
COMPUTING SEMIDEFINITE PROGRAMMING LOWER BOUNDSFOR THE (FRACTIONAL) CHROMATIC NUMBER VIABLOCK-DIAGONALIZATION�NEBOJ�SA GVOZDENOVI�Cy AND MONIQUE LAURENTyAbstra
t. Re
ently we investigated in [16℄ hierar
hies of semide�nite approximations for the
hromati
 number �(G) of a graph G. In parti
ular, we introdu
ed two hierar
hies of lower bounds,the ` '-hierar
hy 
onverging to the fra
tional 
hromati
 number, and the `	'-hierar
hy 
onvergingto the 
hromati
 number of a graph. In both hierar
hies the �rst order bounds are related to theLov�asz theta number, while the se
ond order bounds would already be too 
ostly to 
ompute forlarge graphs. As an alternative, relaxations of the se
ond order bounds are proposed in [16℄. Wepresent here our experimental results with these relaxed bounds for Hamming graphs, Kneser graphsand DIMACS ben
hmark graphs. Symmetry redu
tion plays a 
ru
ial role as it permits to 
omputethe bounds using more 
ompa
t semide�nite programs. In parti
ular, for Hamming and Knesergraphs, we use the expli
it blo
k-diagonalization of the Terwilliger algebra given by S
hrijver [30℄.Our numeri
al results indi
ate that the new bounds 
an be mu
h stronger than the Lov�asz thetanumber. For some of the DIMACS instan
es we improve the best known lower bounds signi�
antly.Key words. Chromati
 number, Lov�asz theta number, semide�nite programming, Terwilligeralgebra, Hamming graph, Kneser graph.AMS subje
t 
lassi�
ations. 05C15, 90C27, 90C221. Introdu
tion. The 
hromati
 number �(G) of a graph G is the smallestnumber of 
olors needed to 
olor the verti
es of G so that no two adja
ent verti
esshare the same 
olor. Determining �(G) is an NP-hard problem [14℄ and it is hardto approximate �(G) within jV (G)j1=14�� for any � > 0 [1℄. Finding a proper vertex
oloring with a small number of 
olors is essential in many real world appli
ations.A lot of work has been done in order to develop eÆ
ient heuristi
s for this problem(see e.g. [5℄). Nevertheless, these methods 
an provide us only with upper bounds onthe 
hromati
 number. Lower bounds were mainly obtained using linear programming[25, 26℄, 
riti
al subgraphs [8℄ and semide�nite programming [9, 10, 11, 17, 27, 31℄. Thesemide�nite approa
hes are based on 
omputing (variations of) the well known lowerbound #(G) := # �G�, the theta number of the 
omplementary graph, introdu
ed byLov�asz [23℄. The theta number satis�es the `sandwi
h inequality':!(G) � #(G) � �(G);and it 
an be 
omputed to any arbitrary pre
ision in polynomial time sin
e it 
anbe formulated via a semide�nite program of size jV (G)j. Here, !(G) is the 
liquenumber of G, de�ned as the maximum size of a 
lique (i.e., a set of pairwise adja
entnodes) in G; the stability number �(G) := !(G) of G being the maximum size ofa stable set (i.e., a set of pairwise nonadja
ent nodes) in G. The theta number hasbeen strengthened towards the 
hromati
 number using nonnegativity [31℄, triangleinequalities [27℄, or some lift-and-proje
t methods [11℄. Computational results werereported in [9, 10, 11℄. A 
ommon feature shared by all these bounds is that theyremain below the fra
tional 
hromati
 number ��(G). Thus they are of little use when��(G) is 
lose to the 
lique number !(G). In [16℄ the authors investigated another�Supported by the Netherlands Organization for S
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type of lift-and-proje
t approa
h leading to a hierar
hy of bounds 
onverging to the
hromati
 number �(G). We explore in the present follow-up paper the behavior ofthese bounds through experimental results on several 
lasses of graphs.The approa
h in [16℄ is based on the following redu
tion of Chv�atal [6℄ of the
hromati
 number to the stability number:�(G) � t() �(Kt�G) = jV (G)j; (1.1)where Kt�G denotes the Cartesian produ
t of Kt, the 
omplete graph on t nodes,and the graph G. For a given graph parameter �(�) satisfying �(�) � �(�) � �(�),de�ne the new graph parameter 	�(�) by	�(G) := mint2N t s.t. �(Kt�G) = jV (G)j: (1.2)As shown in [16℄, the operator 	 is monotone nonin
reasing and satis�es!(G) = 	�(G) � 	�(G) � 	�(G) = �(G) and 	#(G) = l#(G)m: (1.3)In other words the operator 	 transforms upper bounds for the stability numberinto lower bounds for the 
hromati
 number. An interesting bound for �(�) from the
omputational point of view is the graph parameter `(�) introdu
ed in Laurent [20℄, asrelaxation of the se
ond order bound in the Lasserre's hierar
hy for �(�) (see [18℄,[20℄).Two hierar
hies for the 
hromati
 number, related to the Lasserre's hierar
