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Abstract. Minimizing a polynomial function over a region defined by polynomial inequalities mod-4

els broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic5

approaches have emerged recently for computing the global minimum, by combining tools from real6

algebra (sums of squares of polynomials) and functional analysis (moments of measures) with semidef-7

inite optimization. Sums of squares are used to certify positive polynomials, combining an old idea of8

Hilbert with the recent algorithmic insight that they can be checked efficiently with semidefinite opti-9

mization. The dual approach revisits the classical moment problem and leads to algorithmic methods10

for checking optimality of semidefinite relaxations and extracting global minimizers. We review some11

selected features of this general methodology, illustrate how it applies to some combinatorial graph12

problems, and discuss links with other relaxation methods.13
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1. Introduction18

Polynomial optimization. We consider the following polynomial optimization problem:19

given multivariate polynomials f, g1, . . . , gm ∈ R[x1, . . . ,xn], compute the infimum of the20

polynomial function f over the basic closed semialgebraic set21

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} (1.1)

defined by the polynomial inequalities gj(x) ≥ 0. That is, compute22

fmin := inf
x∈K

f(x) = inf{f(x) : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (P)

This is a in general hard, nonlinear and nonconvex optimization problem which models23

a multitude of problems from combinatorics, geometry, control and many other areas of24

mathematics and its applications.25

Well established methods from nonlinear optimization can be used to tackle problem26

(P), which however can only guarantee to find local minimizers. Exploiting the fact that the27

functions f, gj are polynomials, new algorithmic methods have emerged in the past decade28

that may permit to find global minimizers. These methods rely on using algebraic tools29
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(sums of squares of polynomials) and analytic tools (moments of measures) combined with30

semidefinite optimization.31

In a nutshell, sums of squares of polynomials are used to certify positive polynomials,32

the starting point being that finding fmin amounts to finding the largest scalar λ for which the33

polynomial f −λ is nonnegative on the set K. The key insight is that, while it is hard to test34

whether a polynomial f is nonnegative, one can test whether f can be written as a sum of35

squares of polynomials using semidefinite optimization.36

Moments of measures are used to model the nonlinearities arising in polynomial func-37

tions, the starting point being that finding fmin amounts to finding a positive measure µ on the38

set K minimizing the integral
∫
K
f(x)dµ =

∑
α fα

∫
K
xαdµ. These moments are used to39

build certain positive semidefinite Hankel type matrices. The key feature of these matrices is40

that they permit to certify optimality and to find the global minimizers of problem (P) (under41

certain conditions).42

Semidefinite optimization is a wide generalization of the classical tool of linear opti-43

mization, where vector variables are replaced by matrix variables constrained to be positive44

semidefinite. In other words semidefinite optimization is linear optimization over affine sec-45

tions of the cone of positive semidefinite matrices. The crucial property is that there are46

efficient algorithms for solving semidefinite programs (to any arbitrary precision).47

Sums of squares and moment based methods permit to construct convex relaxations for48

the original problem (P), whose optimal values can be computed with semidefinite optimiza-49

tion and provide hiearchies of bounds for the global minimum fmin. Convergence properties50

rely on real algebraic results (giving sums of squares certificates for positive polynomials),51

and optimality conditions and techniques for extracting global minimizers rely on functional52

analytic results for moment sequences combined with commutative algebra. Hence these53

methods have their roots in some classical mathematical results, going back to work of54

Hilbert about positive polynomials and sums of squares and to work on the classical moment55

problem in the early 1900’s. They also use some recent algebraic and functional analytic56

developments combined with some modern optimization techniques that emerged since a57

few decades.58

Some combinatorial examples. When all polynomials in (P) are linear, problem (P) boils59

down to linear programming:60

min{cTx : Ax ≥ b}, (LP)

well known to be solvable in polynomial time. However, when adding in (LP) the quadratic61

conditions x2
i = xi on the variables, we get 0/1 integer linear programming (ILP), which62

is hard. Instances of polynomial optimization problems arise naturally from combinatorial63

problems.64

Consider for instance the partition problem, which asks whether a given sequence a1, . . . ,65

an of integers can be partitioned into two classes with equal sums, well known to be NP-66

complete [31]. This amounts to deciding whether the minimum over Rn of the polynomial67

f = (
∑n
i=1 aixi)

2 +
∑n
i=1(x2

i − 1)2 is equal to 0.68

We now mention other NP-hard problems, dealing with cuts, stable sets, graph colorings,69

and matrix copositivity, to which we will come back later in the paper.70

Max-cut. Consider a graph G = (V,E) with edge weights w = (wij) ∈ RE . The max-cut71

problem asks for a partition of the vertices of G into two classes in such a way that the total72

weight of the edges crossing the partition is maximum. Encoding partitions by vectors in73
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{±1}V , we obtain the following polynomial optimization problem:74

mc(G,w) = max
x∈RV

{
∑
{i,j}∈E

(wij/2)(1− xixj) : x2
i = 1 (i ∈ V )}, (1.2)

which models the max-cut problem. A basic idea to arrive at a semidefinite relaxation of75

problem (1.2) is to observe that, for any x ∈ {±1}V , the matrix X = xxT is positive76

semidefinite and all its diagonal entries are equal to 1. This leads to the following problem:77

sdp(G,w) = max
X∈RV ×V

{
∑
{i,j}∈E

(wij/2)(1−Xij) : Xii = 1 (i ∈ V ), X � 0}, (1.3)

where the notation X � 0 means that X is symmetric positive semidefinite (i.e., xTXx ≥ 078

for all x ∈ RV ). Of course if we would add the condition that X must have rank 1, then this79

would be a reformulation of the max-cut problem, thus intractable. The program (1.3) is an80

instance of semidefinite program and it can be solved in polynomial time (to any precision) as81

will be recalled below. This is the semidefinite program used by Goemans and Williamson82

[34] in their celebrated 0.878-approximation algorithm for max-cut. They show that for83

nonnegative edge weights the integrality gap mc(G,w)/sdp(G,w) is at least 0.878 and they84

introduce a novel rounding technique to produce a good cut from an optimal solution to the85

semidefinite program (1.3). This is a breakthrough application of semidefinite optimization86

to the design of approximation algorithms, which started much of the research activity in87

this field (see e.g. [32]).88

Stable sets and colorings. A stable set in a graph G = (V,E) is a set of vertices that does
not contain any edge. The stability number α(G) ofG is the maximum cardinality of a stable
set in G. It can be computed with any of the following two programs:

α(G) = max
x∈RV

∑
i∈V

xi s.t. xixj = 0 ({i, j} ∈ E), x2
i = xi (i ∈ V ), (1.4)

1

α(G)
= min
x∈RV

xT (I +AG)x s.t.
∑
i∈V

xi = 1, xi ≥ 0 (i ∈ V ), (1.5)

where AG is the adjacency matrix of G (see [24] for (1.5)). As computing α(G) is NP-hard,89

we find again that problem (P) is hard as soon as some nonlinearities occur, either in the90

constraints (as in (1.4)), or in the objective function (as in (1.5)). Both formulations are91

useful to construct hierarchies of bounds for α(G).92

The chromatic number χ(G) of G is the minimum number of colors needed to color the93

vertices so that adjacent vertices receive distinct colors. There is a classic reduction to the94

stability number. Consider the cartesian product G2Kk of G and the complete graph on k95

nodes, whose edges are the pairs {(i, h), (j, h′)} with i = j ∈ V and h 6= h′ ∈ [k], or with96

{i, j} ∈ E and h = h′ ∈ [k]. Then a stable set in the cartesian product G2Kk corresponds97

to a subset of vertices ofG that can be properly colored with k colors. Hence k colors suffice98

to properly color all the vertices of G precisely when α(G2Kk) = |V |. Therefore, χ(G) is99

the smallest integer k for which α(G2Kk) = |V |. This reduction will be useful for deriving100

hierarchies of bounds for χ(G) from bounds for α(G).101

A well known bound for both α(G) and χ(G) is provided by the celebrated theta number102
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ϑ(G) of Lovász [70], defined by the following semidefinite program:103

ϑ(G) = max
X∈RV ×V

{
∑
i,j∈V

Xij : Tr(X) = 1, Xij = 0 ({i, j} ∈ E), X � 0}. (1.6)

The following inequalities hold, known as Lovász’ sandwich inequalities:104

α(G) ≤ ϑ(G) ≤ χ(G) and ω(G) ≤ ϑ(G) ≤ χ(G). (1.7)

