choose between a scan or the use of an

index at run time6. In Appendix 3, which specifies the run sequence of queries, the

variable_select query is executed twice in a row, first with a low selectivity when a nonclustered

index should be used to evaluate the selection predicate, and second with a high selectivity, when

the relation should be scanned to evaluate the predicate. Putting the two queries right after each

other detects whether program variables are properly handled without overweighing the

benchmark with two unnecessary relation scans. If the first variable_select is improperly

executed by scanning the entire relation, the second will be relatively fast because the table

should be memory resident for the second scan.

Table 7.2.: Selection Queries

Query Name Description

sel_1_cl select 1 tuple using clustered index

sel_1_ncl select 1 tuple using secondary hashed index

sel_100_cl select 100 tuples using clustered index

sel_100_ncl select 100 tuples using B-tree secondary index

sel_10p_cl select 10% tuples using clustered index

sel_10p_ncl select 10% tuples using B-tree secondary index

variable_select range select predicated on program variable

6 Three queries with program variables are included: variable_select, and the background queries in the multiuser tests,
ir_select and oltp_update (Section 7 and Appendix 4). Other tests isolate other access methods or other aspects of query
optimization. We do not wish to confound those tests with improper handling of program variables should it occur.

Turbyfill, Orji,Bitton: AS3AP 18 Second Draft

7.2.3. Joins

The join queries test how efficiently the system makes use of available indices and how query

complexity affects the relative performance of the DBMS. There are eight join queries, differing

in the number of relations that they reference and in the availability and type of index available on

the join attribute (see Table 7.3.). Seven of the eight queries are 1:1 joins and produce one result

tuple. One query, Join_1_10, is a 1:10 join of two relations with a non-clustered index on the

join attribute, and it produces 100 result tuples. The join with no index (Join_2) constitutes a

simple test of performance on ad-hoc queries. When no index is available, a query optimizer

should never use a nested loops join algorithm, because of its n2 complexity. Instead, it should

sort or hash the operand relations on the join attribute(s), and then merge-join them in one pass.

Thus, if correctly optimized, this query measures the efficiency of a basic access method - sorting

or hashing; otherwise it will exhibit very poor performance.

Table 7.3. : Join Queries

Query Name Number of Tables Index Available Tuples Retrieved

join_2 2 no index 1

join_2_cl 2 clustered index 1

join_2_ncl 2 non-clustered hashed index 1

join_3_cl 3 clustered index 1

join_3_ncl 3 non-clustered hashed index 1

join_4_cl 4 clustered index 1
join_4_ncl 4 non-clustered hashed index 1
join_1_10 2 non-clustered B-tree index 100

Use of the available indices in the join algorithm is tested with three types of indices: the primary

clustered index, a secondary hashed index, and a secondary B-tree index. In each case the

appropriate type of index is available on the join attribute in all the operand relations.

Query complexity is modeled by increasing the number of tables referenced from two to 4. While

most query optimizers will use the correct access plan on 2-way joins with a clustered or a non-

clustered index, often they will not correctly optimize three and 4-way joins because of the higher

complexity involved in evaluating all the possible access methods.

Turbyfill, Orji,Bitton: AS3AP 19 Second Draft

7.2.4. Projections

Most of the processing time for a projection is incurred by the elimination of duplicate tuples

introduced when projecting on non key attributes. This makes the cost of a projection much

higher than the cost of a selection query with similar selectivity. Duplicate elimination is usually

performed by sorting. Thus tests of projections also provide a test of the sort utility used by the

DBMS.

There are two test queries for projections (Table 7.4.). One query projects the hundred relation

on two columns, corresponding to a signed integer and a variable length character attributes, and

it produces 100 result tuples. Thus it provides a test of how efficiently the DBMS handles two

data types in a complex operation such as sorting. The second query projects on one column,

corresponding to a signed integer attribute, and has a 10% selectivity.

Table 7.4.: Projection Queries
Query Name Description Selectivity
proj_100 project on address and signed attr. 100 tuples
proj_10pct project on signed attr. 10% tuples

7.2.5. Aggregates

Six tests of aggregates are provided (Table 7.5.). The first is a simple scalar aggregate,

computing the minimum of the key value. The correct query execution strategy for this aggregate

consists of looking up the first value stored in the clustered index. Thus the elapsed time should

be comparable to the one tuple selection with a clustered index (sel_1_cl). The second query is a

function aggregate, which computes the minimum value of key partitioned into 100 partitions.

