New upper bounds for nonbinary codes based on quadruples Bart Litjens and Sven Polak

Based on joint work with Lex Schrijver

Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

June 30th, 2016

Outline of the talk

• Introduction: definitions and notation

< A

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (1)

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (1)
- Intermezzo: large SDPs for binary codes and constant weight codes

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (1)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (*I*)

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (1)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (*I*)
- Results

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (1)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (*I*)
- Results
- Mixed binary/ternary codes

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (1)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (*I*)
- Results
- Mixed binary/ternary codes
- Results

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q] := \{0, \ldots, q-1\}$.

- 4 🗗 ト

• A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u, v) := |\{i : u_i \neq v_i\}|.$$

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u,v) := |\{i : u_i \neq v_i\}|.$$

The minimum distance d_{min}(C) of a code C ⊆ [q]ⁿ is the minimum of d_H(u, v) over all distinct u, v ∈ C.

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u,v):=|\{i : u_i\neq v_i\}|.$$

The minimum distance d_{min}(C) of a code C ⊆ [q]ⁿ is the minimum of d_H(u, v) over all distinct u, v ∈ C.

Examples

(i) $d_{\min}(\{1112, 2111, 3134\}) = 2$,

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u,v):=|\{i : u_i\neq v_i\}|.$$

The minimum distance d_{min}(C) of a code C ⊆ [q]ⁿ is the minimum of d_H(u, v) over all distinct u, v ∈ C.

Examples

(i) $d_{\min}(\{1112, 2111, 3134\}) = 2$,

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u,v):=|\{i : u_i\neq v_i\}|.$$

The minimum distance d_{min}(C) of a code C ⊆ [q]ⁿ is the minimum of d_H(u, v) over all distinct u, v ∈ C.

Examples

```
(i) d_{\min}(\{1112, 2111, 3134\}) = 2,
(ii) d_{\min}(\{111, 001, 010, 001, 110\}) = 1.
```

- A word is an element of $[q]^n$ and a code is a subset of $[q]^n$.
- The Hamming distance between two words $u, v \in [q]^n$ is

$$d_H(u,v):=|\{i : u_i\neq v_i\}|.$$

The minimum distance d_{min}(C) of a code C ⊆ [q]ⁿ is the minimum of d_H(u, v) over all distinct u, v ∈ C.

Examples

```
(i) d_{\min}(\{1112, 2111, 3134\}) = 2,
(ii) d_{\min}(\{111, 001, 010, 001, 110\}) = 1.
```

Definition

$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$

3

ヨト・イヨト

Image: Image:

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Examples

•
$$A_q(n,1) = q^n$$
.

▲ □ ▶ ▲ □ ▶ ▲

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Examples

•
$$A_q(n,1) = q^n$$
.

•
$$A_2(4,3) = 2.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Examples

•
$$A_q(n,1) = q^n$$
.

•
$$A_2(4,3) = 2.$$

•
$$A_q(n,n) = |\{1...1,2...2,...,q...q\}| = q.$$

・ 伊 ト ・ ヨ ト ・ ヨ ト

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Examples

- $A_q(n,1) = q^n$.
- $A_2(4,3) = 2.$
- $A_q(n,n) = |\{1...1,2...2,...,q...q\}| = q.$

(i) Tables with bounds on $A_q(n, d)$ on the website of Andries Brouwer.

・ 伊 ト ・ ヨ ト ・ ヨ ト

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Examples

- $A_q(n,1) = q^n$.
- $A_2(4,3) = 2.$
- $A_q(n,n) = |\{1...1,2...2,...,q...q\}| = q.$

(i) Tables with bounds on A_q(n, d) on the website of Andries Brouwer.
(ii) Interesting parameter in cryptography: a code C ⊆ [q]ⁿ with d_{min}(C) = 2e + 1 is e-error correcting.