Here,G is the complement ofG and ω(G) = α(G) is the maximum cardinality of a clique (a105

set of pairwise adjacent vertices) inG. The inequality α(G) ≤ ϑ(G) is easy: any stable set S106

of G gives a feasible solution X = χS(χS)T/|S| of the program (1.6), where χS ∈ {0, 1}V107

is the characteristic vector of S.108

A graph G is called perfect if ω(H) = χ(H) for every induced subgraph H of G.109

Chudnovsky et al. [14] showed that a graph G is perfect if and only if it does not contain110

an odd cycle of length at least five or its complement as an induced subgraph. In view111

of (1.7), we have α(G) = ϑ(G) and χ(G) = ϑ(G) for perfect graphs. Therefore, both112

parameters α(G) and χ(G) can be computed in polynomial time for perfect graphs, via113

the computation of the theta number, using semidefinite optimization. Moreover, maximum114

stable sets and minimum graph colorings can also be found in polynomial time [36]. This is115

an early breakthrough application of semidefinite optimization to combinatorial optimization116

and as of today no other efficient algorithm is known for these problems.117

One can strengthen the theta number toward α(G) by adding in program (1.6) the non-118

negativity constraintX ≥ 0 on the entries ofX (leading to the parameter ϑ′(G)), and toward119

χ(G) by replacing the constraint Xij = 0 by Xij ≤ 0 for all edges (leading to the parameter120

ϑ+(G)). Thus we have:121

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G). (1.8)

We will see how to build hierarchies of bounds toward α(G) and χ(G) strenghtening the122

parameters ϑ′ and ϑ+, using the sums of squares and moment approaches.123

Copositive matrices. Another interesting instance of unconstrained polynomial optimiza-124

tion is testing matrix copositivity, which is a hard problem [27, 74]. Recall that a symmetric125

n × n matrix M is called copositive if the quadratic form xTMx is nonnegative over the126

nonnegative orthant Rn+ or, equivalently, the polynomial fM =
∑n
i,j=1Mijx

2
ix

2
j is nonneg-127

ative over Rn. Starting with the formulation (1.5) of the stability number α(G), it follows128

that α(G) can also be computed with the following copositive program:129

α(G) = min
λ∈R
{λ : λ(I +AG)− J is copositive}, (1.9)

where J is the all-ones matrix. By using sums of squares certificates for certifying matrix130

copositivity, one can define a hierarchy of cones approximating the copositive cone, which131

can also be used to define hierarchies of semidefinite bounds for the parameters α(G) and132

χ(G).133

This paper. The field of polynomial optimization has grown considerably in the recent134

years. It has roots in early work of Shor [97] and later of Nesterov [75], and the foundations135

were laid by the groundworks of Lasserre [53, 54] and Parrilo [82, 83]. The monograph of136
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Lasserre [56], our overview [68] and the handbook [1] can serve as a general source about137

polynomial optimization. We also refer to the monographs [72, 85] and to the overview [91]138

for an in-depth treatment of real algebraic aspects, and to the monograph [9] for links to139

convexity.140

In this paper we will discuss only a small selection of results from this field. Inevitably141

we cannot make full references to the literature and we apologize for all omissions. We will142

treat some subjects where we have done some (modest) contributions and our choices are143

biased, in particular, toward properties of the moment relaxations and toward hierarchies of144

semidefinite bounds for combinatorial problems. Our interest in polynomial optimization145

was stirred by the work [54] of Lasserre explaining how his method applies to 0/1 linear146

programming and we are grateful to Jean Lasserre for his inspiring work. We realized that147

his approach has tight links with lift-and-project methods for combinatorial optimization.148

This in turn inspired us to show finite convergence for polynomial optimization over finite149

varieties, to give simple real algebraic proofs for several results about flat extensions of150

moment matrices, and to investigate hierarchies for combinatorial graph parameters.151

The paper is organized as follows. We begin with preliminaries about semidefinite op-152

timization and sums of squares of polynomials. Then we present the sums of squares and153

moment approaches for polynomial optimization, with a special focus on the properties of154

moment matrices that allow to certify optimality and extract global optimizers. Then some155

selected applications are discussed: for computing real roots of polynomial equations, for156

designing hierarchies of semidefinite approximations for the stability number and the chro-157

matic number, and for approximating matrix copositivity, again with application to approx-158

imating graph parameters. We conclude with mentioning some other research directions159

where hierarchies of semidefinite relaxations are also being increasingly used.160

2. Preliminaries161

Notation. N = {0, 1, 2, . . .} is the set of nonnegative integers, Nnt consists of the sequences162

α ∈ Nn with |α| :=
∑n
i=1 αi ≤ t for t ∈ N and, for α ∈ Nn, xα denotes the mono-163

mial xα1
1 · · ·xαn

n with degree |α|. (We use boldface letters x,xi, .. to denote variables.)164

R[x1, . . . ,xn] = R[x] is the ring of polynomials in n variables and R[x]t its subspace of165

polynomials with degree ≤ t. The vector [x]t = (xα)α∈Nn
t

lists the monomials of degree at166

most t (in some given order) and, for a polynomial f ∈ R[x]t, the vector f = (fα)α∈Nn
t

lists167

the coefficients of f (in the same order), so that f =
∑
α fαx

α = fT[x]t.168

Given polynomials g1, . . . , gm, we let I = (g1, . . . , gm) denote the ideal that they gen-169

erate and, for an integer t, It denotes its truncation at degree t, which consists of all polyno-170

mials
∑m
j=1 pjgj with pj ∈ R[x] and deg(pjgj) ≤ t.171

A polynomial f is a sum of squares (sos) if f = g2
1 + . . . + g2

m for some polynomials172

g1, . . . , gm. Σ[x] contains all sums of squares of polynomials and we set Σ[x]t = Σ[x] ∩173

R[x]t. P(K) contains all polynomials f that are nonnegative over a given set K ⊆ Rn, i.e.,174

f(x) ≥ 0 for all x ∈ K, also abbreviated as f ≥ 0 on K.175

Ideals and varieties. Consider an ideal I ⊆ R[x]. The sets
√
I := {f ∈ R[x] | fk ∈ I for some integer k ≥ 1},

R
√
I := {f ∈ R[x] | f2k + p2

1 + . . .+ p2
m ∈ I for some k ≥ 1, p1, . . . , pm ∈ R[x]}
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are called, respectively, the radical and the real radical of I. Moreover, the sets

V (I) = {x ∈ Cn : f(x) = 0 ∀f ∈ I}, VR(I) = V (I) ∩ Rn

are, respectively, the (complex) variety and the real variety of the ideal I. If I = (g1, . . . , gm)
is the ideal generated by a set of polynomials g1, . . . , gm, then V (I) consists of all their com-
mon complex roots while VR(I) consists of their common real roots. The vanishing ideal of
a set V ⊆ Cn is the set of polynomials

I(V ) = {f ∈ R[x] : f(x) = 0 ∀x ∈ V }.

The sets I(V ),
√
I and R

√
I are all ideals in R[x] and they satisfy the inclusions:

I ⊆
√
I ⊆ I(V (I)) and I ⊆ R

√
I ⊆ I(VR(I)).

The ideal I is called radical if I =
√
I and real radical if I = R

√
I. For instance, the ideal176

I = (x2) is not radical since x ∈
√
I \ I, while the ideal I = (x2

1 + x2
2) is radical but not177

real radical since x1,x2 ∈ R
√
I \ I. The following celebrated results relate (real) radical and178

vanishing ideals.179

Theorem 2.1 ([16, 52, 98]). Let I be an ideal in R[x]. Then,
√
I = I(V (I)) (Hilbert’s180

Nullstellensatz) and R
√
I = I(VR(I)) (Real Nullstellensatz).181

As I ⊆ I(V (I)) ⊆ I(VR(I)), I real radical implies I radical and, moreover, V (I) =182

VR(I) ⊆ Rn if the real variety VR(I) is finite. Moreover, an ideal I is zero-dimensional183

precisely when V (I) is finite. Then there is a well known relationship between the cardinal-184

ity of the variety V (I) and the dimension of the quotient space R[x]/I (see e.g. [16]).185

Proposition 2.2. An ideal I in R[x] is zero-dimensional (i.e., the variety V (I) is finite) if186

and only if the vector space R[x]/I is finite dimensional. Moreover, we have the inequality:187

|V (I)| ≤ dimR[x]/I, with equality if and only if the ideal I is radical.188

The eigenvalue method for computing the variety V (I). We now recall how to find the
variety V (I) of a zero-dimensional ideal I by computing the eigenvalues of the multipli-
cation operator in the quotient algebra R[x]/I, since this technique is used for finding the
global minimizers of problem (P) (see [44]). Given a polynomial h ∈ R[x], consider the
‘multiplication by h’ linear map in R[x]/I:

mh : R[x]/I −→ R[x]/I
f + I 7−→ fh+ I

and let Mh denote its matrix in a given linear basis B = {b1, . . . , bN} of R[x]/I.189

