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Logarithm

Concave function

2 4 6 8 10
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Information theory:

Entropy H(p) = −
∑n

i=1 pi log pi (Concave).
Kullback-Leibler divergence (or relative entropy)

D(p‖q) =
n∑

i=1

pi log(pi/qi )

Convex jointly in (p, q).
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Matrix logarithm function

X symmetric matrix with positive eigenvalues (positive definite)

X = U

(
λ1

. . .
λn

)
U∗ → log(X ) = U

(
log(λ1)

. . .
log(λn)

)
U∗

where U orthogonal.

von Neumann Entropy of X : H(X ) = −Tr[X logX ]. Concave in X .

Quantum relative entropy:

D(X‖Y ) = Tr[X (logX − logY )]

Convex in (X ,Y ) [Lieb-Ruskai, 1973].
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Concavity of matrix logarithm

Matrix logarithm is operator concave:

log(λA + (1− λ)B) � λ log(A) + (1− λ) log(B)

where

A,B � 0 and λ ∈ [0, 1]

“X � Y ” means X − Y positive semidefinite (Löwner order)
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Convex optimisation

How can we solve convex optimisation problems involving matrix logarithm?

CVX modeling tool developed by M. Grant and S. Boyd at Stanford
% Maximum entropy problem

cvx_begin

variable p(n)

maximize sum(entr(p))

subject to p >= 0; sum(p) == 1;

A*p == b;

cvx_end

For scalar logarithm, CVX uses a successive approximation heuristic. Works
good in practice but:

sometimes fails (no guarantees)
slow for large problems
does not work for matrix logarithm.
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Semidefinite programming

This talk:

New method to treat matrix logarithm and derived functions using
symmetric cone solvers (semidefinite programming)

Based on accurate rational approximations of logarithm

Much faster than successive approximation heuristic for scalars
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Outline

Semidefinite representations

Approximating matrix logarithm

Numerical examples, comparison with successive approximation (for
scalars) and other matrix examples
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Semidefinite programming

minimize
X∈Sn

〈C ,X 〉 s.t. A(X ) = b, X � 0

Problem data: C ,A, b

Available solvers: SeDuMi, SDPT3, Mosek, SDPA, etc. (e.g.,
sedumi(A,b,C))

Generalization of linear programming where

x ∈ Rn ↔ X ∈ Sn x ≥ 0↔ X � 0
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Semidefinite formulation

Not all optimisation problems are given in semidefinite form...

Example:
maximise

x,y∈R
2x + y s.t. x2 + y2 ≤ 1

Formulate as semidefinite optimisation using the fact that:

x2 + y2 ≤ 1 ⇔
[

1− x y
y 1 + x

]
� 0
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Examples of semidefinite formulation

√
x ≥ t ⇔

[
x t
t 1

]
� 0

t

x

1

x
≤ t ⇔

[
x 1
1 t

]
� 0

t

x
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Semidefinite representations

Concave function f has a semidefinite representation if:

f (x) ≥ t ⇐⇒ S(x , t) � 0

for some affine function S : Rn+1 → Sd

Key fact: if f has a semidefinite representation then
can solve optimisation problems involving f using
semidefinite solvers.

Book by Ben-Tal and Nemirovski gives semidefinite
representations of many convex/concave functions.
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Back to logarithm function

Goal: find a semidefinite representation of logarithm.

log(x) ≥ t

t

x

Logarithm is not semialgebraic! We have to resort to approximations.
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Integral representation of log

Starting point of approximation is:

log(x) =

∫ 1

0

x − 1

1 + s(x − 1)
ds

Key fact: integrand is concave and semidefinite rep. for any fixed s!

x − 1

1 + s(x − 1)
≥ t ⇔

[
1 + s(x − 1) 1

1 1− st

]
� 0

Get semidefinite approximation of log using quadrature:

log(x) ≈
m∑
j=1

wj
x − 1

1 + sj(x − 1)

Right-hand side is semidefinite representable
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Rational approximation

log(x) ≈
m∑
j=1

wj
x − 1

1 + sj(x − 1)︸ ︷︷ ︸
rm(x)

rm = m’th diagonal Padé approximant
of log at x = 1 (matches the first
2m + 1 Taylor coefficients).

5 10 15 20

-1

1

2

3

Log

m=3

Improve approximation by bringing x closer to 1 and using
log(x) = 1

h log(xh) (0 < h < 1):

rm,h(x) :=
1

h
rm(xh)

Remarkable fact: rm,h is still concave and semidefinite representable!
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Quadrature + exponentiation

rm,h(x) :=
1

h
rm(xh)

Semidefinite representation of rm,h (say h = 1/2 for concreteness):

rm,1/2(x) ≥ t ⇐⇒ ∃y ≥ 0 s.t.

{
x1/2 ≥ y

rm(y) ≥ t/2

Uses fact that rm is monotone and x1/2 is concave and semidefinite rep.

Can do the case h = 1/2k with iterative square-rooting.
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Approximation error

Approximation error ‖rm,h − log ‖∞ on [1/a, a] (h = 1/2k):
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m=2, k=2

m=3, k=3

m=4, k=4

Recap: Two ingredients

Rational approximation via quadrature

Use log(x) = 1
h log(xh) with small h to bring x closer to 1.

Key fact: resulting approximation is concave and semidefinite representable.
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Matrix logarithm

What about matrix logarithm?