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

э

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Remark

Let G = (V, E) be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

3

イロト 不得下 イヨト イヨト

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Remark

Let G = (V, E) be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Remark

Let G = (V, E) be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Bart Litjens and Sven Polak

5th SDP-day, June 30th, 2016

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Remark

Let G = (V, E) be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Remark

Let G = (V, E) be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Definition

$$A_q(n,d) := \max\{|C| \mid C \subseteq [q]^n, \ d_{\min}(C) \ge d\}.$$

Remark

Let G = (V, E) be the graph with $V = [q]^n$ and

$$E := \{\{u, v\} \mid 0 < d_H(u, v) < d\}.$$

Then $A_q(n, d) = \alpha(G)$, the stable set number of G.

Bart Litjens and Sven Polak

5th SDP-day, June 30th, 2016

• Lower bounds via explicit constructions (e.g. linear codes, designs).

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper bounds via k-tuples of codewords ($k \ge 2$).

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper bounds via k-tuples of codewords ($k \ge 2$).

- k Studied by
- 2 Delsarte (1973)
- 3 Schrijver (2005) for q = 2 and Gijswijt, Schrijver and Tanaka (2006) for $q \in \{3, 4, 5\}$
- 4 Gijswijt, Mittelmann and Schrijver (2012) for q = 2

Delsarte bound

$$\begin{split} \theta^*(q,n,d) &:= \max\big\{\sum_{u,v\in [q]^n} X_{u,v} \mid X \in \mathbb{R}^{[q]^n \times [q]^n}_{\geq 0} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \quad X \text{ is positive semidefinite}\big\}. \end{split}$$

▶ < ∃ ▶</p>

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

E

$$\begin{split} \theta^*(q,n,d) &:= \max\big\{\sum_{u,v\in [q]^n} X_{u,v} \ | \ X \in \mathbb{R}^{[q]^n \times [q]^n}_{\geq 0} \text{ with:} \\ (i) \ \ \text{trace}(X) = 1, \\ (ii) \ \ X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \ X \text{ is positive semidefinite}\big\}. \end{split}$$

Proposition. $A_q(n, d) \leq \theta^*(q, n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size.
$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \ | \ X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \ X \text{ is positive semidefinite} \big\}. \end{split}$$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define X by $X_{u,v} = 1/|C|$ if $u, v \in C$ and $X_{u,v} = 0$ else.

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \ | \ X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \ X \text{ is positive semidefinite} \big\}. \end{split}$$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define X by $X_{u,v} = 1/|C|$ if $u, v \in C$ and $X_{u,v} = 0$ else. Then X is feasible.

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \ | \ X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \ X \text{ is positive semidefinite} \big\}. \end{split}$$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define X by $X_{u,v} = 1/|C|$ if $u, v \in C$ and $X_{u,v} = 0$ else. Then X is feasible. Moreover,

$$\sum_{u,v\in [q]^n} X_{u,v} = |C|^2/|C| = A_q(n,d),$$

which yields the proposition.

Bart Litjens and Sven Polak

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \quad X \text{ is positive semidefinite} \big\}. \end{split}$$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define X by $X_{u,v} = 1/|C|$ if $u, v \in C$ and $X_{u,v} = 0$ else. Then X is feasible. Moreover,

$$\sum_{u,v\in[q]^n} X_{u,v} = |C|^2/|C| = A_q(n,d),$$

which yields the proposition.

Bart Litjens and Sven Polak

Bart Litjens and Sven Polak

(日) (四) (日) (日) (日)

Ξ

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \quad X \text{ is positive semidefinite} \big\}. \end{split}$$

(日) (四) (日) (日) (日)

Ξ

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \quad X \text{ is positive semidefinite} \big\}. \end{split}$$

Reduction of the optimization problem

• Let G be the group of distance preserving permutations of $[q]^n$.

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \quad X \text{ is positive semidefinite} \big\}. \end{split}$$

Reduction of the optimization problem

• Let G be the group of distance preserving permutations of $[q]^n$.

