New upper bounds for nonbinary codes based on quadruples

Bart Litjens and Sven Polak

Based on joint work with Lex Schrijver

Korteweg-de Vries Institute for Mathematics
Faculty of Science
University of Amsterdam

June 30th, 2016

Outline of the talk

- Introduction: definitions and notation

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
- Results

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
- Results
- Mixed binary/ternary codes

Outline of the talk

- Introduction: definitions and notation
- Delsarte bound
- SDP-bound based on quadruples of code words (I)
- Intermezzo: large SDPs for binary codes and constant weight codes
- Reduction of (I)
- Results
- Mixed binary/ternary codes
- Results

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.
- The Hamming distance between two words $u, v \in[q]^{n}$ is

$$
d_{H}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right| .
$$

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.
- The Hamming distance between two words $u, v \in[q]^{n}$ is

$$
d_{H}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|
$$

- The minimum distance $d_{\text {min }}(C)$ of a code $C \subseteq[q]^{n}$ is the minimum of $d_{H}(u, v)$ over all distinct $u, v \in C$.

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.
- The Hamming distance between two words $u, v \in[q]^{n}$ is

$$
d_{H}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right| .
$$

- The minimum distance $d_{\text {min }}(C)$ of a code $C \subseteq[q]^{n}$ is the minimum of $d_{H}(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text {min }}(\{1112,2111,3134\})=2$,

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.
- The Hamming distance between two words $u, v \in[q]^{n}$ is

$$
d_{H}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right| .
$$

- The minimum distance $d_{\text {min }}(C)$ of a code $C \subseteq[q]^{n}$ is the minimum of $d_{H}(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text {min }}(\{1112,2111,3134\})=2$,

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.
- The Hamming distance between two words $u, v \in[q]^{n}$ is

$$
d_{H}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right| .
$$

- The minimum distance $d_{\text {min }}(C)$ of a code $C \subseteq[q]^{n}$ is the minimum of $d_{H}(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text {min }}(\{1112,2111,3134\})=2$,
(ii) $d_{\text {min }}(\{111,001,010,001,110\})=1$.

Definitions and notation

Fix $q, n, d \in \mathbb{N}$ with $q \geq 2$. Define $[q]:=\{0, \ldots, q-1\}$.

- A word is an element of $[q]^{n}$ and a code is a subset of $[q]^{n}$.
- The Hamming distance between two words $u, v \in[q]^{n}$ is

$$
d_{H}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right| .
$$

- The minimum distance $d_{\text {min }}(C)$ of a code $C \subseteq[q]^{n}$ is the minimum of $d_{H}(u, v)$ over all distinct $u, v \in C$.

Examples

(i) $d_{\text {min }}(\{1112,2111,3134\})=2$,
(ii) $d_{\text {min }}(\{111,001,010,001,110\})=1$.

The parameter $A_{q}(n, d)$

Definition
 $A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\}$.

The parameter $A_{q}(n, d)$

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Examples

- $A_{q}(n, 1)=q^{n}$.

The parameter $A_{q}(n, d)$

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Examples

- $A_{q}(n, 1)=q^{n}$.
- $A_{2}(4,3)=2$.

The parameter $A_{q}(n, d)$

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Examples

- $A_{q}(n, 1)=q^{n}$.
- $A_{2}(4,3)=2$.
- $A_{q}(n, n)=|\{1 \ldots 1,2 \ldots 2, \ldots, q \ldots q\}|=q$.

The parameter $A_{q}(n, d)$

Definition

$A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\}$.

Examples

- $A_{q}(n, 1)=q^{n}$.
- $A_{2}(4,3)=2$.
- $A_{q}(n, n)=|\{1 \ldots 1,2 \ldots 2, \ldots, q \ldots q\}|=q$.
(i) Tables with bounds on $A_{q}(n, d)$ on the website of Andries Brouwer.

The parameter $A_{q}(n, d)$

Definition

$A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\}$.

Examples

- $A_{q}(n, 1)=q^{n}$.
- $A_{2}(4,3)=2$.
- $A_{q}(n, n)=|\{1 \ldots 1,2 \ldots 2, \ldots, q \ldots q\}|=q$.
(i) Tables with bounds on $A_{q}(n, d)$ on the website of Andries Brouwer.
(ii) Interesting parameter in cryptography: a code $C \subseteq[q]^{n}$ with $d_{\text {min }}(C)=2 e+1$ is e-error correcting.

The parameter $A_{q}(n, d)-I I$

Definition
 $$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

The parameter $A_{q}(n, d)$ - II

Definition

$A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\}$.

Remark

Let $G=(V, E)$ be the graph with $V=[q]^{n}$ and

$$
E:=\left\{\{u, v\} \mid 0<d_{H}(u, v)<d\right\} .
$$

The parameter $A_{q}(n, d)$ - II

Definition

$A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\}$.

Remark

Let $G=(V, E)$ be the graph with $V=[q]^{n}$ and

$$
E:=\left\{\{u, v\} \mid 0<d_{H}(u, v)<d\right\} .
$$

Then $A_{q}(n, d)=\alpha(G)$, the stable set number of G.