Integral representation is valid for matrix log as well:

log(X ) =

∫ 1

0

(X − I )(I + s(X − I ))−1ds

Key fact: integrand is operator concave and semidefinite rep. for any
fixed s (use Schur complements)

(X − I )(I + s(X − I ))−1 � T ⇔
[
I + s(X − I ) I

I I − sT

]
� 0

Get semidefinite approximation of matrix log using quadrature:

log(X ) ≈
m∑
j=1

wj
X − 1

1 + sj(X − 1)

Right-hand side is semidefinite representable
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Exponentiation

Exponentiation idea also works for matrices:

rm,h(X ) :=
1

h
rm(X h) (0 < h < 1)

rm is not only monotone concave but operator monotone and operator
concave. Also X 7→ X h is operator concave and semidefinite rep.

X 1/2 � T ⇔
[
X T
T I

]
� 0

Approximation log(X ) ≈ rm,h(X ) called inverse scaling and squaring
method by Kenney-Laub, widely used in numerical computations.

Remarkable that it “preserves” concavity and can be implemented in
semidefinite programming.
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From (matrix) logarithm to (matrix) relative entropy

log(x) ≈ rm,h(x)

Perspective transform (homogenization):

f : R→ R concave ⇒ g(x , y) := yf (x/y) also concave on R× R++

Perspective of log is (x , y) 7→ y log(x/y) related to relative entropy. Can
simply approximate with the perspective of rm,h:

y log(x/y) ≈ yrm,h(x/y)

Semidefinite representation is obtained by homogenization (replace 1 by y).

What about for matrices? What is the perspective transform?
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Matrix perspective

Matrix perspective of f :

g(X ,Y ) = Y 1/2f (Y−1/2XY−1/2)Y 1/2

Theorem [Effros, Ebadian et al.]: If f operator concave then matrix
perspective of f is jointly operator concave in (X ,Y ).

For f = log matrix perspective is related to operator relative entropy

Dop(X‖Y ) = −X 1/2 log(X−1/2YX−1/2)X 1/2

Approximate with the matrix perspective of rm,h:

Dop(X‖Y ) ≈ −X 1/2rm,h(X−1/2YX−1/2)X 1/2

Semidefinite representation obtained by homogenization
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Quantum relative entropy

(Umegaki) quantum relative entropy: D(X‖Y ) = Tr[X (logX − logY )]

Operator relative entropy: Dop(X‖Y ) = X 1/2 log(X 1/2Y−1X 1/2)X 1/2

Get SDP approximation of Umegaki rel. entr. via Dop:

D(X‖Y ) = φ(Dop(X ⊗ I‖I ⊗ Y ))

where φ : Rn2×n2 → R is the linear map that satisfies φ(A⊗ B) = Tr[ATB].

Note: SDP approximation of Umegaki rel. entr. has size ∼ n2!
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CVXQUAD

http://github.com/hfawzi/cvxquad/

New CVX functions:

quantum entr ρ 7→ −Tr[ρ log ρ] Concave

trace logm ρ 7→ Tr[σ log ρ] Concave (σ � 0 fixed)

quantum rel entr (ρ, σ) 7→ Tr[ρ(log ρ− log σ)] Convex

lieb ando (ρ, σ) 7→ Tr[K∗ρ1−tKσt ] Concave (t ∈ [0, 1])

op rel entr epi cone Dop(ρ‖σ) � T

matrix geo mean hypo cone A#tB � T
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Numerical experiments: maximum entropy problem

maximize −∑n
i=1 xi log(xi )

subject to Ax = b
x ≥ 0

(A ∈ R`×n, b ∈ R`)

CVX’s successive approx. Our approach m = 3, h = 1/8
n ` time (s) accuracy∗ time (s) accuracy∗

200 100 1.10 s 6.635e-06 0.88 s 2.767e-06
400 200 3.38 s 2.662e-05 0.72 s 1.164e-05
600 300 9.14 s 2.927e-05 1.84 s 2.743e-05
1000 500 52.40 s 1.067e-05 3.91 s 1.469e-04

∗accuracy measured wrt specialized MOSEK routine

CVX’s successive approx.: Uses Taylor expansion of log instead of Padé
approx + successively refine linearization point
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Relative entropy of entanglement

Quantify entanglement of a bipartite state ρ

min D(ρ‖τ) s.t. τ ∈ Sep

n Cutting-plane
[Zinchenko et al.]

Our approach
m = 3, h = 1/8

4 6.13 s 0.55 s
6 12.30 s 0.51 s
8 29.44 s 0.69 s
9 37.56 s 0.82 s
12 50.50 s 1.74 s
16 100.70 s 5.55 s

cvx_begin sdp

variable tau(na*nb,na*nb) hermitian;

minimize (quantum_rel_entr(rho,tau));

subject to tau >= 0; trace(tau) == 1;

Tx(tau,2,[na nb]) >= 0; % Positive partial transpose constraint

cvx_end
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Relative entropy of recovery (with Omar Fawzi)

Question: Is it true that for any tripartite quantum state ρABC :

I (A : C |B)
?
≥ min

Λ:B→BC
D(ρABC‖(idA ⊗ Λ)(ρAB)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

I(A : C|B)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
(ρ

A
B
C
‖(
id

A
⊗
Λ
op

t)
(ρ

A
B
))

Relative entropy of recovery
vs. conditional mutual information
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Conclusion

Approximation theory with convexity

Approach extends to other operator concave functions via their integral
representation (Löwner theorem)

Open questions:

Dependence on n: Our SDP approximation for Umegaki relative entropy has
size ∼ n2. Is there a representation of size O(n)?
Dependence on ε: Our approximation for scalar log has size (second-order
cone rep.)

√
log(1/ε) where ε error on [e−1, e]. Is this best possible?

Paper: arXiv:1705.00812.
Code: http://github.com/hfawzi/cvxquad/

Thank you!
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