Theorem 2.3. Assume N = dimR[x]/I < ∞, let B = {b1, . . . , bN} be a linear basis of190

R[x]/I, and let [v]B = (b1(v), . . . , bN (v))T be the vector of evaluations at v ∈ V (I) of the191

polynomials in B. For any h ∈ R[x], the eigenvalues of the multiplication matrixMh are the192

evaluations h(v) of h at the points v ∈ V (I), with corresponding (left) eigenvectors [v]B.193

That is, MT
h [v]B = h(v)[v]B for all v ∈ V (I).194

If I is radical then |V (I)| = N (by Proposition 2.2) and the matrix Mh has a full set195

of linearly independent eigenvectors ([v]B for v ∈ V (I)). These vectors can be found by196



Optimization over polynomials: Selected topics 7

computing the eigenvalues of MT
h (assuming the values h(v) are pairwise distinct which can197

be achieved e.g. by selecting a random linear polynomial h) and it is then easy to recover198

the points v ∈ V (I) from these vectors [v]B.199

We illustrate this method applied to the univariate case. Say I = (p), where p is the
polynomial: p = xd − pd−1x

d−1 − . . . − p0. The set B = {1,x, . . . ,xd−1} is a basis of
R[x]/(p) and with respect to this basis the ‘multiplication by x’ matrix has the form

Mx =

0 . . . 0 p0

Id−1

...
pd−1

 .

Its characteristic polynomial is det(Mx − tI) = (−1)dp(t), hence the eigenvalues of the200

matrix Mx are the roots of p and indeed MT
x [v]B = v[v]B holds if p(v) = 0.201

Semidefinite optimization. Sn is the set of real symmetric n× n matrices, equipped with202

the trace inner product 〈X,Y 〉 = Tr(XTY ) =
∑n
i,j=1XijYij . The notation X � 0 means203

that X is positive semidefinite (i.e., xTXx ≥ 0 for all x ∈ Rn) and Sn+ ⊆ Sn is the cone of204

positive semidefinite matrices. The cone Sn+ is self-dual: X ∈ Sn is positive semidefinite if205

and only if 〈X,Y 〉 ≥ 0 for all Y ∈ Sn+.206

Given matrices C,A1, . . . , Am ∈ Sn and a vector b ∈ Rm, a semidefinite program in
standard primal form and its dual semidefinite program read:

p∗ = sup
X∈Sn

{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0}, (P-SDP)

d∗ = inf
y∈Rm

{bTy :

m∑
j=1

yjAj − C � 0}. (D-SDP)

Weak duality holds: p∗ ≤ d∗ (since X,Y =
∑m
j=1 yjAj − C � 0 implies 〈X,Y 〉 ≥207

0). Moreover, if (P-SDP) is bounded and has a positive definite feasible solution X , then208

strong duality holds: p∗ = d∗. Semidefinite programs can be solved (approximatively) in209

polynomial time, using the ellipsoid method (since one can test if a rational matrix is positive210

semidefinite using Gaussian elimination). However, the ellipsoid method is not efficient in211

practice, and efficient algorithms used in practical implementations rely on interior-point212

algorithms. (See e.g. [5, 21, 99, 100].) On the other hand, the exact complexity is not213

known of the problem of testing feasibility of a semidefinite program: given integral matrices214

C,A1, . . . , Am ∈ Sn,215

decide whether there exists y ∈ Rn such that C + y1A1 + . . .+ ymAm � 0. (F)

An obvious difficulty is that there might be only irrational solutions. It is known that (F)216

belongs to NP if and only if it belongs to co-NP ([88], see also [51]). Moreover, (F) can be217

solved in polynomial time when fixing eitherm or n [46] and, when fixingm, one can check218

in polynomial time if (F) has a rational solution [46].219

Recognizing sums of squares of polynomials. It turns out that checking whether a poly-220

nomial f =
∑
α∈Nn

2t
fαx

α can be written as a sum of squares of polynomials amounts to221

checking whether the following semidefinite program:222 ∑
β,γ∈Nn

t :β+γ=α

Xβ,γ = fα (α ∈ Nn2t), X � 0, (2.1)
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(in the matrix variable X = (Xβ,γ)β,γ∈Nn
t

) admits a feasible solution. To see this, as-223

sume f =
∑k
j=1 p

2
j . Then each pj has degree at most t and can be written as pj =224 ∑

α(pj)αx
α = pj

T[x]t, where pj = ((pj)α) is the vector of coefficients of pj in the mono-225

mial basis. Therefore, f =
∑k
j=1 p

2
j = [x]Tt (

∑k
j=1 pjpj

T)[x]t = [x]Tt P [x]t, where the226

matrix P =
∑k
j=1 pjpj

T is positive semidefinite. Moreover, by equating the coefficients of227

both polynomials f and [x]TdP [x]d in the identity f = [x]Tt P [x]t, it follows that P satisfies228

the system (2.1). The argument can be easily reversed: any feasible solution of (2.1) gives229

rise to a sum of squares decomposition of f .230

More generally, given polynomials f, g1, . . . , gm ∈ R[x], the problem of finding a de-231

composition of the form f = σ0 + σ1g1 + . . . + σmgm, where σ0, σ1, . . . , σm are sums232

of squares with a given degree bound: deg(σ0),deg(σjgj) ≤ 2t, can also be cast as a233

semidefinite program. This program is analogue to (2.1), but it now involves m+ 1 positive234

semidefinite matrices X0, X1, . . . , Xm, where X0 is indexed by Nnt (corresponding to σ0)235

andXj by Nnt−ddeg(gj)/2e (corresponding to σj). Of course one should adequately define the236

affine constraints in the semidefinite program.237

3. Positive polynomials and sums of squares238

3.1. Positivity certificates. Understanding the link between positive polynomials and sums239

of squares is a classic question which goes back to work of Hilbert around 1890. Hilbert240

realized that not every nonnegative polynomial is a sum of squares of polynomials and he241

characterized when this happens.242

Theorem 3.1 (Hilbert [45]). Every nonnegative polynomial of degree 2d in n variables is243

a sum of squares of polynomials if and only if we are in one of the following three cases:244

(n = 1, 2d), (n, 2d = 2), and (n = 2, 2d = 4).245

In all other cases, Hilbert showed the existence of a nonnegative polynomial which is246

not sos. The first explicit construction was found only sixty years later by Motzkin: the247

Motzkin polynomial M = x2
1x

2
2(x2

1 +x2
2−3) + 1 is nonnegative but not a sum of squares of248

polynomials. However, the polynomial (1 +x2
1 +x2

2)M is a sum of squares of polynomials,249

which certifies the positivity of M . We refer to [89] for an historic account and for more250

examples. We also refer to [7] for an in-depth study of the two smallest cases (n = 2, 2d =251

6) and (n = 3, 2d = 4) when not all nonnegative polynomials are sums of squares.252

If we are not in one of the special three cases of Theorem 3.1, then the inclusion Σ[x]2d ⊆253

P(Rn) ∩ R[x]2d is strict. Are these two sets far apart or not? That is, are there few or many254

sums of squares within nonnegative polynomials? The answer depends whether the degree255

and the number of variables are fixed or not.256

On the one hand, sums of squares are dense within nonnegative polynomials if we allow257

the degree to grow. Lasserre and Netzer [60] show the following explicit sums of squares258

approximation: if f is nonnegative over the box [−1, 1]n then for any ε > 0 there exists259

k ∈ N such that the perturbed polynomial f + ε(1 +
∑n
i=1 x

2k
i ) is a sum of squares of260

polynomials. (See also Lasserre [55]).261

On the other hand, if we fix the degree but let the number of variables grow, then there262

are significantly more nonnegative polynomials than sums of squares: Blekherman [6] shows263
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that the ratio of volumes of (sections of) the cone of sums of squares and the cone of non-264

negative polynomials tends to 0 as n goes to∞.265

At the 1900 International Congress of Mathematicians in Paris, Hilbert asked whether266

every nonnegative polynomial can be written as a sum of squares of rational functions. This267

question, known as Hilbert’s 17th problem, was answered in the affirmative in 1927 by Artin,268

whose work led the foundations of the field of real algebraic geometry.269

Sums of squares certificates (also known as Positivstellensätze) are known for charac-270

terizing positivity over a general basic closed semialgebraic set K of the form (1.1). They271

involve weighted combinations of the polynomials g1, . . . , gm describing the set K. The272

quadratic module generated by g = (g1, . . . , gm) is the set273

Q(g) = {σ0 + σ1g1 + . . .+ σmgm : σ0, . . . , σm ∈ Σ[x]} , (3.1)