The parameter $A_{q}(n, d)$ - II

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Remark

Let $G=(V, E)$ be the graph with $V=[q]^{n}$ and

$$
E:=\left\{\{u, v\} \mid 0<d_{H}(u, v)<d\right\} .
$$

Then $A_{q}(n, d)=\alpha(G)$, the stable set number of G.

The parameter $A_{q}(n, d)$ - II

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Remark

Let $G=(V, E)$ be the graph with $V=[q]^{n}$ and

$$
E:=\left\{\{u, v\} \mid 0<d_{H}(u, v)<d\right\} .
$$

Then $A_{q}(n, d)=\alpha(G)$, the stable set number of G.

The parameter $A_{q}(n, d)$ - II

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Remark

Let $G=(V, E)$ be the graph with $V=[q]^{n}$ and

$$
E:=\left\{\{u, v\} \mid 0<d_{H}(u, v)<d\right\} .
$$

Then $A_{q}(n, d)=\alpha(G)$, the stable set number of G.

The parameter $A_{q}(n, d)$ - II

Definition

$$
A_{q}(n, d):=\max \left\{|C| \mid C \subseteq[q]^{n}, d_{\min }(C) \geq d\right\} .
$$

Remark

Let $G=(V, E)$ be the graph with $V=[q]^{n}$ and

$$
E:=\left\{\{u, v\} \mid 0<d_{H}(u, v)<d\right\} .
$$

Then $A_{q}(n, d)=\alpha(G)$, the stable set number of G.

Bounds on $A_{q}(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).

Bounds on $A_{q}(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Bounds on $A_{q}(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper bounds via k-tuples of codewords $(k \geq 2)$.

Bounds on $A_{q}(n, d)$

- Lower bounds via explicit constructions (e.g. linear codes, designs).
- Classical upper bound: Delsarte linear programming bound.

Schrijver (starting in 2005): hierarchy of semidefinite programming upper bounds via k-tuples of codewords $(k \geq 2)$.
k Studied by
2 Delsarte (1973)
3 Schrijver (2005) for $q=2$ and Gijswijt, Schrijver and Tanaka (2006) for $q \in\{3,4,5\}$

4 Gijswijt, Mittelmann and Schrijver (2012) for $q=2$

Delsarte bound

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Delsarte bound

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Proposition. $A_{q}(n, d) \leq \theta^{*}(q, n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size.

Delsarte bound

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Proposition. $A_{q}(n, d) \leq \theta^{*}(q, n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define X by $X_{u, v}=1 /|C|$ if $u, v \in C$ and $X_{u, v}=0$ else.

Delsarte bound

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Proposition. $A_{q}(n, d) \leq \theta^{*}(q, n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define X by $X_{u, v}=1 /|C|$ if $u, v \in C$ and $X_{u, v}=0$ else. Then X is feasible.

Delsarte bound

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Proposition. $A_{q}(n, d) \leq \theta^{*}(q, n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define X by $X_{u, v}=1 /|C|$ if $u, v \in C$ and $X_{u, v}=0$ else. Then X is feasible. Moreover,

$$
\sum_{u, v \in[q]^{n}} X_{u, v}=|C|^{2} /|C|=A_{q}(n, d)
$$

which yields the proposition.

Delsarte bound

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Proposition. $A_{q}(n, d) \leq \theta^{*}(q, n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define X by $X_{u, v}=1 /|C|$ if $u, v \in C$ and $X_{u, v}=0$ else. Then X is feasible. Moreover,

$$
\sum_{u, v \in[q]^{n}} X_{u, v}=|C|^{2} /|C|=A_{q}(n, d)
$$

which yields the proposition.

Reductions

Reductions

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E, \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Reductions

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Reduction of the optimization problem

- Let G be the group of distance preserving permutations of $[q]^{n}$.

Reductions

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E, \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Reduction of the optimization problem

- Let G be the group of distance preserving permutations of $[q]^{n}$.
- If $X=\left(X_{u, v}\right)$ is an optimum solution, then also $X^{\pi}:=\left(X_{\pi(u), \pi(v)}\right)$ is optimum for all $\pi \in G$. Moreover, the feasible region is convex.

Reductions

$$
\begin{aligned}
& \theta^{*}(q, n, d):=\max \left\{\sum_{u, v \in[q]^{n}} X_{u, v} \mid X \in \mathbb{R}_{\geq 0}^{[q]^{n} \times[q]^{n}}\right. \text { with: } \\
& \text { (i) } \operatorname{trace}(X)=1, \\
& \text { (ii) } X_{u, v}=0 \text { if }\{u, v\} \in E, \\
&\text { (iii) } X \text { is positive semidefinite }\} .
\end{aligned}
$$

Reduction of the optimization problem

- Let G be the group of distance preserving permutations of $[q]^{n}$.
- If $X=\left(X_{u, v}\right)$ is an optimum solution, then also $X^{\pi}:=\left(X_{\pi(u), \pi(v)}\right)$ is optimum for all $\pi \in G$. Moreover, the feasible region is convex.
- $(1 /|G|) \sum_{\pi \in G} X^{\pi}$ is a G-invariant optimum solution. Hence the SDP has at most $n+1$ variables.