The other four queries are more complex. The info_retrieval query is designed to test whether

systems can use bit or pointer intersection algorithms for indices to avoid a relation scan to

evaluate complex predicates. The simple_report query is a scalar aggregate on the result of a 1:1

join of the keys of updates and hundred relations, with a 10% selection on the updates relations.

The subtotal_report and total_report queries use a view that is a 1:1 join of the key of the

updates and hundred relation. The SQL standard does not support the combination of subtotals

and totals in the same query. One would expect this ablility in a report generator. Hence the

selection/aggregate function portion of the report has been broken into two queries. Any system

that has a more sophisticated report generator is allowed to rephrase and execute the two queries

(subtotal_report and total_report) as a single query using the report generation facility.

Table 7.5.: Aggregate Queries

Turbyfill, Orji,Bitton: AS3AP 20 Second Draft

Query Name Description Result
scal_ag minimum key min value (1)
func_agg minimum key grouped by name 100 min values
info_retrieval select w/ complex predicate, then min(key) 1
simple_report select avg(x) where x in (select 10%) 1
subtotal_report 10% select on view, min(a),max(a),avg(a),count(b),

group by code,int
100

total_report 10% select on view,min(a),max(a),avg(a),count(b) 1

7.2.6. Updates

The update tests are designed to check both integrity and performance. To check integrity, one

query that attempts to append a tuple with a duplicate key value, and a second attempts to violate

referential integrity by updating a field which is a foreign key. Both queries apply to the updates

table.

Table 7.6.: Update Tests
Test Name Description Tuples Updated
append_duplicate insert duplicate key append 1, delete 1
refer_integrity insert invalid foreign key insert 1, delete 1, insert 1
update_key insert middle, last key values insert 2, modify 2, delete 2
update_btree 1 tuple updates of btree index insert 1, modify 1, delete 1
update_alpha 1 tuple update. of index on alpha field insert 1, modify 1, delete 1
bulk_append bulk insertion in mid key range insert 1000 tuples
bulk_modify bulk update in mid key range modify 1000 tuples
bulk_delete bulk delete in mid key range delete 1000 tuples

To evaluate performance, tests that measure the overhead involved in updating each type of

index are provided. Single-tuple updates and bulk updates are also provided. The single-tuple

updates are grouped into three tests. Each consists of building an index, appending a tuple,

modifying it, and deleting it. First the updates are performed with the updates relation having

only one index, the clustered index on the key. Then a B-tree secondary index is built on

updates.int and the same updates are repeated. Finally a hashed (or another available type of

index) secondary index is built on updates.code, and the updates repeated. Each of the three tests

isolates and measures the overhead involved in maintaining the corresponding type of index.

The bulk updates include an append, a modify, and a delete of 1,000 consecutive tuples, located in

the middle of the updates relation. The update tests are sequenced so that the database is restored

to its initial state when all the tests are completed. Table 7.6. contains a brief description of the

update tests.

Turbyfill, Orji,Bitton: AS3AP 21 Second Draft

8. Multiuser Tests

There are four multiuser tests, each modelling a different workload profile:

1. An OLTP test, where all users execute a single-row update, oltp_update, on the same

relation. This update randomly selects a single row using a clustered index and updates

a nonindexed attribute. It is executed with repeatable access (Level 3 isolation)7.

2. An Information Retrieval (IR) test, where all users execute a single-row selection query,

ir_select, on the same relation. This query selects a single row using a clustered index.

It is executed with browse access (Level 0 isolation).

3. A Mixed Workload IR Test, where one user executes a cross section of ten update and

retrieval queries, and all the others execute the same IR query as in the second test.

4. A Mixed Workload OLTP Test, where one user executes a cross section of ten update

and retrieval queries, and all the others execute the same OLTP query as in the first test.

The first two tests can be used to measure the throughput as a function of the number of

concurrent database users; the third measures the degradation of response time for a cross section

of queries caused by system load. In order to make the benchmark tractable, and to make the

results meaningful with respect to the benchmark time limit and the equivalent database size

metric, we have decided on strict guidelines for the execution of the multiuser tests, including the

specification of the number of users according to an unambiguous formula8. The number of users

is always equal to:
logical database size in bytes

 4 megabytes

Hence, for the 4 megabyte database, the number of users is 1; for the 40 megabyte database, the

number of users is 10. This rule for determining the multiprogramming level ensures that the

system will be tested in multiuser mode. The mixed workloads contain some queries that are

relegated to offline batch processing in current systems due to performance problems. Hence,

given the current state of commercial software, even with a low number of users, the mixed

workload tests already press the state of the art in OLTP.

