Semidefinite approximations of the matrix logarithm

Hamza Fawzi DAMTP, University of Cambridge

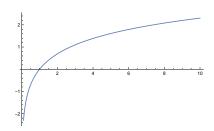
Joint work with

James Saunderson (Monash University) and Pablo Parrilo (MIT)

April 5, 2018

Logarithm

Concave function



- Information theory:
 - Entropy $H(p) = -\sum_{i=1}^{n} p_i \log p_i$ (Concave).
 - Kullback-Leibler divergence (or relative entropy)

$$D(p\|q) = \sum_{i=1}^n p_i \log(p_i/q_i)$$

Convex jointly in (p, q).

Matrix logarithm function

• X symmetric matrix with positive eigenvalues (positive definite)

$$X = U \left(egin{array}{ccc} \lambda_1 & & & \\ & \ddots & \\ & & \lambda_n \end{array}
ight) U^* \quad o \quad \log(X) = U \left(egin{array}{ccc} \log(\lambda_1) & & & \\ & \ddots & & \\ & & \log(\lambda_n) \end{array}
ight) U^*$$

where ${\it U}$ orthogonal.

Matrix logarithm function

• X symmetric matrix with positive eigenvalues (positive definite)

$$X = U \left(egin{array}{ccc} \lambda_1 & & & \\ & \ddots & \\ & & \lambda_n \end{array} \right) U^* \quad o \quad \log(X) = U \left(egin{array}{ccc} \log(\lambda_1) & & & \\ & \ddots & & \\ & & \log(\lambda_n) \end{array} \right) U^*$$

where U orthogonal.

- von Neumann Entropy of X: $H(X) = -\operatorname{Tr}[X \log X]$. Concave in X.
- Quantum relative entropy:

$$D(X||Y) = \text{Tr}[X(\log X - \log Y)]$$

Convex in (X, Y) [Lieb-Ruskai, 1973].

Concavity of matrix logarithm

Matrix logarithm is operator concave:

$$\log(\lambda A + (1 - \lambda)B) \succeq \lambda \log(A) + (1 - \lambda)\log(B)$$

where

- $A, B \succ 0$ and $\lambda \in [0, 1]$
- " $X \succeq Y$ " means X Y positive semidefinite (Löwner order)

Convex optimisation

- How can we solve convex optimisation problems involving matrix logarithm?
- CVX modeling tool developed by M. Grant and S. Boyd at Stanford

- For scalar logarithm, CVX uses a *successive approximation heuristic*. Works good in practice but:
 - sometimes fails (no guarantees)
 - slow for large problems
 - does not work for matrix logarithm.

Semidefinite programming

This talk:

- New method to treat matrix logarithm and derived functions using symmetric cone solvers (semidefinite programming)
- Based on accurate rational approximations of logarithm
- Much faster than successive approximation heuristic for scalars

Outline

• Semidefinite representations

• Approximating matrix logarithm

 Numerical examples, comparison with successive approximation (for scalars) and other matrix examples

Semidefinite programming

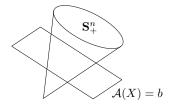
$$\underset{X \in \mathbf{S}^n}{\text{minimize}} \quad \langle \mathbf{C}, X \rangle \quad \text{s.t.} \quad \mathbf{A}(X) = \mathbf{b}, \ X \succeq 0$$

• Problem data: C, A, b

Available solvers: SeDuMi, SDPT3, Mosek, SDPA, etc. (e.g., sedumi(A,b,C))

• Generalization of *linear programming* where

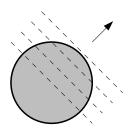
$$x \in \mathbb{R}^n \leftrightarrow X \in \mathbf{S}^n$$
 $x \ge 0 \leftrightarrow X \succeq 0$



Semidefinite formulation

- Not all optimisation problems are given in semidefinite form...
- Example:

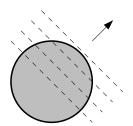
$$\label{eq:standard} \underset{x,y \in \mathbb{R}}{\text{maximise}} \quad 2x + y \quad \text{s.t.} \quad x^2 + y^2 \leq 1$$



Semidefinite formulation

- Not all optimisation problems are given in semidefinite form...
- Example:

$$\underset{x,y \in \mathbb{R}}{\text{maximise}} \quad 2x + y \quad \text{s.t.} \quad x^2 + y^2 \le 1$$