Delsarte bound - II

Notation

Let \mathcal{C}_{k} be the collection of codes $C \subseteq[q]^{n}$ with $|C| \leq k$. Given $x: \mathcal{C}_{2} \rightarrow \mathbb{R}_{\geq 0}$, define the $\mathcal{C}_{1} \times \mathcal{C}_{1}$-matrix M_{x} by

$$
\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)
$$

Delsarte bound - II

Notation

Let \mathcal{C}_{k} be the collection of codes $C \subseteq[q]^{n}$ with $|C| \leq k$. Given $x: \mathcal{C}_{2} \rightarrow \mathbb{R}_{\geq 0}$, define the $\mathcal{C}_{1} \times \mathcal{C}_{1}$-matrix M_{x} by

$$
\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)
$$

It can be proven that the Delsarte bound equals

$$
\begin{aligned}
& D_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid x: \mathcal{C}_{2} \rightarrow \mathbb{R}_{\geq 0}\right. \text { with: } \\
& \\
& \\
& \text { (i) } x(\emptyset)=1, \\
& \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d \\
& \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{aligned}
$$

The quadruple bound

Notation

Let \mathcal{C}_{k} be the collection of codes $C \subseteq[q]^{n}$ with $|C| \leq k$. Given $x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0}$, define the $\mathcal{C}_{2} \times \mathcal{C}_{2}$-matrix M_{x} by

$$
\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)
$$

The quadruple bound

Notation

Let \mathcal{C}_{k} be the collection of codes $C \subseteq[q]^{n}$ with $|C| \leq k$. Given $x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0}$, define the $\mathcal{C}_{2} \times \mathcal{C}_{2}$-matrix M_{x} by

$$
\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)
$$

Now we define

The quadruple bound

Notation

Let \mathcal{C}_{k} be the collection of codes $C \subseteq[q]^{n}$ with $|C| \leq k$. Given $x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0}$, define the $\mathcal{C}_{2} \times \mathcal{C}_{2}$-matrix M_{x} by

$$
\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)
$$

Now we define

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\})\right. & \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0} \text { with: } \\
& \text { (i) } x(\emptyset)=1 \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{array}
$$

The quadruple bound

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\})\right. & \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0} \text { with: } \\
& \text { (i) } x(\emptyset)=1, \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d,
\end{array}
$$

(iii) M_{x} is positive semidefinite $\}$.

Proposition. $A_{q}(n, d) \leq B_{q}(n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d

The quadruple bound

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid\right. & x: \mathcal{C}_{4} \rightarrow \mathbb{R} \geq 0 \text { with: } \\
& \text { (i) } x(\emptyset)=1, \\
& \text { (ii) } x(C)=0 \text { if } d_{\text {min }}(C)<d, \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{array}
$$

Proposition. $A_{q}(n, d) \leq B_{q}(n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size.

The quadruple bound

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid\right. & x: \mathcal{C}_{4} \rightarrow \mathbb{R} \geq 0 \text { with: } \\
& \text { (i) } x(\emptyset)=1, \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d,
\end{array}
$$

(iii) M_{x} is positive semidefinite $\}$.

Proposition. $A_{q}(n, d) \leq B_{q}(n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define x by $x(S)=1$ if $S \subseteq C$ and $x(S)=0$ else.

The quadruple bound

$$
\begin{aligned}
& B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R} \geq 0\right. \text { with: } \\
& \\
& \text { (i) } x(\emptyset)=1, \\
& \\
& \\
& \text { (ii) } x(C)=0 \text { if } d_{\text {min }}(C)<d, \\
& \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{aligned}
$$

Proposition. $A_{q}(n, d) \leq B_{q}(n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define x by $x(S)=1$ if $S \subseteq C$ and $x(S)=0$ else. Then x is feasible.

The quadruple bound

$$
\begin{aligned}
& B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0}\right. \text { with: } \\
& \\
& \text { (i) } x(\emptyset)=1, \\
& \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d,
\end{aligned}
$$

(iii) M_{x} is positive semidefinite $\}$.

Proposition. $A_{q}(n, d) \leq B_{q}(n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define x by $x(S)=1$ if $S \subseteq C$ and $x(S)=0$ else. Then x is feasible. Moreover,

$$
\sum_{u \in[q]^{n}} x(\{u\})=|C|=A_{q}(n, d)
$$

which yields the proposition.

The quadruple bound

$$
\begin{aligned}
& B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0}\right. \text { with: } \\
& \\
& \text { (i) } x(\emptyset)=1, \\
& \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d,
\end{aligned}
$$

(iii) M_{x} is positive semidefinite $\}$.

Proposition. $A_{q}(n, d) \leq B_{q}(n, d)$

Proof. Let $C \subseteq[q]^{n}$ be a code of minimum distance at least d and maximum size. Define x by $x(S)=1$ if $S \subseteq C$ and $x(S)=0$ else. Then x is feasible. Moreover,

$$
\sum_{u \in[q]^{n}} x(\{u\})=|C|=A_{q}(n, d)
$$

which yields the proposition.