7 In the SQL standard there are four isolation levels called 0, 1, 2, and 3. SQL 2 level 3 is the default and is known as
repeatable reads in DB2 and other systems -- it gives complete isolation from concurrent updates by other transactions. SQL 2
level 1 is called cursor stability in DB2 and avoids dirty reads but allows non-repeatable reads. SQL 2 level 0 allows dirty
reads and is called browse access in NonStop SQL. If a lower degree of isolation is not supported, then the higher degree must
be used. For example, cursor stability would be used in lieu of browse mode isolation for a DB2 system.
8 Originally, we wanted to allow any numbers of that maximize throughput. However, when no think times are used,
maximum throughput on systems we tested was achieved with only a few users -- sometimes just one user. So this formula was
developed to prevent single-user versions of the multiuser tests. It is always instructive to plot throughputs and response times
from multiuser tests as a function of the number of users.

Turbyfill, Orji,Bitton: AS3AP 22 Second Draft

In the cross section (Table 8.1), the retrieval queries range from simple selections of one row to a

simple report query. We test the ability of the system to provide different isolation levels

dynamically by executing the selection query with browse, stable, and repeatable access. All

update queries in the cross section should be executed with repeatable access (Level 3 isolation).

Levels of isolation required for each cross section query are shown in Table 8.1. Also included in

the cross section are four large transactions that update 100 tuples. With one of these large

transactions, we check for correctness in aborting a transaction.

Table 8.1.: Ten Cross Section Queries

Query Name Description Isolation Level
1. o_mode_tiny overhead query 3
2. o_mode_100k retrieves 1000 tuples (100k bytes) 2
3. select_1_ncl 1 tuple select, executed at 3 isolation levels 0,1,3
4. simple_report select-join-aggregate 2
5. sel_100_seq select 100 clustered tuples into temporary 3
6. sel_100_rand select 100 random tuples into temporary 3
7. mod_100_seq_abort update 100 sequential tuples, abort 3
8. mod_100_rand update 100 random 3
9. unmod_100_seq undo previous sequential update 3
10. unmod_100_rand undo previous random update 3

At the end of the multiuser tests, correctness of the bulk sequential and random updates is

checked by comparing the updated relation with the temporary tables created by Queries 5 and 6

(Table 8.1) from the cross section. The execution order for the multiuser tests is:

1. Backup updates relation, including indices, to tape or other device. This is done early

on. See Appendix 3.

2. Run IR (Mix 1) test for 15 minutes.

3. Measure throughput in IR test for five minutes.

4. Replace one background IR script with the cross section script. This is the Mixed

Workload IR test (Mix 3). This step is variable length.

5. Run queries to check correctness of the sequential and random bulk updates.

6. Recover updates relation from backup tape (Step 1) and log (from Steps 2, 3, 4, and 5).

7. Perform correctness checks, checkmod_100_seq and checkmod_100_rand. Remove

temporary tables: sel100seq and sel100rand.

8. Run OLTP test for 15 minutes.

9. Measure throughput in IR test for five minutes.

Turbyfill, Orji,Bitton: AS3AP 23 Second Draft

10. Replace one background OLTP script with the cross section script. This is the Mixed

Workload OLTP test (Mix 4). This step is variable length.

11. Perform correctness checks, checkmod_100_seq and checkmod_100_rand. Remove

temporary tables: sel100seq and sel100rand.

The order is specified to give the system time to "warm up" before throughput is measured

without allowing an arbitrary time interval for reaching steady state. The recovery test is

performed after the Mixed Workload IR test in order to allow testing recovery without having too

many queries in the log to rollforward.

Turbyfill, Orji,Bitton: AS3AP 24 Second Draft

9. Summary

In this paper, we have described a scalable and portable benchmark for use in comparing relational

database systems across architectures and hardware capabilities. Portability is achieved by using

industry standards where appropriate. The ANSI SQL Standard data definition language and

query language are used in the specification of the attributes and queries.

There are five relations in the test database. One is a very small relation used only to measure

overhead. The other four are relations with ten attributes and a scalable number of tuples. The

test queries are designed so that they need not be changed when the size of the database is scaled.

The benchmark consists of two modules: single-user tests and multiuser tests.

