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Definitions and notation

Fix q, n, d ∈ N with q ≥ 2. Define [q] := {0, . . . , q − 1}.

A word is an element of [q]n and a code is a subset of [q]n.

The Hamming distance between two words u, v ∈ [q]n is

dH(u, v) := |{i : ui 6= vi}|.

The minimum distance dmin(C ) of a code C ⊆ [q]n is the minimum
of dH(u, v) over all distinct u, v ∈ C .

Examples

(i) dmin({1112, 2111, 3134}) = 2,

(ii) dmin({111, 001, 010, 001, 110}) = 1.
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The parameter Aq(n, d)

Definition

Aq(n, d) := max{|C | | C ⊆ [q]n, dmin(C ) ≥ d}.

Examples

Aq(n, 1) = qn.

A2(4, 3) = 2.

Aq(n, n) = |{1 . . . 1, 2 . . . 2, . . . , q . . . q}| = q.

(i) Tables with bounds on Aq(n, d) on the website of Andries Brouwer.

(ii) Interesting parameter in cryptography: a code C ⊆ [q]n

with dmin(C ) = 2e + 1 is e-error correcting.
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The parameter Aq(n, d) – II

Definition

Aq(n, d) := max{|C | | C ⊆ [q]n, dmin(C ) ≥ d}.

Remark

Let G = (V ,E ) be the graph with V = [q]n and

E := {{u, v} | 0 < dH(u, v) < d}.

Then Aq(n, d) = α(G ), the stable set number of G .

111 100

110 011

010101

001000

n = 3, d = 2
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Bounds on Aq(n, d)

Lower bounds via explicit constructions (e.g. linear codes, designs).

Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper
bounds via k-tuples of codewords (k ≥ 2).

k Studied by

2 Delsarte (1973)

3 Schrijver (2005) for q = 2 and Gijswijt, Schrijver and Tanaka
(2006) for q ∈ {3, 4, 5}

4 Gijswijt, Mittelmann and Schrijver (2012) for q = 2
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Delsarte bound

θ∗(q, n, d) := max
{ ∑

u,v∈[q]n

Xu,v | X ∈ R[q]n×[q]n

≥0 with:

(i) trace(X ) = 1,

(ii) Xu,v = 0 if {u, v} ∈ E ,

(iii) X is positive semidefinite
}
.

Proposition. Aq(n, d) ≤ θ∗(q, n, d)

Proof. Let C ⊆ [q]n be a code of minimum distance at least d and
maximum size. Define X by Xu,v = 1/|C | if u, v ∈ C and Xu,v = 0 else.
Then X is feasible. Moreover,∑

u,v∈[q]n

Xu,v = |C |2/|C | = Aq(n, d),

which yields the proposition. �
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Reductions

θ∗(q, n, d) := max
{ ∑

u,v∈[q]n

Xu,v | X ∈ R[q]n×[q]n

≥0 with:

(i) trace(X ) = 1,

(ii) Xu,v = 0 if {u, v} ∈ E ,

(iii) X is positive semidefinite
}
.

Reduction of the optimization problem

Let G be the group of distance preserving permutations of [q]n.

If X = (Xu,v ) is an optimum solution, then also Xπ := (Xπ(u),π(v)) is
optimum for all π ∈ G . Moreover, the feasible region is convex.

(1/|G |)
∑

π∈G Xπ is a G -invariant optimum solution. Hence the SDP
has at most n + 1 variables.
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Let G be the group of distance preserving permutations of [q]n.

If X = (Xu,v ) is an optimum solution, then also Xπ := (Xπ(u),π(v)) is
optimum for all π ∈ G . Moreover, the feasible region is convex.

(1/|G |)
∑

π∈G Xπ is a G -invariant optimum solution. Hence the SDP
has at most n + 1 variables.
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Delsarte bound – II

Notation

Let Ck be the collection of codes C ⊆ [q]n with |C | ≤ k .
Given x : C2 → R≥0, define the C1 × C1-matrix Mx by

(Mx)C ,C ′ = x(C ∪ C ′).