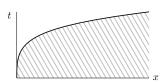


Formulate as semidefinite optimisation using the fact that:

$$x^2 + y^2 \le 1 \quad \Leftrightarrow \quad \begin{bmatrix} 1 - x & y \\ y & 1 + x \end{bmatrix} \succeq 0$$

Examples of semidefinite formulation

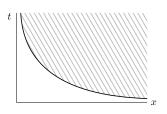
$$\sqrt{x} \ge t \quad \Leftrightarrow \quad \begin{bmatrix} x & t \\ t & 1 \end{bmatrix} \succeq 0$$



Examples of semidefinite formulation

$$\sqrt{x} \ge t \quad \Leftrightarrow \quad \begin{bmatrix} x & t \\ t & 1 \end{bmatrix} \succeq 0$$

$$\frac{1}{x} \le t \quad \Leftrightarrow \quad \begin{bmatrix} x & 1 \\ 1 & t \end{bmatrix} \succeq 0$$



Semidefinite representations

• Concave function f has a semidefinite representation if:

$$f(x) \ge t \iff S(x,t) \succeq 0$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1} o \mathbf{S}^d$

 Key fact: if f has a semidefinite representation then can solve optimisation problems involving f using semidefinite solvers.

Semidefinite representations

• Concave function f has a semidefinite representation if:

$$f(x) \ge t \iff \exists u \in \mathbb{R}^m : S(x, t, u) \succeq 0$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1+m} \to \mathbf{S}^d$

 Key fact: if f has a semidefinite representation then can solve optimisation problems involving f using semidefinite solvers.

Semidefinite representations

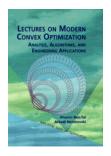
• Concave function f has a semidefinite representation if:

$$f(x) \ge t \iff \exists u \in \mathbb{R}^m : S(x, t, u) \succeq 0$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1+m} \to \mathbf{S}^d$

 Key fact: if f has a semidefinite representation then can solve optimisation problems involving f using semidefinite solvers.

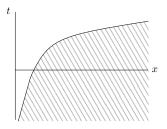
 Book by Ben-Tal and Nemirovski gives semidefinite representations of many convex/concave functions.



Back to logarithm function

Goal: find a semidefinite representation of logarithm.

$$\log(x) \ge t$$



Logarithm is not semialgebraic! We have to resort to approximations.

Integral representation of log

Starting point of approximation is:

$$\log(x) = \int_0^1 \frac{x - 1}{1 + s(x - 1)} ds$$

Integral representation of log

Starting point of approximation is:

$$\log(x) = \int_0^1 \frac{x-1}{1+s(x-1)} ds$$

• Key fact: integrand is concave and semidefinite rep. for any fixed s!

$$\frac{\mathsf{x}-1}{1+\mathsf{s}(\mathsf{x}-1)} \geq t \quad \Leftrightarrow \quad \begin{bmatrix} 1+\mathsf{s}(\mathsf{x}-1) & 1 \\ 1 & 1-\mathsf{s}t \end{bmatrix} \succeq 0$$

Integral representation of log

Starting point of approximation is:

$$\log(x) = \int_0^1 \frac{x-1}{1+s(x-1)} ds$$

• Key fact: integrand is concave and semidefinite rep. for any fixed s!

$$\frac{\mathsf{x}-1}{1+\mathsf{s}(\mathsf{x}-1)} \geq t \quad \Leftrightarrow \quad \begin{bmatrix} 1+\mathsf{s}(\mathsf{x}-1) & 1 \\ 1 & 1-\mathsf{s}t \end{bmatrix} \succeq 0$$

• Get semidefinite approximation of log using quadrature:

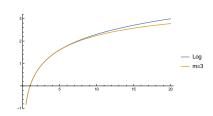
$$\log(\mathbf{x}) \approx \sum_{j=1}^{m} w_j \frac{\mathbf{x} - 1}{1 + s_j(\mathbf{x} - 1)}$$

Right-hand side is semidefinite representable

Rational approximation

$$\log(\mathbf{x}) \approx \underbrace{\sum_{j=1}^{m} w_j \frac{\mathbf{x} - 1}{1 + s_j(\mathbf{x} - 1)}}_{r_m(\mathbf{x})}$$

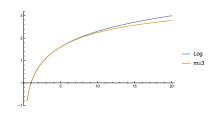
 $r_m=m$ 'th diagonal Padé approximant of log at x=1 (matches the first 2m+1 Taylor coefficients).