the truncated quadratic module Qt(g) is its subset obtained by restricting the degrees:274

deg(σjgj) ≤ 2t (setting g0 = 1), and the preordering T (g) is the quadratic module gener-275

ated by the 2m polynomials ge = ge11 · · · gemm for e ∈ {0, 1}m.276

Theorem 3.2 (Krivine [52], Stengle [98]). Let f ∈ R[x] and K be as in (1.1).277

(i) f > 0 on K if and only if fq = 1 + p for some p, q ∈ T (g).278

(ii) f ≥ 0 on K if and only if fq = f2k + p for some p, q ∈ T (g) and k ∈ N.279

(iii) f = 0 on K if and only if −f2k ∈ T (g) for some k ∈ N.280

In each case it is clear that the ‘if part’ gives a certificate that f is positive (nonnegative, or281

vanishes) onK, the hard part is showing the existence of such a certificate. These certificates282

use polynomials in T (g) and thus they can be checked with semidefinite optimization, once a283

bound on the degrees has been set. However they are not directly useful for our polynomial284

optimization problem (P). Indeed, in view of Theorem 3.2 (i), one would need to search285

for the largest scalar λ for which there exist p, q ∈ T (g) such that (f − λ)q = 1 + p,286

thus involving a quadratic term λq which cannot be dealt with directly using semidefinite287

optimization.288

To go around this difficulty one may instead use the simpler “denominator free" positivity289

certificates of Schmüdgen and Putinar, which hold in the case when the semialgebraic set K290

is compact. The following condition:291

∃R > 0 such that R− x2
1 − . . .− x2

n ∈ Q(g), (A)

known as the Archimedean condition, allows easier positivity certificates using the quadratic292

module Q(g). Note that K is compact if (A) holds.293

Theorem 3.3 (Schmüdgen [92]). Assume that the set K in (1.1) is compact. If the polyno-294

mial f is positive on K (i.e., f(x) > 0 for all x ∈ K), then f ∈ T (g).295

Theorem 3.4 (Putinar [86]). Assume that the Archimedean condition (A) holds. If the poly-296

nomial f is positive on K, then f ∈ Q(g).297

3.2. Semidefinite relaxations for (P). Motivated by Putinar’s result, Lasserre [53] intro-298

duced the following relaxations for the polynomial optimization problem (P). For any integer299

t ≥ df = ddeg(f)/2e, consider the parameters300

f sos
t = sup

λ∈R
{λ : f − λ ∈ Qt(g)}, (SOSt)
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which form a monotone nondecreasing sequence: f sos
t ≤ f sos

t+1 ≤ . . . ≤ fmin.301

Each program (SOSt) can be written as a semidefinite program (recall Section 2). More-302

over, the dual semidefinite program can be expressed as follows:303

fmom
t = inf

L∈R[x]∗2t

{L(f) : L(f) = 1, L(p) ≥ 0 ∀p ∈ Qt(g)}, (MOMt)

where R[x]∗2t denotes the set of linear functionals on R[x]2t. The parameters fmin, f sos
t and304

fmom
t satisfy:305

f sos
t ≤ fmom

t ≤ fmin. (3.2)

The inequality f sos
t ≤ fmom

t is easy (by weak duality) and fmom
t ≤ fmin is explained below306

in Section 4.1. There is no duality gap: f sos
t = fmom

t , for instance if the set K has an interior307

point. In the compact case the asymptotic convergence of the bounds to the infimum of f is308

guaranteed by Putinar’s theorem.309

Theorem 3.5. (Lasserre [53]) Assume that assumption (A) holds (and thus K is compact).310

Then, limt→∞ f sos
t = limt→∞ fmom

t = fmin.311

Proof. For any ε > 0, the polynomial f − fmin + ε is positive on K and thus, by Theorem312

3.4, it belongs to Qt(g) for some t, which implies f sos
t ≥ fmin − ε.313

In order to discuss further properties of the dual (moment) programs (MOMt), we need314

to go in some detail about the moment problem. This is what we do in the next sections and315

we come back to the hierarchies later in Section 4.4.316

4. Moment sequences and moment matrices317

4.1. The moment problem. Given a (positive Borel) measure µ on a setK ⊆ Rn, consider318

the linear functional Lµ ∈ R[x]∗ defined by319

Lµ(f) =

∫
K

f(x)dµ =
∑
α

fα

(∫
K

xαdµ

)
for f ∈ R[x], (4.1)

which thus depends linearly on the moments
∫
K
xαdµ of the measure µ. The classical320

moment problem asks to characterize the linear functionals L ∈ R[x]∗ admitting such a rep-321

resenting measure µ, i.e., being of the form L = Lµ. The following result (due to Haviland)322

makes the link to polynomial positivity: L = Lµ for some measure µ on K if and only if L323

is nonnegative on P(K).324

Let us go back to problem (P). Following Lasserre [53], we observe that the infimum of
f over the set K can be reformulated as

fmin = inf
µ
{Lµ(f) : µ is a probability measure on K}.

Indeed, as f(x) ≥ fmin for all x ∈ K, by integrating both sides over K for an arbitrary325

probability measure µ on K, we obtain that Lµ(f) ≥ fmin. For the reverse inequality,326

choose µ to be the Dirac measure at an arbitrary point x ∈ K, so that Lµ(f) = f(x) and327

thus infµ Lµ(f) ≤ f(x).328
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If µ is a probability measure on K, then Lµ is nonnegative on P(K) and thus on its329

subsetQt(g), which implies the inequality fmom
t ≤ fmin from (3.2). Moreover, the relaxation330

(MOMt) is exact, i.e., fmom
t = fmin, if it has an optimal solution of the form Lµ where µ is331

a probability measure on K. This observation motivates searching for sufficient conditions332

for existence of a representing measure. This is treated in the rest of the section.333

If L ∈ R[x]∗ has a representing measure then L must be nonnegative on P(K) and thus
on the subcone Σ[x] of all sums of squares. The nonnegativity condition of L over Σ[x] can
be conveniently expressed using the following ‘Hankel type’ matrix M(L):

M(L) = (L(xαxβ))α,β∈Nn ,

which is indexed by Nn and called the moment matrix of L.334

Indeed, note that L(pq) = pTM(L)q for any p, q ∈ R[x]. Therefore, L is nonnegative335

over Σ[x] if and only if M(L) � 0. Moreover, for g ∈ R[x], L is nonnegative on the set336

gΣ[x] = {gσ : σ ∈ Σ[x]} if and only if M(gL) � 0, where gL ∈ R[x]∗ is the new linear337

functional defined by (gL)(p) = L(gp) for p ∈ R[x].338

For example, in the univariate case, L has a representing measure on R if and only if339

M(L) � 0 (Hamburger’s theorem), L has a representing measure on R+ if and only if340

M(L),M(xL) � 0 (Stieltjes’ theorem), and L has a representing measure on [0, 1] if and341

only if M(xL),M((1− x)L) � 0 (Hausdorff’s theorem).342

Both Theorems 3.3-3.4 have counterparts for the moment problem. If K is compact,343

then L has a representing measure on K if and only if L ≥ 0 on T (g) (Schmüdgen [92]) or,344

equivalently, L ≥ 0 on Q(g) if (A) holds (Putinar [86]).345

4.2. Finite rank moment matrices. As we saw above, a necessary condition forL ∈ R[x]∗346

to have a representing measure is positive semidefiniteness of its moment matrix. Although347

not sufficient in general, it turns out that this condition is sufficient in the case when M(L)348

has finite rank ([17], see Theorem 4.1 below). As this result plays a crucial role for studying349

the finite convergence of the relaxations (MOMt) for (P), we discuss it in detail.350

In what follows, KerM(L) denotes the kernel of M(L), which consists of the polyno-351

mials p ∈ R[x] for which L(pq) = 0 for all q ∈ R[x]. Hence KerM(L) is an ideal in R[x].352

Moreover, KerM(L) is real radical if M(L) � 0 (since, when M(L) � 0, a polynomial p353

belongs to KerM(L) if and only if L(p2) = 0).354

Consider a measure µ and the corresponding linear functional Lµ as in (4.1). Its support355

is contained in the real variety of the polynomials in the kernel of M(Lµ): Supp(µ) ⊆356

VR(KerM(Lµ)). When µ = δv is the Dirac measure at a point v ∈ Rn, Lµ is the evaluation357

Lv at v, defined by Lv(p) = p(v) for all p ∈ R[x]. If the suppport of µ is finite (i.e., µ is358

finite atomic), say Supp(µ) = {v1, . . . , vr}, then Lµ is a conic combination of evaluations359

at the vi’s: Lµ =
∑r
i=1 λiLvi for some scalars λi > 0. The following theorem shows that360

this describes all the linear functionals L ∈ R[x]∗ with M(L) � 0 and rank M(L) < ∞.361