• If $X = (X_{u,v})$ is an optimum solution, then also $X^{\pi} := (X_{\pi(u),\pi(v)})$ is optimum for all $\pi \in G$. Moreover, the feasible region is *convex*.

$$\begin{split} \theta^*(q,n,d) &:= \max \big\{ \sum_{u,v \in [q]^n} X_{u,v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^n \times [q]^n} \text{ with:} \\ (i) \quad \text{trace}(X) = 1, \\ (ii) \quad X_{u,v} = 0 \text{ if } \{u,v\} \in E, \\ (iii) \quad X \text{ is positive semidefinite} \big\}. \end{split}$$

Reduction of the optimization problem

• Let G be the group of distance preserving permutations of $[q]^n$.

- If $X = (X_{u,v})$ is an optimum solution, then also $X^{\pi} := (X_{\pi(u),\pi(v)})$ is optimum for all $\pi \in G$. Moreover, the feasible region is *convex*.
- $(1/|G|) \sum_{\pi \in G} X^{\pi}$ is a *G*-invariant optimum solution. Hence the SDP has at most n + 1 variables.

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_2 \to \mathbb{R}_{\geq 0}$, define the $C_1 \times C_1$ -matrix M_x by

$$(M_x)_{C,C'}=x(C\cup C').$$

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_2 \to \mathbb{R}_{\geq 0}$, define the $C_1 \times C_1$ -matrix M_x by

$$(M_x)_{C,C'}=x(C\cup C').$$

It can be proven that the Delsarte bound equals

$$\begin{split} D_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_2 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) &= 1, \\ (ii) \quad x(\mathcal{C}) &= 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_4 \to \mathbb{R}_{\geq 0}$, define the $C_2 \times C_2$ -matrix M_x by

$$(M_x)_{C,C'}=x(C\cup C').$$

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_4 \to \mathbb{R}_{\geq 0}$, define the $C_2 \times C_2$ -matrix M_x by

$$(M_x)_{C,C'}=x(C\cup C').$$

Now we define

Notation

Let C_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$. Given $x : C_4 \to \mathbb{R}_{\geq 0}$, define the $C_2 \times C_2$ -matrix M_x by

$$(M_x)_{C,C'}=x(C\cup C').$$

Now we define

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(\mathcal{C}) = 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) &= 1, \\ (ii) \quad x(\mathcal{C}) &= 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Proposition. $A_q(n, d) \leq B_q(n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) &= 1, \\ (ii) \quad x(C) &= 0 \text{ if } d_{\min}(C) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Proposition. $A_q(n, d) \leq B_q(n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size.

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(\mathcal{C}) = 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Proposition. $A_q(n, d) \leq B_q(n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define x by x(S) = 1 if $S \subseteq C$ and x(S) = 0 else.

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(\mathcal{C}) = 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Proposition. $A_q(n, d) \leq B_q(n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define x by x(S) = 1 if $S \subseteq C$ and x(S) = 0 else. Then x is feasible.

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(\mathcal{C}) = 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Proposition. $A_q(n, d) \leq B_q(n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define x by x(S) = 1 if $S \subseteq C$ and x(S) = 0 else. Then x is feasible. Moreover,

$$\sum_{u \in [q]^n} x(\{u\}) = |C| = A_q(n, d),$$

which yields the proposition.

Bart Litjens and Sven Polak

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(\mathcal{C}) = 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Proposition. $A_q(n, d) \leq B_q(n, d)$

Proof. Let $C \subseteq [q]^n$ be a code of minimum distance at least d and maximum size. Define x by x(S) = 1 if $S \subseteq C$ and x(S) = 0 else. Then x is feasible. Moreover,

$$\sum_{u \in [q]^n} x(\{u\}) = |C| = A_q(n, d),$$

which yields the proposition.

Bart Litjens and Sven Polak

Suppose that q = 2 and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight wt(u) of a codeword $u \in \{0,1\}^n$ is the number of nonzero entries in u.