Rational approximation

$$\log(\mathbf{x}) \approx \underbrace{\sum_{j=1}^{m} w_j \frac{\mathbf{x} - 1}{1 + s_j(\mathbf{x} - 1)}}_{r_m(\mathbf{x})}$$

 $r_m = m$ 'th diagonal Padé approximant of log at x = 1 (matches the first 2m + 1 Taylor coefficients).



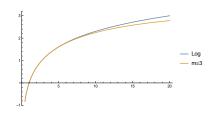
• Improve approximation by bringing x closer to 1 and using $\log(x) = \frac{1}{h} \log(x^h)$ (0 < h < 1):

$$r_{m,h}(x) := \frac{1}{h} r_m(x^h)$$

Rational approximation

$$\log(\mathbf{x}) \approx \underbrace{\sum_{j=1}^{m} w_j \frac{\mathbf{x} - 1}{1 + s_j(\mathbf{x} - 1)}}_{r_m(\mathbf{x})}$$

 $r_m = m$ 'th diagonal Padé approximant of log at x = 1 (matches the first 2m + 1 Taylor coefficients).



• Improve approximation by bringing x closer to 1 and using $\log(x) = \frac{1}{h} \log(x^h)$ (0 < h < 1):

$$r_{m,h}(x) := \frac{1}{h} r_m(x^h)$$

 \bullet Remarkable fact: $r_{m,h}$ is still concave and semidefinite representable!

Quadrature + exponentiation

$$r_{m,h}(x) := \frac{1}{h} r_m(x^h)$$

• Semidefinite representation of $r_{m,h}$ (say h = 1/2 for concreteness):

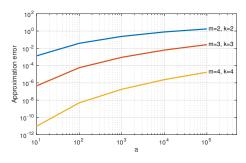
$$r_{m,1/2}(x) \ge t \iff \exists y \ge 0 \text{ s.t. } \begin{cases} x^{1/2} \ge y \\ r_m(y) \ge t/2 \end{cases}$$

• Uses fact that r_m is monotone and $x^{1/2}$ is concave and semidefinite rep.

• Can do the case $h = 1/2^k$ with iterative square-rooting.

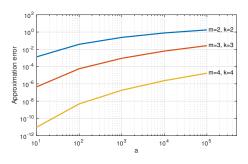
Approximation error

Approximation error $||r_{m,h} - \log||_{\infty}$ on [1/a, a] $(h = 1/2^k)$:



Approximation error

Approximation error $||r_{m,h} - \log||_{\infty}$ on [1/a, a] $(h = 1/2^k)$:



Recap: Two ingredients

- Rational approximation via quadrature
- Use $\log(x) = \frac{1}{h} \log(x^h)$ with small h to bring x closer to 1.

Key fact: resulting approximation is concave and semidefinite representable.

Matrix logarithm

What about matrix logarithm?

• Integral representation is valid for matrix log as well:

$$\log(\mathbf{X}) = \int_0^1 (\mathbf{X} - I)(I + s(\mathbf{X} - I))^{-1} ds$$

Matrix logarithm

What about matrix logarithm?

Integral representation is valid for matrix log as well:

$$\log(X) = \int_0^1 (X - I)(I + s(X - I))^{-1} ds$$

 Key fact: integrand is operator concave and semidefinite rep. for any fixed s (use Schur complements)

$$(X-I)(I+s(X-I))^{-1} \succeq T \quad \Leftrightarrow \quad \begin{bmatrix} I+s(X-I) & I \\ I & I-sT \end{bmatrix} \succeq 0$$

Matrix logarithm

What about matrix logarithm?

Integral representation is valid for matrix log as well:

$$\log(\mathbf{X}) = \int_0^1 (\mathbf{X} - I)(I + s(\mathbf{X} - I))^{-1} ds$$

 Key fact: integrand is operator concave and semidefinite rep. for any fixed s (use Schur complements)

$$(X-I)(I+s(X-I))^{-1} \succeq T \Leftrightarrow \begin{bmatrix} I+s(X-I) & I\\ I & I-sT \end{bmatrix} \succeq 0$$

• Get semidefinite approximation of matrix log using quadrature:

$$\log(X) \approx \sum_{j=1}^{m} w_j \frac{X-1}{1+s_j(X-1)}$$

Right-hand side is semidefinite representable

Exponentiation

• Exponentiation idea also works for matrices:

$$r_{m,h}(X) := \frac{1}{h} r_m(X^h) \qquad (0 < h < 1)$$

• r_m is not only monotone concave but *operator monotone* and *operator concave*. Also $X \mapsto X^h$ is *operator concave* and semidefinite rep.