Intermezzo: constant weight codes

Suppose that $q=2$ and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight $\operatorname{wt}(u)$ of a codeword $u \in\{0,1\}^{n}$ is the number of nonzero entries in u.

Intermezzo: constant weight codes

Suppose that $q=2$ and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight $\operatorname{wt}(u)$ of a codeword $u \in\{0,1\}^{n}$ is the number of nonzero entries in u. Let $\mathcal{E}:=\left\{C \subseteq[q]^{n} \mid d_{\text {min }}(C) \geq d, \operatorname{wt}(u)=w \forall u \in C\right\}$

Intermezzo: constant weight codes

Suppose that $q=2$ and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight $w t(u)$ of a codeword $u \in\{0,1\}^{n}$ is the number of nonzero entries in u. Let $\mathcal{E}:=\left\{C \subseteq[q]^{n} \mid d_{\text {min }}(C) \geq d, \operatorname{wt}(u)=w \forall u \in C\right\}$ and

$$
A(n, d, w):=\max \{|C| \mid C \in \mathcal{E}\}
$$

Intermezzo: constant weight codes

Suppose that $q=2$ and let $n, d, w \in \mathbb{N}$.

Constant weight codes

The weight $\operatorname{wt}(u)$ of a codeword $u \in\{0,1\}^{n}$ is the number of nonzero entries in u. Let $\mathcal{E}:=\left\{C \subseteq[q]^{n} \mid d_{\text {min }}(C) \geq d, \operatorname{wt}(u)=w \forall u \in C\right\}$ and

$$
A(n, d, w):=\max \{|C| \mid C \in \mathcal{E}\}
$$

Then $A(n, d, w) \leq B(n, d, w)$, where

$$
\begin{array}{ll}
B(n, d, w):=\max \left\{\sum_{v \in\{0,1\}^{n}} x(\{v\}) \mid\right. & x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0} \text { with: } \\
& \text { (i) } x(\emptyset)=1, \\
& \text { (ii) } x(C)=0 \text { if } C \notin \mathcal{E} \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{array}
$$

Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k=3$.

Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k=3$.
(ii) Possible to find new upper bounds for $k=4$?

Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k=3$.
(ii) Possible to find new upper bounds for $k=4$?
(iii) $A(19,6,8)$. Best known lower bound: 408. Schrijver's upper bound: 718.

Intermezzo: constant weight codes

(i) Schrijver (2005) found upper bounds on constant weight codes for $k=3$.
(ii) Possible to find new upper bounds for $k=4$?
(iii) $A(19,6,8)$. Best known lower bound: 408. Schrijver's upper bound: 718.

```
phase.value = pdFEAS
    Iteration = 111
        mu = 1.0595571803025323e-06
relative gap = 3.3729668079904213e-03
    aan = 1.796686ค77754739月p-07
    digits = 2.4719879325070719e+00
objValPrimal = -6.89000228713742179733350691711352e+02
objValDual = -6.86680166557914958473403040732179e+02
p.reas.erivi = y.040دy0101y100כ10e-00
d.feas.error = 7.0071861627726210e-08
relative eps = 4.9303806576313200e-32
total time = 1440171.900
    main loop time = 1439609.910000
        total time = 1440171.900000
file read tlme = 550.020000
sven@Sven-PC:~/Documents/codesJuni$
```


Intermezzo: $k=5$ for binary codes

Suppose that $q=2$ and let $n, d \in \mathbb{N}$.

SDP-bound on $A_{2}(n, d)$ based on quintuples, $k=5$

Let $\mathbf{0}:=0 \ldots 0$ and let \mathcal{C}_{k}^{\prime} be the collection of codes $C \subseteq[q]^{n}$ with $|C| \leq k$ and $\mathbf{0} \in C$. Then $A_{2}(n, d) \leq Q(n, d)$, where

$$
\begin{aligned}
& Q(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{\mathbf{0}, v\}) \mid x: \mathcal{C}_{5}^{\prime} \rightarrow \mathbb{R}_{\geq 0}\right. \text { with: } \\
& \\
& \\
& \text { (i) } x(\{\boldsymbol{0}\})=1, \\
& \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d, \\
& \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\},
\end{aligned}
$$

where $\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)$ for all $x \in \mathcal{C}_{3}^{\prime}$.

Intermezzo: $k=5$ for binary codes

(i) Östergård (2011): $A_{2}(17,8)=36$.

Intermezzo: $k=5$ for binary codes

(i) Östergård (2011): $A_{2}(17,8)=36$.
(ii) Proved by a clique search taking two months.

Intermezzo: $k=5$ for binary codes

(i) Östergård (2011): $A_{2}(17,8)=36$.
(ii) Proved by a clique search taking two months.
(iii) Possible to prove via semidefinite programming?

Intermezzo: $k=5$ for binary codes

(i) Östergård (2011): $A_{2}(17,8)=36$.
(ii) Proved by a clique search taking two months.
(iii) Possible to prove via semidefinite programming?
(iv) Around 6000 variables, 70 blocks, max block size 400.