The main AS3AP metric is the equivalent database size, which is the maximum size of the test

database for which the single-user and multiuser AS3AP tests can be completed in under 12

hours. The single-user tests include operational functions, such as a database load and building

indices, and a complete set of relational queries and updates. The multiuser tests model mixed

database workloads, including on-line transaction processing, information retrieval, and long

transactions. A number of DBMS vendors have requested a copy of the benchmark, and have

ported AS3AP or some portion of it on their own. Many reported difficulties in running the

multiuser tests. Further work would be required to make the database generator portable and to

develop script models for the multiuser tests.

10. Acknowledgements

Many people have contributed to this work. First, Jim Gray deserves a special acknowledgement

for following the development of AS3AP from the very beginning, and contributing many ideas,

comments, and criticisms. The design of the test database and the mixed workloads greatly

benefited from discussions with Andrea Borr, Jim Gray and Franco Putzolu at Tandem

Computers.

The Argonne National Laboratories provided partial funding for the development and

implementation of the benchmark, as well as a test environment. Sohail Merchant implemented

the benchmark at AT & T in Naperville, on Informix and provided useful comments on an early

version of this paper.

Turbyfill, Orji,Bitton: AS3AP 25 Second Draft

References

[Ano85] Anon et al.,"A Measure of Transaction Processing Power," Datamation, 1985.

[ANSI90] American National Standards Institute, "Database Language SQL 2 (ISO Working
Draft)," Jim Melton ed., ANSI X3H2-90-264. July 1990.

[BDT83] Bitton D., DeWitt D.J., and Turbyfill C., "Benchmarking Database Systems, a
Systematic Approach," Proc. Ninth International Conf. on Very Large Data Bases,
November 1983.

[BHT87] Bitton D., Hanrahan M., and C. Turbyfill, "Performance of Complex Queries in Main
Memory Database Systems," Proc. International Conf. on Third Data Engineering, Los
Angeles, February 1987.

[BMO88] Bitton D., Millman J., and Orji C., Program Documentation for DBGEN, a test
database generator, University of Illinois at Chicago, 1988.

[BT85] Bitton D. and Turbyfill C., "Evaluation of a Backend Database Machine," Proceedings
of HICSS-18, January, 1985.

[BT86] Bitton D. and Turbyfill C., "Main Memory Database Support for Office Systems: A
Performance Study," IFIP TC8 Conference on Methods and Tools for Office Systems,
Pisa, Italy, October 1986.

[BT88] Bitton D.and Turbyfill C., "A Retrospective on the Wisconsin Benchmark," Readings in
Database Systems, edited by Michael Stonebraker, Morgan Kaufmann Publishers Inc.,
San Mateo, California, 1988.

[BD84] Boral H. and DeWitt D.J., "A Methodology for Database System Performance," Proc.
ACM Sigmod 1984.

[Dew79] DeWitt D.J., "DIRECT - A Multiprocessor Organization for Supporting Relational
Database Management Systems," IEEE Transactions on Computers, Vol. C-28, N0.6.

[Kit83] Kitsuregawa, M., Tanaka H., and Moto-Oka T., "Architecture and Performance of
Database Machine GRACE," Proc. International Conference on Parallel Processing,
1983.

[Knu73] Knuth D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley, 1973.

[RKC87] Rubenstein W.B., Kubicar M.S., and Cattell R.G., "Benchmarking Simple Database
Operations," Proceedings ACM Sigmod 1987.

[Ston86] Stonebraker M., The Ingres Papers, Addison-Wesley 1986.

[Tur87] Turbyfill C., "Comparative Benchmarking of Relational Database Systems," Ph. D.
Dissertation, TR 87-871, Cornell University, September 1987.

Turbyfill, Orji,Bitton: AS3AP 26 Second Draft

[Tur88] Turbyfill C., "Disk Performance and Access Patterns for Mixed Database Workloads,"
Database Engineering, IEEE Computer Society Technical Committee on Database
Engineering, Volume 11 No. 1, March 1988.

[YHM87] Yao S.B., Hevner A.R., Myers H.Y., "Analysis of Database System Architectures
Using Benchmarks," IEEE Transactions on Software Engineering, 13:6, June 1987.