$$X^{1/2} \succeq T \quad \Leftrightarrow \quad \begin{bmatrix} X & T \\ T & I \end{bmatrix} \succeq 0$$

Exponentiation

• Exponentiation idea also works for matrices:

$$r_{m,h}(X) := \frac{1}{h} r_m(X^h) \qquad (0 < h < 1)$$

• r_m is not only monotone concave but *operator monotone* and *operator concave*. Also $X \mapsto X^h$ is *operator concave* and semidefinite rep.

$$X^{1/2} \succeq T \quad \Leftrightarrow \quad \begin{bmatrix} X & T \\ T & I \end{bmatrix} \succeq 0$$

- Approximation $\log(X) \approx r_{m,h}(X)$ called *inverse scaling and squaring method* by Kenney-Laub, widely used in numerical computations.
- Remarkable that it "preserves" concavity and can be implemented in semidefinite programming.

From (matrix) logarithm to (matrix) relative entropy

$$\log(x) \approx r_{m,h}(x)$$

• Perspective transform (homogenization):

$$f:\mathbb{R} \to \mathbb{R}$$
 concave \Rightarrow $g(x,y):=yf(x/y)$ also concave on $\mathbb{R} \times \mathbb{R}_{++}$

From (matrix) logarithm to (matrix) relative entropy

$$\log(x) \approx r_{m,h}(x)$$

• Perspective transform (homogenization):

$$f:\mathbb{R} \to \mathbb{R}$$
 concave \Rightarrow $g(x,y):=yf(x/y)$ also concave on $\mathbb{R} \times \mathbb{R}_{++}$

• Perspective of log is $(x, y) \mapsto y \log(x/y)$ related to relative entropy. Can simply approximate with the perspective of $r_{m,h}$:

$$y \log(x/y) \approx y r_{m,h}(x/y)$$

Semidefinite representation is obtained by homogenization (replace 1 by y).

From (matrix) logarithm to (matrix) relative entropy

$$\log(x) \approx r_{m,h}(x)$$

• Perspective transform (homogenization):

$$f:\mathbb{R} \to \mathbb{R}$$
 concave \Rightarrow $g(x,y):=yf(x/y)$ also concave on $\mathbb{R} \times \mathbb{R}_{++}$

• Perspective of log is $(x, y) \mapsto y \log(x/y)$ related to relative entropy. Can simply approximate with the perspective of $r_{m,h}$:

$$y \log(x/y) \approx y r_{m,h}(x/y)$$

Semidefinite representation is obtained by homogenization (replace 1 by y).

• What about for matrices? What is the perspective transform?

Matrix perspective

Matrix perspective of f:

$$g(X, Y) = Y^{1/2} f(Y^{-1/2} X Y^{-1/2}) Y^{1/2}$$

• **Theorem** [Effros, Ebadian et al.]: If f operator concave then matrix perspective of f is jointly operator concave in (X, Y).

Matrix perspective

• Matrix perspective of *f*:

$$g(X,Y) = Y^{1/2}f(Y^{-1/2}XY^{-1/2})Y^{1/2}$$

- **Theorem** [Effros, Ebadian et al.]: If f operator concave then matrix perspective of f is jointly operator concave in (X, Y).
- For $f = \log \text{ matrix}$ perspective is related to operator relative entropy

$$D_{\text{op}}(X||Y) = -X^{1/2}\log(X^{-1/2}YX^{-1/2})X^{1/2}$$

• Approximate with the matrix perspective of $r_{m,h}$:

$$D_{\text{op}}(X||Y) \approx -X^{1/2} r_{m,h} (X^{-1/2} Y X^{-1/2}) X^{1/2}$$

• Semidefinite representation obtained by homogenization

Quantum relative entropy

- (Umegaki) quantum relative entropy: $D(X||Y) = \text{Tr}[X(\log X \log Y)]$
- Operator relative entropy: $D_{\mathrm{op}}(X \| Y) = X^{1/2} \log(X^{1/2} Y^{-1} X^{1/2}) X^{1/2}$

Get SDP approximation of Umegaki rel. entr. via D_{op} :

$$D(X||Y) = \phi(D_{op}(X \otimes I||I \otimes Y))$$

where $\phi: \mathbb{R}^{n^2 \times n^2} \to \mathbb{R}$ is the linear map that satisfies $\phi(A \otimes B) = \text{Tr}[A^T B]$.

Note: SDP approximation of Umegaki rel. entr. has size $\sim n^2$!