э

Suppose that q = 2 and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight wt(u) of a codeword $u \in \{0,1\}^n$ is the number of nonzero entries in u. Let $\mathcal{E} := \{C \subseteq [q]^n \mid d_{\min}(C) \ge d, wt(u) = w \ \forall u \in C\}$

Suppose that q = 2 and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight wt(u) of a codeword $u \in \{0,1\}^n$ is the number of nonzero entries in u. Let $\mathcal{E} := \{C \subseteq [q]^n \mid d_{\min}(C) \ge d, wt(u) = w \ \forall u \in C\}$ and

 $A(n, d, w) := \max\{|C| \mid C \in \mathcal{E}\}.$

Suppose that q = 2 and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight wt(u) of a codeword $u \in \{0,1\}^n$ is the number of nonzero entries in u. Let $\mathcal{E} := \{C \subseteq [q]^n \mid d_{\min}(C) \ge d, wt(u) = w \ \forall u \in C\}$ and

$$A(n, d, w) := \max\{|C| \mid C \in \mathcal{E}\}.$$

Then $A(n, d, w) \leq B(n, d, w)$, where

$$\begin{split} \mathcal{B}(n,d,w) &:= \max \big\{ \sum_{v \in \{0,1\}^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(\mathcal{C}) = 0 \text{ if } \mathcal{C} \notin \mathcal{E}, \\ (iii) \quad \mathcal{M}_x \text{ is positive semidefinite} \big\}. \end{split}$$

< D > < A >

(i) Schrijver (2005) found upper bounds on constant weight codes for k = 3.

- (i) Schrijver (2005) found upper bounds on constant weight codes for k = 3.
- (ii) Possible to find new upper bounds for k = 4?

- (i) Schrijver (2005) found upper bounds on constant weight codes for k = 3.
- (ii) Possible to find new upper bounds for k = 4?
- (iii) *A*(19, 6, 8). Best known lower bound: 408. Schrijver's upper bound: 718.

- (i) Schrijver (2005) found upper bounds on constant weight codes for k = 3.
- (ii) Possible to find new upper bounds for k = 4?
- (iii) *A*(19, 6, 8). Best known lower bound: 408. Schrijver's upper bound: 718.

phase.value = pdFEAS						
Iteration = 111						
mu = 1.0595571803025323e-06						
relative gap = 3.3729668079904213e-03						
nan = 1.2966860772542390e-02						
digits = 2.4719879325070719e+00						
objValPrimal = -6.89000228713742179733350691711352e+02						
objValDual = -6.86680166557914958473403040732179e+02						
h.1692.61101 = A.04024010141002106-00						
d.feas.error = 7.0071861627726210e-08						
relative eps = 4.9303806576313200e-32						
total time = 1440171.900						
ma <u>in loop time = 1439609.910000</u>						
total time = 1440171.900000						
file read time = 550.020000						
sven@Sven-PC:~/Documents/codesJuni\$						

Suppose that q = 2 and let $n, d \in \mathbb{N}$.

SDP-bound on $A_2(n, d)$ based on quintuples, k = 5

Let $\mathbf{0} := 0 \dots 0$ and let C'_k be the collection of codes $C \subseteq [q]^n$ with $|C| \leq k$ and $\mathbf{0} \in C$. Then $A_2(n, d) \leq Q(n, d)$, where

$$\begin{aligned} Q(n,d) &:= \max \left\{ \sum_{v \in [q]^n} x(\{\mathbf{0}, v\}) \mid x : \mathcal{C}'_{\mathbf{5}} \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\{\mathbf{0}\}) &= 1, \\ (ii) \quad x(\mathcal{C}) &= 0 \text{ if } d_{\min}(\mathcal{C}) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \right\}, \end{aligned}$$

where
$$(M_x)_{C,C'} = x(C \cup C')$$
 for all $x \in C'_3$.

(i) Östergård (2011): $A_2(17, 8) = 36$.

(i) Östergård (2011): $A_2(17, 8) = 36$.

(ii) Proved by a clique search taking two months.

- (i) Östergård (2011): $A_2(17, 8) = 36$.
- (ii) Proved by a clique search taking two months.
- (iii) Possible to prove via semidefinite programming?