Turbyfill, Orji,Bitton: AS3AP 27 Second Draft

APPENDIX 1 - SQL SCHEMA

CREATE TABLE uniques(
 key INTEGER (4) NOT NULL,
 int INTEGER (4) NOT NULL,
 signed INTEGER (4) ,
 float REAL (4) NOT NULL,
 double DOUBLE (8) NOT NULL,
 decim NUMERIC(18,2) NOT NULL,
 date DATETIME (8) NOT NULL,
 code CHAR (10) NOT NULL,
 name CHAR(20) NOT NULL,
 address VARCHAR(20) NOT NULL,
 PRIMARY KEY (key))

CREATE TABLE hundred(
 key INTEGER (4) NOT NULL,
 int INTEGER (4) NOT NULL,
 signed INTEGER (4) ,
 float REAL (4) NOT NULL,
 double DOUBLE (8) NOT NULL,
 decim NUMERIC(18,2) NOT NULL,
 date DATETIME (8) NOT NULL,
 code CHAR (10) NOT NULL,
 name CHAR(20) NOT NULL,
 address VARCHAR(20) NOT NULL,
 PRIMARY KEY (key) ,
 FOREIGN KEY (signed) REFERENCES UPDATES)

CREATE TABLE tenpct(
 key INTEGER (4) NOT NULL,
 int INTEGER (4) NOT NULL,
 signed INTEGER (4) ,
 float REAL (4) NOT NULL,
 double DOUBLE (8) NOT NULL,
 decim NUMERIC(18,2) NOT NULL,
 date DATETIME (8) NOT NULL,
 code CHAR (10) NOT NULL,
 name CHAR(20) NOT NULL,
 address VARCHAR(20) NOT NULL,
 PRIMARY KEY (key,code))

CREATE TABLE updates(
 key INTEGER (4) NOT NULL,
 int INTEGER (4) NOT NULL,
 signed INTEGER (4) ,
 float REAL (4) NOT NULL,
 double DOUBLE (8) NOT NULL,
 decim NUMERIC(18,2) NOT NULL,
 date DATETIME (8) NOT NULL,
 code CHAR (10) NOT NULL,
 name CHAR(20) NOT NULL,
 address VARCHAR(20) NOT NULL,
 PRIMARY KEY (key))

CREATE TABLE tiny(
 key INTEGER (4) NOT NULL,
 PRIMARY KEY (key))

Turbyfill, Orji,Bitton: AS3AP 28 Second Draft

Comments:

In addition to a clustered index on the primary key, a number of secondary indices must be built

(see Table 5.3.). The run sequence in Appendix 3 interleaves the commands to build indices with

queries in the single-user tests, as a way to flush the buffers without incurring additional overhead.

Schema declarations may have to be modified by using a longer address field and/or adding a fill

field. Systems that do not support variable length strings should be penalized by carrying the

maximum length of the address field, 80 bytes, instead of the average 20 bytes. Some systems

may also not support other data types in the form we have shown in the above schema

representation.

The following example shows how the schema should be modified for a system that does not

support variable length strings and does not support decimal and date types as specified. In this

example, the 8 byte MONEY data type is substituted for the 18 byte NUMERIC data type and

the 12 byte DATE is substituted for the 8 byte DATETIME. The MONEY and DATE data types

combined occupy 20 bytes, whereas the NUMERIC and DATETIME data type combined occupy

26 bytes. As the substituted data types occupy 6 bytes less than the standard data types, the fill

attribute is set to 6 bytes.

CREATE TABLE uniques(
 key INTEGER4 NOT NULL,
 int INTEGER4 NOT NULL,
 signed INTEGER4 ,
 decim MONEY NOT NULL,
 date DATE NOT NULL,
 float FLOAT4 NOT NULL,
 double FLOAT8 NOT NULL,
 code C10 NOT NULL,
 name C20 NOT NULL,
 address TEXT(80) NOT NULL,
 fill C6)

Turbyfill, Orji,Bitton: AS3AP 29 Second Draft

APPENDIX 2 - SINGLE-USER TESTS

Operational Issues

load:
/* file names for flat files generated by db generator are asap .uniques, etc. */
INSERT INTO uniques select * from asap.uniques
INSERT INTO hundred select * from asap.hundred
INSERT INTO tenpct select * from asap.tenpct
INSERT INTO updates select * from asap.updates
INSERT INTO tiny select * from asap.tiny

if load operation does not build clustered index on key, then build clustered index on key
attribute of uniques relation:

CREATE UNIQUE INDEX uniques_idx ON uniques (key) CLUSTER

build secondary B-tree index: CREATE
INDEX tenpct_int_bt ON tenpct (int) BTREE

build secondary hashed index:
CREATE INDEX tenpct_code_h ON tenpct (code) HASH

similar indices are built on other relations (See Table 6.3. and Appendix 3).