CVXQUAD

New CVX functions:

quantum_entr

 $\rho \mapsto -\operatorname{Tr}[\rho \log \rho]$ $\rho \mapsto \mathsf{Tr}[\sigma \log \rho]$ Concave ($\sigma \succ 0$ fixed) trace_logm

 $(\rho, \sigma) \mapsto \mathsf{Tr}[\rho(\log \rho - \log \sigma)]$ Convex quantum_rel_entr

 $(\rho, \sigma) \mapsto \operatorname{Tr}[K^* \rho^{1-t} K \sigma^t]$ Concave $(t \in [0,1])$ lieb ando

 $D_{\rm op}(\rho||\sigma) \prec T$ op_rel_entr_epi_cone

 $A\#_t B \succ T$ matrix_geo_mean_hypo_cone

Concave

Numerical experiments: maximum entropy problem

$$\begin{array}{ll} \text{maximize} & -\sum_{i=1}^n x_i \log(x_i) \\ \text{subject to} & \textit{Ax} = b \\ & \textit{x} > 0 \end{array} \qquad (\textit{A} \in \mathbb{R}^{\ell \times n}, \textit{b} \in \mathbb{R}^\ell)$$

Numerical experiments: maximum entropy problem

$$\begin{array}{ll} \text{maximize} & -\sum_{i=1}^n x_i \log(x_i) \\ \text{subject to} & \textit{Ax} = b \\ & \textit{x} > 0 \end{array} \qquad (\textit{A} \in \mathbb{R}^{\ell \times n}, \textit{b} \in \mathbb{R}^\ell)$$

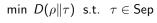
		CVX's successive approx.		Our approach $m = 3, h = 1/8$	
n	ℓ	time (s)	accuracy*	time (s)	accuracy*
200	100	1.10 s	6.635e-06	0.88 s	2.767e-06
400	200	3.38 s	2.662e-05	0.72 s	1.164e-05
600	300	9.14 s	2.927e-05	1.84 s	2.743e-05
1000	500	52.40 s	1.067e-05	3.91 s	1.469e-04

^{*}accuracy measured wrt specialized MOSEK routine

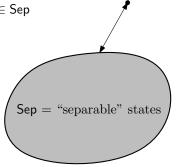
 CVX's successive approx.: Uses Taylor expansion of log instead of Padé approx + successively refine linearization point

Relative entropy of entanglement

ullet Quantify entanglement of a bipartite state ho



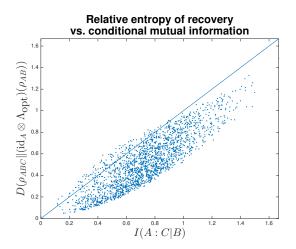
n	Cutting-plane [Zinchenko et al.]	Our approach $m = 3, h = 1/8$
4	6.13 s	0.55 s
6	12.30 s	0.51 s
8	29.44 s	0.69 s
9	37.56 s	0.82 s
12	50.50 s	1.74 s
16	100.70 s	5.55 s



Relative entropy of recovery (with Omar Fawzi)

Question: Is it true that for any tripartite quantum state ρ_{ABC} :

$$I(A:C|B) \stackrel{?}{\geq} \min_{\Lambda:B \to BC} D(\rho_{ABC} \| (\mathrm{id}_A \otimes \Lambda)(\rho_{AB})).$$



Conclusion

- Approximation theory with convexity
- Approach extends to other operator concave functions via their integral representation (Löwner theorem)
- Open questions:
 - Dependence on n: Our SDP approximation for Umegaki relative entropy has size $\sim n^2$. Is there a representation of size O(n)?
 - Dependence on ϵ : Our approximation for scalar log has size (second-order cone rep.) $\sqrt{\log(1/\epsilon)}$ where ϵ error on $[e^{-1}, e]$. Is this best possible?
- Paper: arXiv:1705.00812.Code: http://github.com/hfawzi/cvxquad/

Conclusion

- Approximation theory with convexity
- Approach extends to other operator concave functions via their integral representation (Löwner theorem)
- Open questions:
 - Dependence on n: Our SDP approximation for Umegaki relative entropy has size $\sim n^2$. Is there a representation of size O(n)?
 - Dependence on ϵ : Our approximation for scalar log has size (second-order cone rep.) $\sqrt{\log(1/\epsilon)}$ where ϵ error on $[e^{-1}, e]$. Is this best possible?
- Paper: arXiv:1705.00812.
 Code: http://github.com/hfawzi/cvxquad/

Thank you!