We present our simple real algebraic proof from [64] (see also [68]).362

Theorem 4.1. (Curto and Fialkow [17]) Let L ∈ R[x]∗. Assume that M(L) � 0 and that363

M(L) has finite rank r. Then L has a (unique) representing measure µ. Moreover, µ is finite364

atomic with r atoms and supported by V (KerM(L)).365

Proof. As M(L) � 0, its kernel I := KerM(L) is a real radical ideal in R[x].366

Moreover, the quotient space R[x]/I has finite dimension r. This is because we have:367

rank M(L) = r and any set of monomials B indexing a maximal linearly independent set368

of columns of M(L) is also maximal linearly independent in R[x]/I.369
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Applying Proposition 2.2, we can conclude that the variety of the ideal I is contained in370

Rn and has cardinality r. Set V (I) = {v1, . . . , vr} ⊆ Rn.371

We consider interpolation polynomials pv1 , . . . , pvr ∈ R[x] at the points of V (I), i.e.,372

satisfying pvi(vj) = δi,j . As the polynomial pvi − p2
vi vanishes on the variety V (I), it373

belongs to the ideal I(V (I)), which is equal to I (since I is real radical). Hence, L(pvi) =374

L(p2
vi), since pvi − p2

vi ∈ I = Ker M(L). Moreover, L(p2
vi) ≥ 0 since M(L) � 0.375

Furthermore, L(p2
vi) 6= 0, since otherwise pvi would belong to KerM(L) and thus it would376

vanish at vi, a contradiction.377

We now claim that L =
∑r
i=1 L(pvi)Lvi . Indeed, any p ∈ R[x] can be written as p =378 ∑r

i=1 p(vi)pvi + q, where q ∈ I. Hence, L(q) = 0 and thus L(p) =
∑r
i=1 p(vi)L(pvi) =379 ∑r

i=1 Lvi(p)L(pvi). Hence we have shown that L has a finite r-atomic representing mea-380

sure: µ =
∑r
i=1 L(pvi)δvi , which concludes the proof.381

4.3. Flat extensions of truncated moment matrices. To make the link with the relaxations
(MOMt) for problem (P), we introduce the truncated moment matrix of L ∈ R[x]∗2t, which
is the following matrix indexed by Nnt :

Mt(L) = (L(xαxβ))α,β∈Nn
t
.

Following Curto and Fialkow [17] we say that Mt(L) is a flat extension of (its principal382

submatrix) Mt−1(L) if383

rank Mt(L) = rank Mt−1(L). (4.2)

The following result claims that any such moment matrix can be extended to an infinite384

moment matrix of the same rank.385

Theorem 4.2 ([17]). Let L ∈ R[x]∗2t. If Mt(L) is a flat extension of Mt−1(L), i.e., (4.2)386

holds, then there exists L̃ ∈ R[x]∗ which extends L (i.e., L = L̃ on R[x]2t) and has the387

property that M(L̃) is a flat extension of Mt(L): rank M(L̃) = rank Mt(L).388

The proof is elementary, exploiting the fact that the kernel of M(L̃) is an ideal. Indeed389

the relations expressing the monomials of degree t in terms of polynomials of degree at most390

t − 1 (modulo the kernel of Mt(L)) can be used to express recursively any monomial of391

degree at least t+ 1 in terms of polynomials of degree at most t (modulo the ideal generated392

by the kernel ofMt(L)). Combining Theorems 4.1 and 4.2, we arrive at the following result.393

Theorem 4.3. Let L ∈ R[x]∗2t and assume that Mt(L) � 0 and (4.2) holds. Then L has394

a finite atomic representing measure µ, whose support is given by the variety of the kernel395

of Mt(L): V (KerMt(L)) = Supp(µ) ⊆ Rn. Moreover, the ideal generated by the kernel396

of Mt(L) is equal to the kernel of M(Lµ): (KerMt(L)) = KerM(Lµ), and it is a real397

radical ideal.398

To be able to claim that the representing measure µ is supported within a given semial-399

gebraic set K like (1.1), it suffices to add the localizing conditions Mt−dgj (gjL) � 0 (for400

j ∈ [m]), where gj are the polynomials defining K and dgj = ddeg(gj)/2e, and to assume401

a stronger flatness condition:402

rankMt(L) = rankMt−dK (L), where dK = max{dgj : j ∈ [m]}. (4.3)

Theorem 4.4 ([18]). Assume L ∈ R[x]∗2t satisfies Mt(L) � 0, Mt−dgj (gjL) � 0 for403

j ∈ [m], and the flatness condition (4.3). Then L has a representing measure whose support404

is contained in the set K.405
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Proof. We give our simple proof from [64]. We already know that L has a representing mea-406

sure µ with Supp(µ) =: {v1, . . . , vr} ⊆ Rn, where r = rankMt(L) and L =
∑r
i=1 λiLvi407

with λi = L(pvi) > 0. It suffices now to show that each point vi ∈ Supp(µ) belongs408

to K, i.e., that gj(vi) ≥ 0 for all j ∈ [m]. For this, the simple but crucial observation409

is that we can choose the interpolation polynomials pvi at the vi’s in such a way that they410

all have degree at most t − dK (which follows using condition (4.3)). As each polynomial411

pvi has degree at most t − dK ≤ t − dgj and Mt−dgj (gjL) � 0, we can conclude that412

0 ≤ (gjL)(p2
vi) = L(p2

vigj), which implies directly that gj(vi) ≥ 0.413

4.4. The moment relaxations for (P). We now return to the moment relaxation (MOMt)414

for problem (P) introduced earlier in Section 3.2. First, using truncated moment matrices, it415

can be reformulated as follows:416

fmom
t = inf

L∈R[x]∗2t

{L(f) : L(1) = 1, Mt(L) � 0, Mt−dgj (gjL) � 0 (j ∈ [m])}, (MOMt)

(explaining the name ‘moment’ and the notation ‘fmom
t ’). Recall that fmom

t ≤ fmin from417

(3.2). Using the preceding results about flat extensions of moment matrices, we can now418

present the following optimality certificate for the relaxation (MOMt), which permits to419

claim that the infimum of f is reached: fmom
t = fmin.420

Theorem 4.5. Let Kf denote the set of global minimizers of problem (P) and set df =421

ddeg(f)/2e, dgj = ddeg(gj)/2e, dK = max{dgj : j ∈ [m]}. Let L ∈ R[x]∗2t be an optimal422

solution of the program (MOMt). Assume that L satisfies the following flatness condition:423

rankMs(L) = rankMs−dK (L) for some s satisfying max{df , dK} ≤ s ≤ t. (4.4)

Then, fmom
t = fmin and V (KerMs(L)) ⊆ Kf . Moreover, if rankMs(L) is maximum among424

all optimal solutions of (MOMt), then equality: V (KerMs(L)) = Kf holds and I(Kf ) =425

(KerMs(L)).426

Proof. Assume s = t (to simplify notation). By Theorem 4.4, L has a representing mea-427

sure µ with Supp(µ) ⊆ K. That is, L =
∑r
i=1 λiLvi , where λi > 0,

∑
i λi = 1, and428

{v1, . . . , vr} = V (KerMt(L)) ⊆ K. Then, fmom
t = L(f) =

∑r
i=1 λif(vi) ≥ fmin. This429

implies equality fmom
t = fmin and f(vi) = fmin for all i ∈ [r], and thus we can conclude that430

V (KerMt(L)) = {v1, . . . , vr} ⊆ Kf .431

Assume now thatMt(L) has maximum rank among the optimal solutions of (MOMt). As432

the evaluation Lv at any point v ∈ Kf is also an optimal solution of (MOMt), we deduce that433

rank Mt(Lv) ≤ rank Mt(L), which implies that KerMt(L) ⊆ KerMt(Lv) ⊆ I(v) for all434

v ∈ Kf . Hence, KerMt(L) is contained in ∩v∈Kf
I(v) = I(Kf ). By taking the varieties435

on both sides, we obtain that Kf ⊆ V (KerMt(L)), which implies Kf = V (KerMt(L))436

and thus I(Kf ) = (KerMs(L)) (since (KerMt(L)) is real radical by Theorem 4.3).437

The above result is the theoretical core of the moment approach for problem (P). It has438

been implemented in the numerical algorithm GloptiPoly. There are several other imple-439

mentations of the sos/moment approach, including SOSTOOLS, YALMIP, and SparsePOP440