It can be proven that the Delsarte bound equals

Dq(n, d) := max
{ ∑

v∈[q]n

x({v}) | x : C2 → R≥0 with:

(i) x(∅) = 1,

(ii) x(C ) = 0 if dmin(C ) < d ,

(iii) Mx is positive semidefinite
}
.
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The quadruple bound
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Let Ck be the collection of codes C ⊆ [q]n with |C | ≤ k .
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The quadruple bound

Bq(n, d) := max
{ ∑

v∈[q]n

x({v}) | x : C4 → R≥0 with:

(i) x(∅) = 1,

(ii) x(C ) = 0 if dmin(C ) < d ,

(iii) Mx is positive semidefinite
}
.

Proposition. Aq(n, d) ≤ Bq(n, d)

Proof. Let C ⊆ [q]n be a code of minimum distance at least d

and
maximum size. Define x by x(S) = 1 if S ⊆ C and x(S) = 0 else.
Then x is feasible. Moreover,∑

u∈[q]n

x({u}) = |C | = Aq(n, d),

which yields the proposition. �
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Intermezzo: constant weight codes

Suppose that q = 2 and let n, d ,w ∈ N.

Constant weight codes

The weight wt(u) of a codeword u ∈ {0, 1}n is the number of nonzero
entries in u.

Let E := {C ⊆ [q]n | dmin(C ) ≥ d , wt(u) = w ∀ u ∈ C} and

A(n, d ,w) := max{|C | | C ∈ E}.

Then A(n, d ,w) ≤ B(n, d ,w), where

B(n, d ,w) := max
{ ∑

v∈{0,1}n
x({v}) | x : C4 → R≥0 with:

(i) x(∅) = 1,

(ii) x(C ) = 0 if C /∈ E ,
(iii) Mx is positive semidefinite

}
.
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Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes
for k = 3.

(ii) Possible to find new upper bounds for k = 4?

(iii) A(19, 6, 8). Best known lower bound: 408. Schrijver’s upper bound:
718.
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Intermezzo: k = 5 for binary codes

Suppose that q = 2 and let n, d ∈ N.

SDP-bound on A2(n, d) based on quintuples, k = 5

Let 0 := 0 . . . 0 and let C′k be the collection of codes C ⊆ [q]n with
|C | ≤ k and 0 ∈ C . Then A2(n, d) ≤ Q(n, d), where

Q(n, d) := max
{ ∑

v∈[q]n

x({0, v}) | x : C′5 → R≥0 with:

(i) x({0}) = 1,

(ii) x(C ) = 0 if dmin(C ) < d ,

(iii) Mx is positive semidefinite
}
,

where (Mx)C ,C ′ = x(C ∪ C ′) for all x ∈ C′3.
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Intermezzo: k = 5 for binary codes

(i) Österg̊ard (2011): A2(17, 8) = 36.

(ii) Proved by a clique search taking two months.
(iii) Possible to prove via semidefinite programming?
(iv) Around 6000 variables, 70 blocks, max block size 400.
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Reductions

Bq(n, d) := max
{ ∑

v∈[q]n

x({v}) | x : C4 → R≥0 with:

(i) x(∅) = 1,

(ii) x(C ) = 0 if dmin(C ) < d ,

(iii) Mx is positive semidefinite
}
.

Reduction of the optimization problem

Let G = Sn
q o Sn be the group of distance preserving permutations

of [q]n.

If x is an optimum solution, then also xπ given by xπ(C ) := x(π ◦ C )
is optimum for all π ∈ G .

(1/|G |)
∑

π∈G xπ is a G -invariant optimum solution.
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G -orbits of C4

Let Π denote the collection of set partitions of {1, 2, 3, 4} in at most
q parts.

Then Π is in bijection with the orbits of the natural action of Sq on
[q]4 via the map

P 7→ Sq · (a1, a2, a3, a4),

with ai = aj if and only if i and j are in the same class in P.

For example, if we assume that q ≥ 3, then

{{1, 3}, {2}, {4}} 7→ Sq · (0, 1, 0, 2).
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G -orbits of C4 – II

Let Ω be the set of G -orbits of C4.

The map ([q]n)4 → C4, (v1, v2, v3, v4) 7→ {v1, v2, v3, v4} gives a
surjection

{degree n monomials in |Π| variables}� Ω \ {{∅}}.

For example, writing {{1, 2}, {3}, {4}} as 12, 3, 4, letting n = 4 and
q ≥ 3 then

x1234x
2
123,4x12,3,4 7→ G · {0000, 0000, 0001, 0112}

= G · {0000, 0001, 0112}.