Intermezzo: $k=5$ for binary codes

(i) Östergård (2011): $A_{2}(17,8)=36$.
(ii) Proved by a clique search taking two months.
(iii) Possible to prove via semidefinite programming?
(iv) Around 6000 variables, 70 blocks, max block size 400.

sven@Sven-PC:~/Documents/codesJunis sdia dd 017_8.dat-s DDversieQ17_8.resultSDPA-DD ;tart at Sat Jun $1817: 16: 27$ 2016								
data is Q1/_8.dat-s : sparse								
parameter is ./param.sdpa								
out is DDversieQ17_8.result								
DENSE computations								
	Mu	thetap	thetaD	objP	objD	alphaP	alphaD	beta
0	1. $0 \mathrm{e}+10$	1. 0 e+00	$1.0 \mathrm{e}+00$	-0.00e+00	-1.00e+05	2.6e-01	2.1e-01	4.00e-01
1	8.7e+09	7.4e-01	$7.9 \mathrm{e}-01$	-8.30e+04	-1.47e+05	1.4e-01	$1.9 \mathrm{e}-01$	4.00e-01
2	$8.6 e+09$	$6.4 e-01$	6.4e-01	$-1.60 \mathrm{e}+05$	-3.58e+05	1.6e-01	$1.9 \mathrm{e}-01$	4.00e-01
3	8. $4 \mathrm{e}+09$	$5.4 \mathrm{e}-01$	$5.2 \mathrm{e}-01$	$-1.87 e+05$	-1.13e+06	1.7e-01	2.4e-01	4.00e-01
4	8.2e+09	$4.5 e-01$	3.9e-01	$-1.80 e+05$	$-2.78 \mathrm{e}+06$	2.0e-01	2.2e-01	4.00e-01
5	7.7e+09	3. e e-01	3.1e-01	$-1.62 e+05$	$-4.84 e+06$	2. $2 \mathrm{e}-01$	2.2e-01	4.00e-01
6	$7.1 \mathrm{e}+09$	$2.8 \mathrm{e}-01$	2.4e-01	$-1.45 \mathrm{e}+05$	-7.73e+06	2. $2 \mathrm{e}-01$	2.5e-01	4.00e-01
7	6.7e+09	$2.2 e-01$	$1.8 \mathrm{e}-01$	-1.34e+05	$-1.24 e+07$	$2.4 \mathrm{e}-01$	2.5e-01	4.00e-01
8	$6.1 e+09$	1.7e-01	1.4e-01	-1.22e+05	-1.90e+07	2.5e-01	2.5e-01	4.00e-01
9	$5.5 e+09$	1.2e-01	1.0e-01	$-1.09 \mathrm{e}+05$	$-2.82 e+07$	2.6e-01	2.6e-01	4.00e-01
10	$4.9 \mathrm{e}+09$	$9.2 e-02$	7.5e-02	$-9.53 \mathrm{e}+04$	-4.12e+07	2.7e-01	2.6e-01	4.00e-01
36	4.4e+07	4.0e-07	1.3e-28	$-3.51 e+01$	$-3.59 e+10$	4.3e-01	6.3e-01	4.00e-01
37	$3.7 e+07$	2.3e-07	1.8e-28	$-3.44 e+01$	$-3.50 \mathrm{e}+10$	4.4e-01	7.0e-01	4.00e-01
38	$3.1 \mathrm{e}+07$	1.3e-07	$5.1 e-28$	-3.39e+01	$-3.38 \mathrm{e}+10$	4.5e-01	8.2e-01	4.00e-01
39	$2.7 e+07$	7.0e-08	$1.5 e-27$	$-3.36 e+01$	$-3.26 e+10$	4.7e-01	7.5e-01	4.00e-01
40	$2.2 \mathrm{e}+07$	3.7e-08	1.0e-26	$-3.34 e+01$	$-3.20 e+10$	4.9e-01	7.9e-01	4.00e-01
41	1.8e+07	1.9e-08	$8.7 e-27$	-3.33e+01	$-3.00 e+10$	5.0e-01	$9.9 \mathrm{e}-01$	4.00e-01
42	1. $5 \mathrm{e}+07$	9.5e-09	$6.2 e-26$	-3.31e+01	$-2.64 e+10$	5.0e-01	1.0e+00	4.00e-01
43	1. $3 \mathrm{e}+07$	4.8e-09	$2.0 e-25$	-3.30e+01	$-2.43 \mathrm{e}+10$	5.0e-01	1.0e+00	4.00e-01
44	1.0e+07	2.4e-09	$2.6 e-25$	-3.30e+01	$-2.21 e+10$	5.0e-01	1.0e+00	4.00e-01
45	8. $7 \mathrm{e}+06$	1.2e-09	$2.1 e-24$	-3.29e+01	-1.98e+10	5.0e-01	1. $0 \mathrm{e}+00$	4.00e-01

Reductions

$$
\begin{aligned}
& B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\}) \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0}\right. \text { with: } \\
& \\
& \text { (i) } x(\emptyset)=1 \\
& \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d \\
& \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{aligned}
$$

Reductions

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\})\right. & \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0} \text { with: } \\
& \text { (i) } x(\emptyset)=1 \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{array}
$$

Reduction of the optimization problem

- Let $G=S_{q}^{n} \rtimes S_{n}$ be the group of distance preserving permutations of $[q]^{n}$.