(tuned to exploit sparsity structure). We conclude with some comments and pointers to a few441

additional results from the growing literature.442
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• The maximality assumption on the rank of the optimal solution is not restrictive. On443

the contrary, most interior point algorithms currently used to solve semidefinite pro-444

grams return an optimal solution lying in the relative interior of the optimal face and445

thus one with maximum possible rank (see [21]).446

• Under the assumptions of Theorem 4.5, problem (P) has finitely many global minimiz-447

ers and they can be found using the eigenvalue method from Section 2. Indeed, we448

know that the set of global minimizers is Kf = V (KerMs(L)) and that the quotient449

space R[x]/(KerMs(L)) has dimension rank Ms(L) = rank Ms−dK (L). Hence450

any set of monomials indexing a maximal linearly independent set of columns of the451

matrix Mt−dK (L) is a linear basis of R[x]/(KerMs(L)). So we can construct the452

multiplication matrices in R[x]/(KerMs(L)) and their eigenvalues/eigenvectors per-453

mit to extract the points in V (KerMs(L)) = Kf .454

• The flatness condition (4.4) can be used as a concrete optimality stopping criterion: if455

it is satisfied at a certain order t then the relaxation is exact and the algorithm stops456

after returning the infimum fmin and the set Kf of global minimizers. Otherwise one457

may compute the next relaxation of order t+ 1.458

• In general, information about the global minimizers can be gained asymptotically from459

optimal solutions Lt to the relaxations (MOMt). In particular, if (P) has a unique460

minimizer x∗, then x∗ can be found asymptotically as limit point as t → ∞ of the461

sequences (Lt(x1), . . . , Lt(xn)) [95]. See [77] for an extension to the case of finitely462

many global minimizers.463

In the compact case, the bounds f sos
t , fmom

t converge asymptotically to fmin (Theorem464

3.5). What about finite convergence?465

• By Theorem 4.5, the flatness condition (4.4) implies the finite convergence of the mo-466

ment hierarchy (MOMt). Conversely, if the set of global minimizers is nonempty and467

finite, the flatness condition (4.4) is also necessary for finite convergence of (MOMt)468

under some genericity assumptions on the polynomials f, gj [77].469

• Finite convergence holds in the case when the description of the set K involves some470

polynomial equations g1(x) = 0, . . . , gk(x) = 0 which have finitely many common471

real roots (since the flatness condition holds) [66, 68, 78].472

• Finite convergence also holds in the convex case, when f,−g1, . . . ,−gm are convex,473

the set K has a Slater point x0 (i.e., gj(x0) > 0 if gj is not linear), and the Hessian of474

f is positive definite at the (unique) global minimizer [23].475

• Nie [80] shows that, under the Archimedean condition (A), the Lasserre hierarchy476

applied to problem (P) has finite convergence generically. More precisely, finite con-477

vergence holds when the classic nonlinear optimality conditions (constraint qualifica-478

tion, strict complementarity, and second order sufficient condition) hold at all global479

minimizers, and these conditions are satisfied generically.480

• Finally we refer to [81] for degree bounds and estimates on the quality of the mo-481

ment/sos bounds (see [22] for refined results when K is the hypercube).482
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5. Application to real roots and real radical ideals483

The above strategy for computing the global minimizers of (P) was developed and applied484

by Lasserre, Laurent and Rostalski [57] to the problem of computing the common real roots485

of a system of polynomial equations: g1(x) = 0, . . . , gk(x) = 0.486

Computing all complex roots is a well studied problem. Several methods exist, including487

symbolic-numeric methods, which combine symbolic tools (like Gröbner or border bases)488

with numerical linear algebra (like computing eigenvalues, or univariate root finding), and489

homotopy continuation methods. As there might be much less real roots than complex ones490

it is desirable to have methods able to extract directly the real roots without dealing with491

the complex nonreal ones. This is precisely the feature of the real algebraic method of [57],492

which can be summarized as follows.493

Consider the following instance of (P):

min{0 : g1(x) = 0, . . . , gk(x) = 0},

which asks to minimize the zero polynomial on the real algebraic variety of the ideal I =494

(g1, . . . , gk), so that the set of global minimizers is precisely VR(I).495

Consider the moment relaxations (MOMt) for this problem. [57] shows that the flatness496

condition (4.4) holds for t large enough, assuming that the set VR(I) is finite. Hence, by497

Theorem 4.5, it follows that the real radical ideal of I is found: R
√
I = (KerMs(L)) and498

that the variety VR(I) can be computed using the eigenvalue method applied to the quotient499

space R[x]/(KerMs(L)) (as explained in the previous section). The fact that the kernel of500

Ms(L) generates the vanishing ideal of VR(I) is crucial, since this is the key property which501

permits to filter out all complex nonreal roots.502

We point out that the equality R
√
I = (KerMt(L)) holds for t large enough, even if the503

variety VR(I) is infinite. The difficulty, however, is to detect when one has reached such504

order t, since it is not clear how to detect it algorithmically (as the flatness condition cannot505

hold when the real variety is not finite).506

We refer to [57, 58], [1, Chap.2] for details and extensions. The recent work [59] devel-507

ops a sparse version of the moment method able to work with smaller matrices, indexed by508

smaller sets of monomials, rather than the full set of monomials of degree at most t. This509

approach combines the border base method from [73] with the generalized flatness condition510

from [69].511

We conclude with illustrating the method on a small example. Consider the polynomial
equation: x2

1 + x2
2 = 0, with a unique real root (0, 0) and infinitely many complex roots.

Then the moment relaxation of order t = 1 has the constraints

M1(y) =

 1 y10 y01

y10 y20 y11

y01 y11 y02

 � 0, y20 + y02 = 0,

which imply yα = 0 whenever α 6= 0. Therefore the flatness condition holds: rankM1(y) =512

rankM0(y) = 1. Moreover the kernel of M1(y) is spanned by the two polynomials x1,x2,513

which indeed generate the real radical of the ideal (x2
1 + x2

2).514
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6. Application to some combinatorial problems515

Lift-and-project methods. The polynomial optimization problem (P) contains the general516

0/1 linear programming (ILP), asking to optimize a linear function over the 0/1 solutions to517

a linear system Ax ≥ b. Let P denote the integral polytope defined as the convex hull of518

all x ∈ {0, 1}n satisfying Ax ≥ b and let K = {x : Ax ≥ b} denote its linear relaxation,519

which can be assumed to lie in the hypercube [0, 1]n. A well studied approach in polyhedral520

combinatorics is to find a (partial) linear inequality description of the polytope P , leading521

to a new relaxation P ′ nested between P and K: P ⊆ P ′ ⊆ K, strengthening the initial522

relaxation K. Several methods have been investigated that construct in a systematic way523

hierarchies of relaxations nested between P and K, with the property that P is found in524

finitely many steps. For instance, the classic method in integer programming, which consists525

of iteratively adding Gomory-Chvátal cuts, finds the integral polytope P inO(n2 log n) steps526

[30], but linear optimization over the first Gomory-Chvátal closure is a hard problem [29].527

On the other hand, the lift-and-project methods of Sherali and Adams [96] and of Lovász528

and Schrijver [71] produce hierarchies of LP and SDP relaxations Pt that find the integral529

polytope in n steps and with the property that linear optimization over the t-th relaxation Pt530

is polynomial time for any fixed t. They are all based on the following basic strategy:531

(a) Generate new polynomial constraints by multiplying the polynomial inequalities aTj x−532

bj ≥ 0 of the system Ax ≥ b by xi or 1 − xi (and their products) and eliminate all533

squared variables replacing each x2
i by xi.534

(b) Linearize all monomials
∏
i∈I xi by introducing new variables yI , so that the con-535

straints generated in (a) form a linear system in the variables (x, y).536

(c) Project back on the x-variables space, which gives a polyhedron P ′ nested between P537

and K.538

The construction may allow the addition of positive semidefiniteness constraints, leading539

to stronger semidefinite relaxations. This is the case for the construction of Lovász and540

Schrijver [71], which we now briefly describe.541

Suppose the vector x ∈ {0, 1}n satisfies the system Ax ≥ b. Consider the new vector
x̂ = (1, x) ∈ Rn+1 (where the additionnal entry is indexed by ‘0’) and the matrix Y =
x̂x̂T ∈ Sn+1. Then the matrix Y satisfies the following conditions: (i) Y � 0, (ii) Y00 = 1,
(iii) Y0i = Yii for all i ∈ [n], and (iv) the vectors Y (i), Y (0) − Y (i) (for i ∈ [n]) satisfy
the linear system: Ax − bx0 ≥ 0 (where Y (i) ∈ Rn+1 denotes the i-th column of Y ). Let
M+(K) denote the set of matrices Y ∈ Sn+1 satisfying the above conditions (i)-(iv), define
its projection