table_scan:
select * from uniques where int = 1

Queries Testing Output Modes (Table 7.1)
Each Query Repeated three times: output to screen, file, and relation

o_mode_tiny:
select * from tiny

o_mode_1k:
select * from updates where key <= 10

o_mode_10k:
select * from hundred where key <= 100

o_mode_100k:
select * from hundred where key <= 1000

Selections (Table 7.2)

sel_1_cl:
select key, int, signed, code, double, name
from updates
where key = 1000

Turbyfill, Orji,Bitton: AS3AP 30 Second Draft

sel_1_ncl:
select key, int, signed, code, double, name
from updates
where code = 'BENCHMARKS'

sel_10pct_cl:
select key, int, signed, code, double, name
from uniques
where key <= 100000000

sel_100_cl:
select key, int, signed, code, double, name
from updates
where key <= 100

sel_100_ncl:
select key, int, signed, code, double, name
from updates
where int <= 100

sel_10pct_ncl:
select key, int, signed, code, double, name
from tenpct
where name = 'THE+ASAP+BENCHMARKS+'

variable_select:
select key, int, signed, code, double, name
from tenpct
where signed < :prog_var

variable_select: with low selectivity, index should be used:
Set :prog_var = -500,000,000.

variable_select: with high selectivity, index should not be used:
Set :prog_var = -250,000,000.

Joins (Table 7.3)

join_2_cl:
select uniques.signed, uniques.name,
 hundred.signed, hundred.name
from uniques, hundred
where uniques.key = hundred.key
 and uniques.key = 1000

join_2_n_cl:
select uniques.signed, uniques.name,
 hundred.signed, hundred.name
from uniques, hundred
where uniques.code = hundred.code

Turbyfill, Orji,Bitton: AS3AP 31 Second Draft

 and uniques.code = 'BENCHMARKS'

join_2:
select uniques.signed, uniques.name,

 hundred.signed, hundred.name
from uniques, hundred
where uniques.address = hundred.address
 and uniques.address = 'SILICON VALLEY'

join_3_cl:
select uniques.signed, uniques.date,

 hundred.signed, hundred.date,
 tenpct.signed, tenpct.date

from uniques, hundred, tenpct
where uniques.key = hundred.key
 and uniques.key = tenpct.key
 and uniques.key = 1000

join_3_ncl:
select uniques.signed, uniques.date,

 hundred.signed, hundred.date,
 tenpct.signed, tenpct.date

from uniques, hundred, tenpct
where uniques.code = hundred.code
 and uniques.code = tenpct.code
 and uniques.code = 'BENCHMARKS'

join_4_cl:
select uniques.date, hundred.date,

 tenpct.date, updates.date
from uniques, hundred, tenpct, updates
where uniques.key = hundred.key
 and uniques.key = tenpct.key
 and uniques.key = updates.key
 and uniques.key = 1000

join_4_ncl:
select uniques.date, hundred.date,
 tenpct.date, updates.date
from uniques, hundred, tenpct, updates
where uniques.code = hundred.code
 and uniques.code = tenpct.code
 and uniques.code = updates.code
 and uniques.code = 'BENCHMARKS'

join_1_10:
select uniques.key, uniques.name,
 tenpct.name, tenpct.signed
from uniques, tenpct
where uniques.key = tenpct.signed

Turbyfill, Orji,Bitton: AS3AP 32 Second Draft

 and uniques.key in(500000000, 600000000, 700000000,
 800000000,900000000)

Projections (Table 7.4)

proj_100:
select unique address, signed from hundred

proj_10pct:
select unique signed from tenpct

Aggregates (Table 7.5)

scal_agg:
select min(key) from uniques

func_agg:
select min(key)
from hundred
group by name

info_retrieval:
select count(key)
from tenpct
where name = 'THE+ASAP+BENCHMARKS+'
 and int <= 100000000
 and signed between 1 and 99999999
 and not (float between -450000000 and 450000000)
 and double > 600000000
 and decim < -600000000

simple_report:
select avg(updates.decim)
from updates
where updates.key in
 (select updates.key

from updates, hundred
where hundred.key = updates.key
 and updates.decim > 980000000)

create_view
create view

reportview(key,signed,date,decim,name,code,int) as
select updates.key, updates.signed,