Reductions

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\})\right. & \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0} \text { with: } \\
& \text { (i) } x(\emptyset)=1 \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{array}
$$

Reduction of the optimization problem

- Let $G=S_{q}^{n} \rtimes S_{n}$ be the group of distance preserving permutations of $[q]^{n}$.
- If x is an optimum solution, then also x^{π} given by $x^{\pi}(C):=x(\pi \circ C)$ is optimum for all $\pi \in G$.

Reductions

$$
\begin{array}{ll}
B_{q}(n, d):=\max \left\{\sum_{v \in[q]^{n}} x(\{v\})\right. & \mid x: \mathcal{C}_{4} \rightarrow \mathbb{R}_{\geq 0} \text { with: } \\
& \text { (i) } x(\emptyset)=1 \\
& \text { (ii) } x(C)=0 \text { if } d_{\min }(C)<d \\
& \text { (iii) } \left.M_{x} \text { is positive semidefinite }\right\} .
\end{array}
$$

Reduction of the optimization problem

- Let $G=S_{q}^{n} \rtimes S_{n}$ be the group of distance preserving permutations of $[q]^{n}$.
- If x is an optimum solution, then also x^{π} given by $x^{\pi}(C):=x(\pi \circ C)$ is optimum for all $\pi \in G$.
- $(1 /|G|) \sum_{\pi \in G} x^{\pi}$ is a G-invariant optimum solution.

G-orbits of \mathcal{C}_{4}

- Let Π denote the collection of set partitions of $\{1,2,3,4\}$ in at most q parts.

G-orbits of \mathcal{C}_{4}

- Let Π denote the collection of set partitions of $\{1,2,3,4\}$ in at most q parts.
- Then Π is in bijection with the orbits of the natural action of S_{q} on $[q]^{4}$ via the map

$$
P \mapsto S_{q} \cdot\left(a_{1}, a_{2}, a_{3}, a_{4}\right),
$$

with $a_{i}=a_{j}$ if and only if i and j are in the same class in P.

G-orbits of \mathcal{C}_{4}

- Let Π denote the collection of set partitions of $\{1,2,3,4\}$ in at most q parts.
- Then Π is in bijection with the orbits of the natural action of S_{q} on $[q]^{4}$ via the map

$$
P \mapsto S_{q} \cdot\left(a_{1}, a_{2}, a_{3}, a_{4}\right)
$$

with $a_{i}=a_{j}$ if and only if i and j are in the same class in P.

- For example, if we assume that $q \geq 3$, then

$$
\{\{1,3\},\{2\},\{4\}\} \mapsto S_{q} \cdot(0,1,0,2)
$$

G-orbits of $\mathcal{C}_{4}-$ II

- Let Ω be the set of G-orbits of \mathcal{C}_{4}.

G-orbits of $\mathcal{C}_{4}-$ II

- Let Ω be the set of G-orbits of \mathcal{C}_{4}.
- The map $\left([q]^{n}\right)^{4} \rightarrow \mathcal{C}_{4},\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \mapsto\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

G-orbits of $\mathcal{C}_{4}-$ II

- Let Ω be the set of G-orbits of \mathcal{C}_{4}.
- The map $\left([q]^{n}\right)^{4} \rightarrow \mathcal{C}_{4},\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \mapsto\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ gives a surjection
$\{$ degree n monomials in $|\Pi|$ variables $\} \rightarrow \Omega \backslash\{\{\emptyset\}\}$.

G-orbits of $\mathcal{C}_{4}-$ II

- Let Ω be the set of G-orbits of \mathcal{C}_{4}.
- The map $\left([q]^{n}\right)^{4} \rightarrow \mathcal{C}_{4},\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \mapsto\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ gives a surjection

$$
\{\text { degree } n \text { monomials in }|\Pi| \text { variables }\} \rightarrow \Omega \backslash\{\{\emptyset\}\} .
$$

- For example, writing $\{\{1,2\},\{3\},\{4\}\}$ as $12,3,4$, letting $n=4$ and $q \geq 3$ then

$$
\begin{aligned}
x_{1234} x_{123,4}^{2} x_{12,3,4} \mapsto & G \cdot\{0000,0000,0001,0112\} \\
& =G \cdot\{0000,0001,0112\}
\end{aligned}
$$

G-orbits of $\mathcal{C}_{4}-$ II

- Let Ω be the set of G-orbits of \mathcal{C}_{4}.
- The map $\left([q]^{n}\right)^{4} \rightarrow \mathcal{C}_{4},\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \mapsto\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ gives a surjection

$$
\{\text { degree } n \text { monomials in }|\Pi| \text { variables }\} \rightarrow \Omega \backslash\{\{\emptyset\}\} .
$$

- For example, writing $\{\{1,2\},\{3\},\{4\}\}$ as $12,3,4$, letting $n=4$ and $q \geq 3$ then

$$
\begin{aligned}
x_{1234} x_{123,4}^{2} x_{12,3,4} \mapsto & G \cdot\{0000,0000,0001,0112\} \\
& =G \cdot\{0000,0001,0112\}
\end{aligned}
$$

$\Longrightarrow|\Omega|$ bounded by a polynomial in n.