N+(K) = {x ∈ Rn : ∃Y ∈M+(K) such that xi = Y0i (i ∈ [n])},

and define analogously N(K) by omitting the positive semidefiniteness condition (i) in542

the definition of M+(K). Then, P ⊆ N+(K) ⊆ N(K) ⊆ K. For an integer t ≥ 2,543

one can iteratively define Nt(K) = N(Nt−1(K)), N+
t (K) = N+(N+

t−1(K)) (setting544

N1(K) = N(K) and N+
1 (K) = N+(K)). This leads to hierarchies of linear and semidef-545

inite relaxations, that find P in n steps: P ⊆ N+
t (K) ⊆ Nt(K), with equality for t = n.546

From the optimization point of view, these hierarchies behave well: if linear optimization547

over K can be done in polynomial time then the same holds for linear optimization over548

Nt(K) and N+
t (K) for any fixed t ≥ 1 [71].549
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The paper [71] also investigates in detail how the construction applies to the stable set550

problem. Given a graph G = (V = [n], E), let K ⊆ Rn be defined by nonnegativity x ≥ 0551

and the edge inequalities xi + xj ≤ 1 ({i, j} ∈ E), so that the corresponding polytope552

P = conv(K ∩ {0, 1}n) is the stable set polytope of G. The first linear relaxation N(K)553

is completely understood: N(K) is the polyhedron defined by nonnegativity x ≥ 0 and the554

odd cycle inequalities
∑
i∈O xi ≤ (|O| − 1)/2 for all O ⊆ V inducing an odd cycle in G.555

The relaxation N+(K) is much stronger. Indeed, for any clique C of G, the corresponding556

clique inequality
∑
i∈C xi ≤ 1 is valid for N+(K), while the first order t for which it is557

valid for the linear relaxation Nt(K) is t = |C| − 2. Moreover the stable set polytope P is558

found after α(G) steps of the semidefinite hierarchy, compared to n−α(G)− 1 steps of the559

linear hierarchy. These results have motivated much of the interest in these lift-and-project560

semidefinite relaxations for combinatorial optimization.561

The Lasserre approach. The general moment approach applied to (ILP) also produces a562

hierarchy of semidefinite relaxations Lt(K) converging to P [54]. As explained in [61],563

the relaxation Lt(K) can easily be described in a direct way following the above lift-and-564

project strategy. We just indicate here how to apply the previously described general moment565

method. We start with the set K defined by the polynomial inequalities gj = aTj x− bj ≥ 0566

(j ∈ [m]) and the polynomial equations x2
i − xi = 0 (i ∈ [n]). Then Lt(K) is defined as567

the set of all vectors x ∈ Rn of the form x = (L(x1), . . . , L(xn)) for some linear functional568

L ∈ R[x]∗2t satisfying the moment relaxation (MOMt), i.e., the conditions (i) L(1) = 1, (ii)569

Mt(L) � 0, (ii) Mt−1(gjL) � 0 (j ∈ [m]), and (iii) L(f) = 0 for all polynomials f in the570

truncated ideal (x2
1 − x1, . . . ,x

2
n − xn)2t.571

What the above condition (iii) says is that one can simplify the Lasserre relaxation by572

eliminating variables and working with smaller moment matrices. Indeed, instead of con-573

sidering the moment matrix Mt(L) indexed by all monomials of degree at most t, it suffices574

to consider its principal submatrix indexed by all square-free monomials of degree at most575

t (of the form
∏
i∈I xi for I ∈

(
V
≤t
)
), and to consider only variables yJ := L(

∏
i∈J xi) for576

sets J ∈
(
V
≤2t

)
. Here

(
V
≤t
)

denotes the collection of subsets of V = [n] with cardinality at577

most t.578

As a direct consequence, the flatness condition (4.3) holds at order t = n+1: rankMn+1(L) =579

rank Mn(L). Hence the Lasserre relaxation of order n+ 1 is exact: Ln+1(K) = P (which580

follows by applying Theorem 4.5). There is also a simple direct proof for this claim or,581

alternatively, this claim follows from the fact that the Lasserre hierarchy refines the Lovász-582

Schrijver hierarchy. Namely, for any t ≥ 2, we have: Lt(K) ⊆ N(Lt−1(K)), which thus583

implies the inclusion Lt(K) ⊆ Nt−1(K). Moreover, the Lasserre hierarchy also refines the584

Sherali-Adams hierarchy. We refer to [61] for the above results, and we refer e.g. to the585

recent work [2] for a comprehensive treatment and further references, also about other lift-586

and-project hierarchies. We now indicate how the Lasserre hierarchy applies to maximum587

stable sets, minimum graph colorings and max-cut.588

Lasserre hierarchies for α(G) and χ(G). As an illustration, the moment relaxation589

(MOMt) for the stable set problem (1.4) reads:590

last(G) = max
y∈( V

≤2t)
{
∑
i∈V

yi : (yI∪J)I,J∈( V
≤t)
� 0, yij = 0 ({i, j} ∈ E), y∅ = 1}. (6.1)
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For t = 1, we find Lovász’ theta number from (1.6): las1(G) = ϑ(G). Moreover, the591

Lasserre bound is exact: last(G) = α(G) for t ≥ α(G). On the dual side, the sos relaxation592

(SOSt) asks for the smallest scalar λ for which the polynomial λ−
∑
i∈V xi can be written593

as a sum of squares of degree at most 2tmodulo the ideal generated by the polynomials xixj594

(for {i, j} ∈ E) and x2
i −xi (for i ∈ V ). We refer to Gouveia et al. [35] for a detailed study595

of the hierarchies from this point of view of sums of squares, also in the setting of general596

polynomial ideals.597

In [39] we investigate Lasserre type bounds for the chromatic number χ(G). A first598

possibility is to consider the following analogue of the bounds in (6.1):599

ψt(G) = min
y∈( V

≤2t)
{y∅ : (yI∪J)I,J∈( V

≤t)
� 0, yij = 0 ({i, j} ∈ E), yi = 1 (i ∈ V )}. (6.2)

Then, ψ1(G) = ϑ(G) ≤ ψt(G) ≤ χ(G). However, these bounds cannot in general reach600

the chromatic number since they all remain below the fractional chromatic number χf (G):601

ψt(G) ≤ χf (G), with equality if t ≥ α(G).602

To define a hierarchy of semidefinite bounds able to reach the chromatic number χ(G),603

one can use the reduction of χ(G) to the stability number of the cartesian product G2Kk604

described in the Introduction. Namely, χ(G) is equal to the smallest integer k for which605

α(G2Kk) = |V (G)|. This motivates defining the parameter Last(G) as the smallest integer606

k for which last(G2Kk) = |V (G)|. Then, we have the inequality: Last(G) ≤ χ(G),607

with equality for t = n. Note that, for t = 1, we find again the (rounded) theta number:608

Las1(G) = dϑ(G)e.609

An easy way to strengthen the various bounds is by adding the nonnegativity constraint610

y ≥ 0 to the program (6.1), call las′t(G) the resulting parameter. Analogously, define611

Las′t(G) as the smallest integer k for which las′t(G2Kk) = |V |. Then, we have: α(G) ≤612

las′t(G) ≤ last(G) and Last(G) ≤ Las′t(G) ≤ χ(G). It turns out that the parameters613

las′1(G) and Las′1(G) coincide, respectively, with the parameters ϑ′(G) and ϑ+(G) (recall614

(1.8)).615

The bounds last(G) (and las′t(G)) have been used in particular to upper bound the car-616

dinality of error correcting codes. When dealing with binary codes of length N , one needs617

to find the stability number of a Hamming graph G, with vertex set V = {0, 1}N and where618

two vertices u, v ∈ V are adjacent if their Hamming distance does not belong to some pre-619

scribed set. Thus this graph G has 2N vertices. Fortunately it has a large automorphism620

group which can be used to compute the parameter last(G) with a semidefinite program621

involving smaller matrices of size O(N2t−1) (polynomial in N for fixed t), while the orig-622

inal formulation (6.1) involves matrices of size O(|V |t = 2tN ) (exponential in N ). This623

is shown in [67] using symmetry reduction techniques from [25]. Moreover, Schrijver [93]624

shows that the semidefinite bound las′1(G) = ϑ′(G) of order t = 1 coincides with the well625

known linear programming bound of Delsarte, which is expressed by a linear program of size626

N . Furthermore, Schrijver [94] shows that the semidefinite bound of the next order 2 (more627

precisely, some variation in-between the bounds of order 1 and 2) can be computed with a628

semidefinite program involving (roughly) N/2 matrices of size at most N , which he shows629

using block-diagonalization techniques for matrix algebras. Numerical computations using630

these parameters and some strengthenings give the currently best known bounds for codes631

(see [33, 67, 94] and references therein). Computations for the chromatic number using the632

bounds Last(G) (and variations) can be found in [39, 41].633
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The Lasserre hierarchy for max-cut. As another illustration let us apply the Lasserre hi-
erarchy to the max-cut problem (1.2). The equations x2

i = 1 permit to express the relaxation
(MOMt) as

max
y∈R( V

≤2t)
{
∑
{i,j}∈E

(wij/2)(1− yij) : (yI∆J)I,J∈( V
≤t)
� 0, y∅ = 1}.