 updates.date, updates.decim,
 hundred.name, hundred.code,

hundred.int
from updates, hundred
where updates.key = hundred.key

Turbyfill, Orji,Bitton: AS3AP 33 Second Draft

subtotal_report
select avg(signed), min(signed), max(signed),

 max(date), min(date),
 count(distinct name), count(name),
 code, int

from reportview
where decim > 980000000
group by code, int

total_report
select avg(signed), min(signed), max(signed),

 max(date), min(date),
 count(distinct name), count(name),
 count(code), count(int)

from reportview
where decim > 980000000

Updates (Table 7.6)

append_duplicate:
/* try to append duplicate key value */

insert into updates values
(6000, 0, 60000, 39997.90, 50005.00, 50005.00,
'11/10/85', 'CONTROLLER', 'ALICE IN WONDERLAND',
'UNIVERSITY OF ILLINOIS AT CHICAGO ')

remove_duplicate:
delete updates where key = 6000 and int = 0

Test of referential integrity:
/* make temp relation for restore */
create table integrity_temp like hundred :
insert into integrity_temp

select *
from hundred
where int = 0

integrity_test:
update hundred
set signed = -500000000
where int = 0

integrity_restore:
/* restore hundred relation in case test failed */

delete hundred where int = 0
insert into hundred select * from integrity_temp

One tuple updates, in middle and end of key range:

Turbyfill, Orji,Bitton: AS3AP 34 Second Draft

app_t_mid:
insert into updates
 values (5005, 5005, 50005, 50005.00, 50005.00,

50005.00,'1/1/88', 'CONTROLLER',
'ALICE IN WONDERLAND',
'UNIVERSITY OF ILLINOIS AT CHICAGO ')

mod_t_mid:
update updates
set key = -5000
where key = 5005

del_t_mid:
delete updates
where key = -5000

app_t_end:
insert into updates
values (1000000001, 50005, 50005, 50005.00, 50005.00,

 50005.00, '1/1/88', 'CONTROLLER',
 'ALICE IN WONDERLAND',
 'UNIVERSITY OF ILLINOIS AT CHICAGO ')

mod_t_end:
update updates
set key = -1000
where key = 1000000001

del_t_end:
delete updates where key = -1000

/* test other indices updates */
/* test b-tree secondary index */

app_t_mid (as above)

mod_t_int:
update updates
set int = 50015
where key = 5005

del_t_mid (as above)
/* test hash index on alphanumeric field */

app_t_mid (as above)

mod_t_cod:
update updates
set code = 'SQL+GROUPS'
where key = 5005

Turbyfill, Orji,Bitton: AS3AP 35 Second Draft

del_t_mid (as above)

/* Bulk Updates */

bulk_save:
insert into saveupdates
select * from updates
where key between 5000 and 5999

bulk_append:
insert into updates
select * from saveupdates

bulk_modify:
update updates
set key = key - 100000
where key between 5000 and 5999

bulk_delete:
delete updates
where key < 0

Turbyfill, Orji,Bitton: AS3AP 36 Second Draft

APPENDIX 3 - RUN SEQUENCE FOR SINGLE-USER TESTS

This appendix lists the single-user tests in the order that they should be executed. This order is

different from the logical order in which queries were listed in Appendix 2, because the

operational tests and queries are interleaved in a way that prevents data from remaining in the

buffer. The sequence below should be embedded in a host program, with one timing statement per

test. The host program should be run in standalone mode. The embedded timing statements will

provide standalone response time of precompiled queries.

Create and load database with clustered index on primary keys if provided by load utility.

Backup updates relation.

 If index not built during load, build primary clustered index on key attribute of updates.

o_mode_tiny into a relation.

If index not built during load, build primary clustered composite index on key and code

 attributes of tenpcnt relation.

o_mode_tiny into a file.

sel_1_cl

 If index not built during load, build primary clustered index on key attribute of hundred

 relation.

o_mode_tiny to the screen.

Build secondary nonclustered B-tree index on int attribute of tenpcnt.

o_mode_100k into a file.

If index not built during load, build primary clustered index on key of uniques relation.

o_mode_1k into a relation.

Build secondary nonclustered B-tree index on signed attribute in tenpcnt.

Build secondary nonclustered hashed index on code attribute of uniques.

o_mode_1k into a file.

Build secondary nonclustered B-tree index on double attribute of tenpcnt .

Build secondary nonclustered B-tree index on decim attribute of updates.

o_mode_10k into a file.