- (i) Östergård (2011): $A_2(17, 8) = 36$.
- (ii) Proved by a clique search taking two months.
- (iii) Possible to prove via semidefinite programming?
- (iv) Around 6000 variables, 70 blocks, max block size 400.

- (i) Östergård (2011): $A_2(17, 8) = 36$.
- (ii) Proved by a clique search taking two months.
- (iii) Possible to prove via semidefinite programming?
- (iv) Around 6000 variables, 70 blocks, max block size 400.

sven@Sven-PC:~/Documents/codesJuniS sdpa dd 017 8.dat-s DDversie017 8.resul									
SD	PA-DD st	art at	Sat Ju	n 18 17:16	:27 2016				
data is Q17_8.dat-s : sparse									
parameter is ./param.sdpa									
out is DDversie017_8.result									
DENSE computations									
	mu	thetaP	thetaD	objP	objD	alphaP	alphaD	beta	
0	1.0e+10	1.0e+00	1.0e+00	-0.00e+00	-1.00e+05	2.6e-01	2.1e-01	4.00e-01	
1	8.7e+09	7.4e-01	7.9e-01	-8.30e+04	-1.47e+05	1.4e-01	1.9e-01	4.00e-01	
2	8.6e+09	6.4e-01	6.4e-01	-1.60e+05	-3.58e+05	1.6e-01	1.9e-01	4.00e-01	
3	8.4e+09	5.4e-01	5.2e-01	-1.87e+05	-1.13e+06	1.7e-01	2.4e-01	4.00e-01	
4	8.2e+09	4.5e-01	3.9e-01	-1.80e+05	-2.78e+06	2.0e-01	2.2e-01	4.00e-01	
5	7.7e+09	3.6e-01	3.1e-01	-1.62e+05	-4.84e+06	2.2e-01	2.2e-01	4.00e-01	
6	7.1e+09	2.8e-01	2.4e-01	-1.45e+05	-7.73e+06	2.2e-01	2.5e-01	4.00e-01	
7	6.7e+09	2.2e-01	1.8e-01	-1.34e+05	-1.24e+07	2.4e-01	2.5e-01	4.00e-01	
8	6.1e+09	1.7e-01	1.4e-01	-1.22e+05	-1.90e+07	2.5e-01	2.5e-01	4.00e-01	
9	5.5e+09	1.2e-01	1.0e-01	-1.09e+05	-2.82e+07	2.6e-01	2.6e-01	4.00e-01	
10	4.9e+09	9.2e-02	7.5e-02	-9.53e+04	-4.12e+07	2.7e-01	2.6e-01	4.00e-01	
36	4.4e+07	4.0e-07	1.3e-28	-3.51e+01	-3.59e+10	4.3e-01	6.3e-01	4.00e-01	
37	3.7e+07	2.3e-07	1.8e-28	-3.44e+01	-3.50e+10	4.4e-01	7.0e-01	4.00e-01	
38	3.1e+07	1.3e-07	5.1e-28	-3.39e+01	-3.38e+10	4.5e-01	8.2e-01	4.00e-01	
39	2.7e+07	7.0e-08	1.5e-27	-3.36e+01	-3.26e+10	4.7e-01	7.5e-01	4.00e-01	
40	2.2e+07	3.7e-08	1.0e-26	-3.34e+01	-3.20e+10	4.9e-01	7.9e-01	4.00e-01	
41	1.8e+07	1.9e-08	8.7e-27	-3.33e+01	-3.00e+10	5.0e-01	9.9e-01	4.00e-01	
42	1.5e+07	9.5e-09	6.2e-26	-3.31e+01	-2.64e+10	5.0e-01	1.0e+00	4.00e-01	
43	1.3e+07	4.8e-09	2.0e-25	-3.30e+01	-2.43e+10	5.0e-01	1.0e+00	4.00e-01	
44	1.0e+07	2.4e-09	2.6e-25	-3.30e+01	-2.21e+10	5.0e-01	1.0e+00	4.00e-01	
45	8.7e+06	1.2e-09	2.1e-24	-3.29e+01	-1.98e+10	5.0e-01	1.0e+00	4.00e-01	

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) = 1, \\ (ii) \quad x(C) = 0 \text{ if } d_{\min}(C) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

(日) (四) (日) (日) (日)

E

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) &= 1, \\ (ii) \quad x(C) &= 0 \text{ if } d_{\min}(C) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Reduction of the optimization problem

Let G = Sⁿ_q ⋊ S_n be the group of distance preserving permutations of [q]ⁿ.