For t = 1 this is the relaxation (1.3) used by Goemans and Williamson [34] for their634

0.878-approximation algorithm for max-cut. More details about geometric properties of635

the Lasserre hierarchy for max-cut can be found in [63]. A natural question is how many636

steps are needed to solve max-cut using the hierarchy. In [62] we show that, for the all-ones637

weight function, the relaxation is exact if and only if t ≥ tn := dn/2e and we conjecture638

that tn iterations suffice for arbitrary weights w. Equivalently, we conjecture that the poly-639

nomial fw = mc(G,w) −
∑
{i,j}∈E(wij/2)(1 − xixj) can be written as a sum of squares640

of degree at most 2tn modulo the ideal (x2
i − 1 : i ∈ [n]). Recently, Blekherman et al. [8]641

show that this is indeed true when allowing “denominators", i.e., they show that there exists642

a polynomial p such that p2fw has such a decomposition.643

Copositive based hierarchies. Let Cn denote the copositive cone, consisting of all matrices644

M ∈ Sn for which the polynomial fM =
∑n
i,j=1Mijx

2
ix

2
j is nonnegative over Rn. As645

mentioned in the Introduction, the stability number α(G) of a graph G can be obtained from646

the program (1.9), which is linear optimization over the copositive cone Cn. As we indicate647

below this formulation leads to another type of hierarchies.648

Motivated by the fact that testing matrix copositivity is a hard problem, Parrilo [82]649

introduced a hierarchy of sufficient conditions, which can be tested using semidefinite opti-650

mization and leads to the hierarchy of cones Kt considered by de Klerk and Pasechnik [24].651

Namely, Kt consists of the matrices M ∈ Sn for which the polynomial fM (
∑n
i=1 x

2
i )
t is652

a sum of squares. The cone K0 consists precisely of the matrices M that can be written as653

the sum of a positive semidefinite matrix and an entrywise nonnegative matrix. Clearly, the654

cones Kt form a hierarchy of subcones of Cn: Kt ⊆ Kt+1 ⊆ Cn. Parrilo [82] shows that655

they cover the interior of Cn: if fM (x) > 0 for all nonzero x ∈ Rn then M belongs to some656

Kt. His proof uses the following result of Pólya: if g ∈ R[x] is a homogeneous polynomial657

satisfying g(x) > 0 for all nonzero x ∈ Rn+, then there exists an integer t ∈ N for which all658

the coefficients of the polynomial (
∑n
i=1 xi)

tg are nonnegative.659

The conesKt lead to another hierarchy of bounds for the stability number α(G). Starting660

from relation (1.9), De Klerk and Pasechnik [24] define the parameter661

ϑt(G) = min{λ : λ(I +AG)− J ∈ Kt}. (6.3)

They show that the first bound is the theta number: ϑ0(G) = ϑ′(G), and they show con-662

vergence after rounding: bϑt(G)c = α(G) for t ≥ α(G)2. Moreover, they conjecture that663

finite convergence: α(G) = ϑt(G) holds for t ≥ α(G)− 1, which would mirror the known664

finite convergence in α(G) steps for the Lasserre bounds last(G). In [38] we give a partial665

proof and prove this conjecture for all graphs with α(G) ≤ 8.666

This approach also gives lower bounds Θt(G) for the chromatic number χ(G). Namely,667

define Θt(G) as the smallest integer k for which ϑt(G2Kk) = |V (G)|. In [38] we compare668

both types of hierarchies and we show that the Lasserre hierarchies refine these ‘coposi-669

tive based’ hierarchies. Namely, we show that las′t(G) ≤ ϑt−1(G) and thus Θt−1(G) ≤670
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Las′t(G) for any t ≥ 1. Hence, the Lasserre hierarchy may give better bounds and moreover671

it seems much easier to handle. For instance its finite convergence is easy, while the finite672

convergence of the copositive hierarchy is still open. A reason might be that the Lasserre673

construction uses explicitly the presence of binary variables, while the copositive based con-674

struction does not. Nevertheless copositive based approximations have gained popularity in675

the recent years and they open the way to other types of approaches for approximating hard676

problems. We refer e.g. to [11, 28] and references therein.677

7. Conclusions678

We have presented the general approach permitting to construct semidefinite relaxations for679

polynomial optimization problems by using sums of squares representations for positive680

polynomials and moment matrices. We reviewed some basic properties regarding in particu-681

lar their convergence properties. We also discussed how the general methodology applies for682

building hierarchies of semidefinite relaxations for combinatorial problems in graphs. We683

have only discussed a small piece of this rapidly expanding research area. We now mention684

a few other research areas, where this type of methods are also being increasingly used.685

Semidefinite optimization and in particular the Lasserre hierarchy are playing a growing686

role in theoretical computer science for the design of efficient approximation algorithms.687

Understanding the power and limitations of the Lasserre hierarchy is a fundamental ques-688

tion, which has tight links with complexity theory. For instance, assuming the unique game689

conjecture [48], Khot et al. [49] show that one cannot beat the Goemans-Williamson 0.878-690

approximation guarantee for max-cut, which is based on the Lasserre relaxation of smallest691

order. Yet recent results of Guruswami and Sinop [37] exploit higher order relaxations to692

give improved approximation algorithms for graph partition problems, depending on spec-693

tral properties of the graph. We refer e.g. to [32, 65], the recent overview by Chlemtac and694

Tulsiani [1, Chap. 6] and references therein.695

Semidefinite bounds are also used to attack geometric problems, like the kissing number696

problem and the problem of coloring the Euclidean space [3, 4]. These problems lead to697

maximum stable set and minimum coloring problems in infinite graphs. For instance, the698

kissing number problem is finding a maximum stable set, where the vertex set is the unit699

sphere with two points being adjacent depending on their spherical distance. Bachoc and700

Vallentin [3] use low order bounds in the Lasserre hierarchy to give the best known bounds701

for the kissing number problem, a crucial ingredient in their approach is exploiting symmetry702

in order to get computable semidefinite programs.703

Hierarchies of semidefinite relaxations have also been used recently to attack polynomial704

optimization problems in noncommutative variables. Such problems arise when, instead of705

instantiating variables to scalars, one allows variables to be matrices (or bounded operators706

on some Hilbert space) and they have applications in many areas of quantum phsyics. Given707

a symmetric polynomial f in n noncommutative variables, one can consider the following708

two kinds of positivity: f is said to be matrix-positive if f(X1, . . . , Xn) � 0 when evalu-709

ating f at arbitrary matrices X1, . . . , Xn ∈ Sd (d ≥ 1), and f is said to be trace-positive if710

Tr(f(X1, . . . , Xn)) ≥ 0 for all X1, . . . , Xn ∈ Sd (d ≥ 1). These two notions lead to dif-711

ferent noncommutative polynomial optimization problems. For both problems analogues of712

the moment and sums of squares approaches have been investigated, we refer to [12, 20, 84]713

and references therein.714
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By Hilbert’s theorem, not all nonnegative polynomials are sums of squares. However,715

Helton [42] shows the following remarkable result: a symmetric polynomial is matrix-716

positive if and only if it is a sum of Hermitian squares. Moreover, Helton and McCullough717

[43] show a result characterizing matrix-positivity on a compact set which can be seen as an718

analogue of Putinar’s result (Theorem 3.4). On the other hand, the analogue result for trace-719

positive polynomials is still open, and it is in fact related to a deep conjecture of Connes720

[15] in operator algebra. Indeed, Klep and Schweighofer [50] show that Connes’ embed-721

ding conjecture is equivalent to a real algebraic conjecture characterizing the trace-positive722

polynomials on all contraction matrices.723

Problems in quantum information have led in the recent years to some quantum ana-724

logues of the classical graph parameters α(G) and χ(G). These quantum parameters require725

to find positive semidefinite matrices satisfying certain polynomial conditions and, as in the726

classical case, the theta number serves also as bound for them (see [10, 13] and further ref-727

erences therein). Investigating how to construct hierarchies of stronger semidefinite bounds728

for these quantum graph parameters is a natural direction that we are currently investigating.729
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