Build secondary nonclustered B-tree index on float attribute of tenpcnt .

Build secondary nonclustered B-tree index on int attribute of updates.

Build secondary nonclustered B-tree index on decim attribute of tenpcnt .

Build secondary nonclustered hashed index on code attribute of hundred.

o_mode_10k into a relation.

Build secondary nonclustered hashed index on name attribute of tenpcnt .

Turbyfill, Orji,Bitton: AS3AP 37 Second Draft

Build secondary nonclustered hashed index on code attribute of updates.

o_mode_100k into a relation.

Build secondary nonclustered hashed index on code attribute of tenpcnt .

Build secondary nonclustered B-tree index on double attribute of updates.

o_mode_1k to the screen.

o_mode_10k to the screen.

o_mode_100k to the screen.

join_3_cl

sel_100_ncl

table_scan

func_agg

scal_agg

sel_100_cl

join_3_ncl

sel_10pct_ncl

simple_report

info_retrieval

create_view

subtotal_report

total_report

join_2_cl

join_2

variable_select -- with low selectivity - should use index.

variable_select -- with high selectivity - should not use index.

join_4_cl

proj_100

join_4_ncl

proj_10pct

sel_1_ncl

join_2_ncl

integrity_temp

integrity_test

integrity_restore

Remove all secondary indices from updates.

bulk_save

bulk_modify

Turbyfill, Orji,Bitton: AS3AP 38 Second Draft

append_duplicate

remove_duplicate

app_t_mid

mod_t_mid

del_t_mid

app_t_end

mod_t_end

del_t_end

Build secondary nonclustered hashed index on code attribute of updates.

app_t_mid

mod_t_cod

del_t_mid

Build secondary nonclustered B-tree index on int attribute of updates.

app_t_mid

mod_t_int

del_t_mid

bulk_append

bulk_delete

Turbyfill, Orji,Bitton: AS3AP 39 Second Draft

APPENDIX 4 - MULTIUSER TESTS

As described in Section 8, there are four modules of multiuser tests: OLTP, IR, Mixed OLTP, and

Mixed IR. We suggest that each module be set to run with one script; within one script, for each

user, a concurrent program including queries and timing statements should be forked out. No

think time or presentation services are included in the measurements. The queries required for the

multiuser tests are listed below

/* 1 tuple update for OLTP and Mixed OLTP tests */

oltp_update:
update updates
set signed = signed + 1
where key = :random_number

/* each user program starts with a different seed and generates a sequence of random numbers */

 /* 1 tuple selection for IR and Mixed IR test */

ir_select:
select key, code, date, signed, name
from updates
where key = :random_number

Cross Section Queries for Mixed IR and Mixed OLTP tests

o_mode_tiny:
select * from tiny

o_mode_100k:
select * from hundred where key<=1000

Turbyfill, Orji,Bitton: AS3AP 40 Second Draft

/* this selection query should be repeated 3 times with 3 isolation levels */

sel_1_ncl:
select key, int, signed, code, double, name
from updates
where code = 'BENCHMARKS'

simple_report:
select avg(updates.decim)
from updates
where updates.key in
 (select updates.key

from updates, hundred
where hundred.key = updates.key
 and updates.decim > 980000000)

sel_100_seq:
insert into sel100seq

select * from updates
where updates.key between 1001 and 1100

/* build a temporary relation for random updates */
sel_100_rand:

insert into sel100rand
select * from updates
where updates.int between 1001 and 1100

/* abort update of sequential records */

mod_100_seq:
begin work
update updates

set double = double + 100000000
where key between 1001 and 1100

rollback work

/* updates some records randomly */

mod_100_rand:
update updates
set double = double + 100000000
where int between 1001 and 1100

/* restore (unmodify) the sequential records */

unmod_100_seq:
update updates
set double = double - 100000000
where key between 1001 and 1100

Turbyfill, Orji,Bitton: AS3AP 41 Second Draft

/* unmodify the random records */

unmod_100_rand
update updates
 set double = double - 100000000
where key between 1001 and 1100

At the end of the multiuser tests, the following two queries are run to check that the updates were

performed correctly:

/* check correctness of the sequential updates */

checkmod_100_seq:
select count(*)
from updates, sel100seq
where updates.key = sel100seq.key
 and not updates.double = sel100seq.double

/* check correctness of the random updates */

checkmod_100_rand:
select count(*) from updates, sel100rand

where updates.int = sel100rand.int
 and not updates.double = sel100rand.double