э
$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) &= 1, \\ (ii) \quad x(C) &= 0 \text{ if } d_{\min}(C) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Reduction of the optimization problem

• Let $G = S_q^n \rtimes S_n$ be the group of distance preserving permutations of $[q]^n$.

If x is an optimum solution, then also x^π given by x^π(C) := x(π ∘ C) is optimum for all π ∈ G.

э

$$\begin{split} B_q(n,d) &:= \max \big\{ \sum_{v \in [q]^n} x(\{v\}) \mid x : \mathcal{C}_4 \to \mathbb{R}_{\geq 0} \text{ with:} \\ (i) \quad x(\emptyset) &= 1, \\ (ii) \quad x(C) &= 0 \text{ if } d_{\min}(C) < d, \\ (iii) \quad M_x \text{ is positive semidefinite} \big\}. \end{split}$$

Reduction of the optimization problem

• Let $G = S_q^n \rtimes S_n$ be the group of distance preserving permutations of $[q]^n$.

- If x is an optimum solution, then also x^π given by x^π(C) := x(π ∘ C) is optimum for all π ∈ G.
- $(1/|G|) \sum_{\pi \in G} x^{\pi}$ is a *G*-invariant optimum solution.

3

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Let Π denote the collection of set partitions of {1, 2, 3, 4} in at most *q* parts.

- Let Π denote the collection of set partitions of {1, 2, 3, 4} in at most *q* parts.
- Then Π is in bijection with the orbits of the natural action of S_q on $[q]^4$ via the map

$$P\mapsto S_q\cdot(a_1,a_2,a_3,a_4),$$

with $a_i = a_j$ if and only if *i* and *j* are in the same class in *P*.

- Let Π denote the collection of set partitions of {1, 2, 3, 4} in at most q parts.
- Then Π is in bijection with the orbits of the natural action of S_q on $[q]^4$ via the map

$$P\mapsto S_q\cdot(a_1,a_2,a_3,a_4),$$

with $a_i = a_j$ if and only if *i* and *j* are in the same class in *P*.

• For example, if we assume that $q \ge 3$, then

$$\{\{1,3\},\{2\},\{4\}\}\mapsto S_q\cdot(0,1,0,2).$$

• Let Ω be the set of *G*-orbits of C_4 .

э

- Let Ω be the set of *G*-orbits of C_4 .
- The map $([q]^n)^4 o \mathcal{C}_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$

- Let Ω be the set of *G*-orbits of C_4 .
- The map $([q]^n)^4 \to C_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection

{degree *n* monomials in $|\Pi|$ variables} $\rightarrow \Omega \setminus \{\{\emptyset\}\}$.

- Let Ω be the set of *G*-orbits of C_4 .
- The map $([q]^n)^4 \to C_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection

{degree *n* monomials in $|\Pi|$ variables} $\rightarrow \Omega \setminus \{\{\emptyset\}\}$.

• For example, writing $\{\{1,2\},\{3\},\{4\}\}$ as 12,3,4, letting n=4 and $q\geq 3$ then

 $\begin{aligned} x_{1234} x_{123,4}^2 x_{12,3,4} &\mapsto G \cdot \{0000, 0000, 0001, 0112\} \\ &= G \cdot \{0000, 0001, 0112\}. \end{aligned}$

- Let Ω be the set of *G*-orbits of C_4 .
- The map $([q]^n)^4 \to C_4$, $(v_1, v_2, v_3, v_4) \mapsto \{v_1, v_2, v_3, v_4\}$ gives a surjection

{degree *n* monomials in $|\Pi|$ variables} $\rightarrow \Omega \setminus \{\{\emptyset\}\}$.