=⇒ |Ω| bounded by a polynomial in n.
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Reductions

Replace variable x(C ) in the matrix Mx , with C ∈ C4, by y(w), with
w ∈ Ω the orbit containing C .

Get a matrix My that is invariant under the action of G on rows and
columns.

=⇒ My ∈ EndG (RC2).

Using representation theory of the isometry group, one can construct a
matrix U, independent of y , such that

Theorem (Maschke’s theorem + Schur’s lemma)

EndG (RC2)
∼−→
⊕

i Rmi×mi (as linear spaces), via A 7→ UtAU.
Moreover, A is positive semidefinite if and only if each of the blocks of
UtAU is.
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The blocks

Blocks parametrized by quadruples of Young shapes of certain bound
heights.

Given a block (a quadruple of Young shapes), the size is determined
by the number of semistandard Young tableaux, i.e., fillings of the
shapes.

The coefficients can be computed in time polynomial in n.
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Results [L., P. and Schrijver, 2016]

Table: New upper bounds on Aq(n, d)

q n d Best lower
bound known

New upper
bound

Best upper bound
previously known

4 6 3 164 176 179
4 7 3 512 596 614
4 7 4 128 155 169
5 7 4 250 489 545
5 7 5 53 87 108
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Mixed binary/ternary codes

Fix n2, n3, d ∈ Z≥0.

A mixed binary/ternary code is a subset of [2]n2 [3]n3 .

The Hamming distance, minimum distance and weight are defined in
a similar fashion.

Definition

N(n2, n3, d) := max{|C | | C ⊆ [2]n2 [3]n3 , dmin(C ) ≥ d}.
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Motivation: football pools

Source: http://www.uefa.com/uefaeuro/draws/
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Motivation: the (extended) football pool problem

Fix 0 ≤ e ≤ n2 + n3. Suppose n3 games are played with possible outcome
win/draw/loss and n2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the
outcome, there is at least one form with e good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there
are no two or more forms with more than e good answers?

=⇒ amounts to determining N(n2, n3, d) with d = 2e + 1.
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Bounds on N(n2, n3, d)

Lower bounds: all but one best known lower bounds found on a
Spanish forum about football pools.

Upper bounds: Delsarte linear programming bound cannot be applied
directly anymore.

Problem: set of mixed binary/ternary words in general does not form an
association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.

=⇒ Linear programming bound with ≤ (n2+n3+1)(n2+n3+2)
2 constraints

(Brouwer, Hämäläinen, Österg̊ard and Sloane, 1998).
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Semidefinite programming upper bound

SDP-bound on N(n2, n3, d) based on triples, k = 3

Let 0 := 0 . . . 0 and let C′3 be the collection of codes C ⊆ [2]n2 [3]n3 with
|C | ≤ 3 and 0 ∈ C . Then N(n2, n3, d) ≤ N3(n2, n3, d), where

N3(n2, n3, d) := max
{ ∑
v∈[2]n2 [3]n3

x({0, v}) | x : C′3 → R≥0 with:

(i) x({0}) = 1,

(ii) x(C ) = 0 if dmin(C ) < d ,

(iii) Mx is positive semidefinite
}
,

where (Mx)C ,C ′ = x(C ∪ C ′) for all C ,C ′ ∈ C′2.
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Reductions and results

Symmetry reduction using the group (Sn2
2 o Sn2)× (Sn3

3 o Sn3).

Blocks and coefficients of the constraint matrices can be expressed in
terms of the blocks and coefficients for the corresponding programs
with n2 = 0 and n3 = 0 respectively.

Results (L., 2016)

In total 135 improved upper bounds were found: 131 from the SDP with
k = 3, one new bound from the SDP with k = 4 and three implicit
improvements.
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A selection of the results

Table: A part of the table with best known bounds on N(n2, n3, 4). The improved
bounds are boldface.

n2\n3 2 3 4 5 6

2 2 3 8 22 51-61
3 3 6 15 36-43 92-117
4 6 11 28-30 62-83 158-228
5 8 20 50-59 114-160 288-436
6 16 34-40 96-114 216-308 576-825
7 36-30 64-80 192-220 408-585 1152-1576
8 50-59 128-153 384-407 768-1103 2304-3027
9 96-108 256-288 548-771 1536-2105
10 192-212 420-548 1050-1480
11 384 784-1032
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