Reductions

- Replace variable $x(C)$ in the matrix M_{x}, with $C \in \mathcal{C}_{4}$, by $y(w)$, with $w \in \Omega$ the orbit containing C.

Reductions

- Replace variable $x(C)$ in the matrix M_{x}, with $C \in \mathcal{C}_{4}$, by $y(w)$, with $w \in \Omega$ the orbit containing C.
- Get a matrix M_{y} that is invariant under the action of G on rows and columns.

Reductions

- Replace variable $x(C)$ in the matrix M_{x}, with $C \in \mathcal{C}_{4}$, by $y(w)$, with $w \in \Omega$ the orbit containing C.
- Get a matrix M_{y} that is invariant under the action of G on rows and columns.
$\Longrightarrow M_{y} \in \operatorname{End}_{G}\left(\mathbb{R}^{\mathcal{C}_{2}}\right)$.

Reductions

- Replace variable $x(C)$ in the matrix M_{x}, with $C \in \mathcal{C}_{4}$, by $y(w)$, with $w \in \Omega$ the orbit containing C.
- Get a matrix M_{y} that is invariant under the action of G on rows and columns.
$\Longrightarrow M_{y} \in \operatorname{End}_{G}\left(\mathbb{R}^{\mathcal{C}_{2}}\right)$.
Using representation theory of the isometry group, one can construct a matrix U, independent of y, such that

Reductions

- Replace variable $x(C)$ in the matrix M_{x}, with $C \in \mathcal{C}_{4}$, by $y(w)$, with $w \in \Omega$ the orbit containing C.
- Get a matrix M_{y} that is invariant under the action of G on rows and columns.
$\Longrightarrow M_{y} \in \operatorname{End}_{G}\left(\mathbb{R}^{\mathcal{C}_{2}}\right)$.
Using representation theory of the isometry group, one can construct a matrix U, independent of y, such that

Theorem (Maschke's theorem + Schur's lemma)

$\operatorname{End}_{G}\left(\mathbb{R}^{\mathcal{C}_{2}}\right) \xrightarrow{\sim} \bigoplus_{i} \mathbb{R}^{m_{i} \times m_{i}}$ (as linear spaces), via $A \mapsto U^{t} A U$.
Moreover, A is positive semidefinite if and only if each of the blocks of $U^{t} A U$ is.

The blocks

- Blocks parametrized by quadruples of Young shapes of certain bound heights.

The blocks

- Blocks parametrized by quadruples of Young shapes of certain bound heights.
- Given a block (a quadruple of Young shapes), the size is determined by the number of semistandard Young tableaux, i.e., fillings of the shapes.

The blocks

- Blocks parametrized by quadruples of Young shapes of certain bound heights.
- Given a block (a quadruple of Young shapes), the size is determined by the number of semistandard Young tableaux, i.e., fillings of the shapes.
- The coefficients can be computed in time polynomial in n.

Results [L., P. and Schrijver, 2016]

Table: New upper bounds on $A_{q}(n, d)$

| q | n | d | Best lower
 bound known | New upper
 bound | Best upper bound
 previously known |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 6 | 3 | 164 | $\mathbf{1 7 6}$ | 179 |
| 4 | 7 | 3 | 512 | $\mathbf{5 9 6}$ | 614 |
| 4 | 7 | 4 | 128 | $\mathbf{1 5 5}$ | 169 |
| 5 | 7 | 4 | 250 | $\mathbf{4 8 9}$ | 545 |
| 5 | 7 | 5 | 53 | $\mathbf{8 7}$ | 108 |

Mixed binary/ternary codes

Fix $n_{2}, n_{3}, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_{2}}[3]^{n_{3}}$.

Mixed binary/ternary codes

Fix $n_{2}, n_{3}, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_{2}}[3]^{n_{3}}$.
- The Hamming distance, minimum distance and weight are defined in a similar fashion.

Mixed binary/ternary codes

Fix $n_{2}, n_{3}, d \in \mathbb{Z}_{\geq 0}$.

- A mixed binary/ternary code is a subset of $[2]^{n_{2}}[3]^{n_{3}}$.
- The Hamming distance, minimum distance and weight are defined in a similar fashion.

Definition
 $N\left(n_{2}, n_{3}, d\right):=\max \left\{|C| \mid C \subseteq[2]^{n_{2}}[3]^{n_{3}}, d_{\min }(C) \geq d\right\}$.

Motivation: football pools

Source: http://www.uefa.com/uefaeuro/draws/

Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_{2}+n_{3}$. Suppose n_{3} games are played with possible outcome win/draw/loss and n_{2} games with possible outcome win/loss.

Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_{2}+n_{3}$. Suppose n_{3} games are played with possible outcome win/draw/loss and n_{2} games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with e good answers?

Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_{2}+n_{3}$. Suppose n_{3} games are played with possible outcome win/draw/loss and n_{2} games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with e good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there are no two or more forms with more than e good answers?

Motivation: the (extended) football pool problem

Fix $0 \leq e \leq n_{2}+n_{3}$. Suppose n_{3} games are played with possible outcome win/draw/loss and n_{2} games with possible outcome win/loss.

Covering problem

How many forms need to be filled in to make sure that, whatever the outcome, there is at least one form with e good answers?

Packing problem

How many forms can be filled in such that, whatever the outcome, there are no two or more forms with more than e good answers?
\Longrightarrow amounts to determining $N\left(n_{2}, n_{3}, d\right)$ with $d=2 e+1$.

Bounds on $N\left(n_{2}, n_{3}, d\right)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.

Bounds on $N\left(n_{2}, n_{3}, d\right)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Bounds on $N\left(n_{2}, n_{3}, d\right)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Bounds on $N\left(n_{2}, n_{3}, d\right)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.

Bounds on $N\left(n_{2}, n_{3}, d\right)$

- Lower bounds: all but one best known lower bounds found on a Spanish forum about football pools.
- Upper bounds: Delsarte linear programming bound cannot be applied directly anymore.

Problem: set of mixed binary/ternary words in general does not form an association scheme with respect to the Hamming distance.

Solution: it has a product scheme structure.
\Longrightarrow Linear programming bound with $\leq \frac{\left(n_{2}+n_{3}+1\right)\left(n_{2}+n_{3}+2\right)}{2}$ constraints
(Brouwer, Hämäläinen, Östergård and Sloane, 1998).

Semidefinite programming upper bound

SDP-bound on $N\left(n_{2}, n_{3}, d\right)$ based on triples, $k=3$

Let $\mathbf{0}:=0 \ldots 0$ and let \mathcal{C}_{3}^{\prime} be the collection of codes $C \subseteq[2]^{n_{2}}[3]^{n_{3}}$ with $|C| \leq 3$ and $\mathbf{0} \in C$. Then $N\left(n_{2}, n_{3}, d\right) \leq N_{3}\left(n_{2}, n_{3}, d\right)$, where

$$
\begin{aligned}
& N_{3}\left(n_{2}, n_{3}, d\right):=\max \left\{\sum_{v \in[2]^{n_{2}}[3]^{n_{3}}} x(\{\mathbf{0}, v\}) \mid x: \mathcal{C}_{3}^{\prime} \rightarrow \mathbb{R}_{\geq 0}\right. \text { with: } \\
& \\
& \\
& \\
& \text { (i) } x(\{\mathbf{0}\})=1, \\
& \text { (ii) } x(C)=0 \text { if } d_{\text {min }}(C)<d,
\end{aligned}
$$

(iii) M_{x} is positive semidefinite $\}$,
where $\left(M_{x}\right)_{C, C^{\prime}}=x\left(C \cup C^{\prime}\right)$ for all $C, C^{\prime} \in \mathcal{C}_{2}^{\prime}$.

Reductions and results

- Symmetry reduction using the group $\left(S_{2}^{n_{2}} \rtimes S_{n_{2}}\right) \times\left(S_{3}^{n_{3}} \rtimes S_{n_{3}}\right)$.

Reductions and results

- Symmetry reduction using the group $\left(S_{2}^{n_{2}} \rtimes S_{n_{2}}\right) \times\left(S_{3}^{n_{3}} \rtimes S_{n_{3}}\right)$.
- Blocks and coefficients of the constraint matrices can be expressed in terms of the blocks and coefficients for the corresponding programs with $n_{2}=0$ and $n_{3}=0$ respectively.

Reductions and results

- Symmetry reduction using the group $\left(S_{2}^{n_{2}} \rtimes S_{n_{2}}\right) \times\left(S_{3}^{n_{3}} \rtimes S_{n_{3}}\right)$.
- Blocks and coefficients of the constraint matrices can be expressed in terms of the blocks and coefficients for the corresponding programs with $n_{2}=0$ and $n_{3}=0$ respectively.

Results (L., 2016)

In total 135 improved upper bounds were found: 131 from the SDP with $k=3$, one new bound from the SDP with $k=4$ and three implicit improvements.

A selection of the results

Table: A part of the table with best known bounds on $N\left(n_{2}, n_{3}, 4\right)$. The improved bounds are boldface.

$n_{2} \backslash n_{3}$	2	3	4	5	6
2	2	3	8	22	$51-61$
3	3	6	15	$36-43$	$92-117$
4	6	11	$28-30$	$62-83$	$158-228$
5	8	20	$50-59$	$114-160$	$288-436$
6	16	$34-40$	$96-114$	$216-308$	$576-825$
7	$36-30$	$64-80$	$192-220$	$408-585$	$1152-1576$
8	$50-59$	$128-153$	$384-407$	$768-1103$	$2304-3027$
9	$96-108$	$256-288$	$548-771$	$1536-2105$	
10	$192-212$	$420-548$	$1050-1480$		
11	384	$784-1032$			