• For example, writing $\{\{1,2\},\{3\},\{4\}\}$ as 12,3,4, letting n=4 and $q\geq 3$ then

 $\begin{aligned} x_{1234} x_{123,4}^2 x_{12,3,4} &\mapsto G \cdot \{0000, 0000, 0001, 0112\} \\ &= G \cdot \{0000, 0001, 0112\}. \end{aligned}$

 $\implies |\Omega|$ bounded by a polynomial in *n*.

• Replace variable x(C) in the matrix M_x , with $C \in C_4$, by y(w), with $w \in \Omega$ the orbit containing C.

- Replace variable x(C) in the matrix M_x , with $C \in C_4$, by y(w), with $w \in \Omega$ the orbit containing C.
- Get a matrix M_y that is invariant under the action of G on rows and columns.

- Replace variable x(C) in the matrix M_x , with $C \in C_4$, by y(w), with $w \in \Omega$ the orbit containing C.
- Get a matrix M_y that is invariant under the action of G on rows and columns.

 $\implies M_y \in \operatorname{End}_{G}(\mathbb{R}^{\mathcal{C}_2}).$

- Replace variable x(C) in the matrix M_x , with $C \in C_4$, by y(w), with $w \in \Omega$ the orbit containing C.
- Get a matrix M_y that is invariant under the action of G on rows and columns.

 $\implies M_y \in \operatorname{End}_{G}(\mathbb{R}^{\mathcal{C}_2}).$

Using representation theory of the isometry group, one can construct a matrix U, independent of y, such that

- Replace variable x(C) in the matrix M_x , with $C \in C_4$, by y(w), with $w \in \Omega$ the orbit containing C.
- Get a matrix M_y that is invariant under the action of G on rows and columns.

 $\implies M_y \in \operatorname{End}_{G}(\mathbb{R}^{\mathcal{C}_2}).$

Using representation theory of the isometry group, one can construct a matrix U, independent of y, such that

Theorem (Maschke's theorem + Schur's lemma)

 $End_{G}(\mathbb{R}^{C_{2}}) \xrightarrow{\sim} \bigoplus_{i} \mathbb{R}^{m_{i} \times m_{i}}$ (as linear spaces), via $A \mapsto U^{t}AU$. Moreover, A is positive semidefinite if and only if each of the blocks of $U^{t}AU$ is. • Blocks parametrized by quadruples of Young shapes of certain bound heights.

- Blocks parametrized by quadruples of Young shapes of certain bound heights.
- Given a block (a quadruple of Young shapes), the size is determined by the number of semistandard Young tableaux, i.e., *fillings* of the shapes.

- Blocks parametrized by quadruples of Young shapes of certain bound heights.
- Given a block (a quadruple of Young shapes), the size is determined by the number of semistandard Young tableaux, i.e., *fillings* of the shapes.
- The coefficients can be computed in time polynomial in *n*.

Table: New upper bounds on $A_q(n, d)$

q	п	d	Best lower bound known	New upper bound	Best upper bound previously known
4	6	3	164	176	179
4	7	3	512	596	614
4	7	4	128	155	169
5	7	4	250	489	545
5	7	5	53	87	108

- 4 🗇 🕨

Fix $n_2, n_3, d \in \mathbb{Z}_{\geq 0}$.

• A mixed binary/ternary code is a subset of $[2]^{n_2}[3]^{n_3}$.

Fix $n_2, n_3, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_2}[3]^{n_3}$.
- The Hamming distance, minimum distance and weight are defined in a similar fashion.

Fix $n_2, n_3, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_2}[3]^{n_3}$.
- The Hamming distance, minimum distance and weight are defined in a similar fashion.

Definition

 $N(n_2, n_3, d) := \max\{|C| \mid C \subseteq [2]^{n_2}[3]^{n_3}, d_{\min}(C) \ge d\}.$

Motivation: football pools

Source: http://www.uefa.com/uefaeuro/draws/

Bart Litjens and Sven Polak

5th SDP-day, June 30th, 2016

3

イロト 不得下 イヨト イヨト

Fix $0 \le e \le n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Fix $0 \le e \le n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with *e* good answers?

Fix $0 \le e \le n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with *e* good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there are no two or more forms with more than *e* good answers?

Fix $0 \le e \le n_2 + n_3$. Suppose n_3 games are played with possible outcome win/draw/loss and n_2 games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with *e* good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there are no two or more forms with more than *e* good answers?

 \implies amounts to determining $N(n_2, n_3, d)$ with d = 2e + 1.

• Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an *association scheme* with respect to the Hamming distance.

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an *association scheme* with respect to the Hamming distance.

Solution: it has a *product scheme* structure.

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an *association scheme* with respect to the Hamming distance.

Solution: it has a *product scheme* structure.

 \implies Linear programming bound with $\leq \frac{(n_2+n_3+1)(n_2+n_3+2)}{2}$ constraints (Brouwer, Hämäläinen, Östergård and Sloane, 1998).

SDP-bound on $N(n_2, n_3, d)$ based on triples, k = 3

Let $\mathbf{0} := 0 \dots 0$ and let C'_3 be the collection of codes $C \subseteq [2]^{n_2}[3]^{n_3}$ with $|C| \leq 3$ and $\mathbf{0} \in C$. Then $N(n_2, n_3, d) \leq N_3(n_2, n_3, d)$, where

$$\begin{split} N_{3}(n_{2}, n_{3}, d) &:= \max \left\{ \sum_{v \in [2]^{n_{2}}[3]^{n_{3}}} x(\{\mathbf{0}, v\}) \mid x : \mathcal{C}'_{3} \to \mathbb{R}_{\geq 0} \text{ with:} \\ & (i) \quad x(\{\mathbf{0}\}) = 1, \\ & (ii) \quad x(C) = 0 \text{ if } d_{\min}(C) < d, \\ & (iii) \quad M_{x} \text{ is positive semidefinite} \right\}, \end{split}$$

where
$$(M_x)_{C,C'} = x(C \cup C')$$
 for all $C, C' \in \mathcal{C}'_2$.

• Symmetry reduction using the group $(S_2^{n_2} \rtimes S_{n_2}) \times (S_3^{n_3} \rtimes S_{n_3})$.

- Symmetry reduction using the group $(S_2^{n_2} \rtimes S_{n_2}) \times (S_3^{n_3} \rtimes S_{n_3})$.
- Blocks and coefficients of the constraint matrices can be expressed in terms of the blocks and coefficients for the corresponding programs with $n_2 = 0$ and $n_3 = 0$ respectively.

• Symmetry reduction using the group $(S_2^{n_2} \rtimes S_{n_2}) \times (S_3^{n_3} \rtimes S_{n_3})$.

• Blocks and coefficients of the constraint matrices can be expressed in terms of the blocks and coefficients for the corresponding programs with $n_2 = 0$ and $n_3 = 0$ respectively.

Results (L., 2016)

In total 135 improved upper bounds were found: 131 from the SDP with k = 3, one new bound from the SDP with k = 4 and three implicit improvements.
A selection of the results

Т

Table: A part of the table with best known bounds on $N(n_2, n_3, 4)$. The improved bounds are boldface.

$n_2 \setminus n_3$	2	3	4	5	6
2	2	3	8	22	51- 61
3	3	6	15	36- 43	92- 117
4	6	11	28-30	62- 83	158- 228
5	8	20	50- 59	114- 160	288- 436
6	16	34-40	96- 114	216- 308	576- 825
7	36-30	64-80	192- 220	408- 585	1152- 1576
8	50- 59	128- 153	384- 407	768- 1103	2304- 3027
9	96- 108	256- 288	548- 771	1536- 2105	
10	192- 212	420- 548	1050- 1480		
11	384	784- 1032			