hy for �(�),are studied in [16℄, as well as two bounds  (�) and 	`(�), related to the parameter`(�). See Se
tion 2.2 for the pre
ise de�nition of the parameters `,  , 	`.In the present paper we investigate how to 
ompute the bounds  (�) and 	`(�)for Hamming graphs and for Kneser graphs. Coloring Hamming graphs is of intereste.g. to the Borsuk problem (see [32℄) and the 
hromati
 number of Kneser graphs was
omputed in the 
elebrated paper [22℄ of Lov�asz using topologi
al methods; see e.g.[24℄ for a study of topologi
al lower bounds for the 
hromati
 number. The Hamminggraph G = H(n;D) has nodeset V (G) = f0; 1gn, with an edge uv if the Hammingdistan
e between u; v lies in the given set D � f1; : : : ; ng. For n � 2r, the Knesergraph K(n; r) is the subgraph of H(n; f2rg) indu
ed by the set of words u 2 f0; 1gnwith weight Pni=1 ui = r. The Hamming graph has a large automorphism groupwhi
h enables us to blo
k-diagonalize and reformulate the programs for  (G), 	`(G)in su
h a way that they involve O(n) matri
es of size O(n) (instead of 2n = jV (G)j).As a 
ru
ial ingredient we use the blo
k-diagonalization for the Terwilliger algebragiven by S
hrijver [30℄. We also use this te
hnique, whi
h was extended to 
onstant-weight 
odes in [30℄, for 
omputing the bound 	`(�) for Kneser graphs. For Knesergraphs, the bound  (�) 
oin
ides with the fra
tional 
hromati
 number (see Se
tion4) but, as will be seen in Table 2, 	`(K(n; r)) 
an go beyond the fra
tional 
hromati
number. We report experimental results for Hamming and Kneser graphs in Tables1 and 2. For some instan
es, the parameter  (G) improves substantially the thetanumber �#(G) and adding nonnegativity may also help; moreover, while 	`(G) hardlyimproves upon  (G) for Hamming graphs, it does give an improvement for Knesergraphs.Finally we introdu
e a further variation  K(G) of our bounds (whereK is a 
liquein G), whi
h 
an be espe
ially useful for graphs without apparent symmetries. Usinga simple blo
k-diagonalization argument,  K(G) 
an be formulated via a semide�niteprogram involving jKj matri
es of size jV (G)j and one matrix of size jV (G)j + 1.2



The bound  K(G) is bounded above by the fra
tional 
hromati
 number ��(G). Wereport experimental results on some DIMACS ben
hmark instan
es. To the best of ourknowledge, our lower bound improves the best known lower bound in the literature forseveral instan
es of DSJC, DSJR graphs, sometimes substantially. Moreover, for thetwo instan
es G = DSJC125.9 and DSJR500.1
, we 
an determine the exa
t value ofthe 
hromati
 number �(G), sin
e our lower bound mat
hes the known upper boundfor �(G). This indi
ates that the bound  K 
an be quite strong for random graphs,despite the fa
t that it remains below the fra
tional 
hromati
 number. Moreover weobserved experimentally that adding nonnegativity 
onstraints to the formulation of K does not help for the DSJC instan
es, whi
h is similar to the observation made in[9℄ that strengthening the theta number with nonnegativity does not help for randomgraphs.More details about the results of this paper 
an also be found in [15℄.Contents of the paper. In Se
tion 2 we re
all the de�nitions of the graphparameters `(�),  (�) and 	`(�), and their main properties; we show how symmetryin the semide�nite programming formulations and in the graph 
an be exploited to(sometimes dramati
ally) redu
e the sizes of the semide�nite programs de�ning thesebounds. Se
tion 3 is devoted to the 
omputation of the bounds for Hamming graphs;we des
ribe how to blo
k-diagonalize the matri
es in the semide�nite programs andreport 
omputational experiments. In Se
tion 4 we fo
us on the graph parameter	`(�) for Kneser graphs; we present the blo
k-diagonalization of the matri
es and
on
lude the se
tion with 
omputational results. We des
ribe in Se
tion 5 the newlower bound  K(�) whi
h we test on some DIMACS ben
hmark graphs.Notation. Given a graph G = (V;E), G denotes its 
omplementary graph whoseedges are the pairs uv 62 E(G) (u; v 2 V (G), u 6= v). Given a graph parameter �(�),�(�) is the graph parameter de�ned by �(G) := �(G) for any graph G. For two graphsG; G0, their Cartesian produ
t G�G0 has node set V (G)�V (G0), with two nodes uu0;vv0 2 V (G)� V (G0) being adja
ent in G�G0 if and only if (u = v and u0v0 2 E(G0))or (uv 2 E(G) and u0 = v0). For an integer t � 1, Kt is the 
omplete graph on tnodes. We also set Gt = Kt�G as a short-hand notation for the Cartesian produ
tof G and Kt.Throughout, the letters I, J and e denote, respe
tively, the identity matrix, theall-ones matrix and the all-ones ve
tor (of suitable size); N is the set of nonnegativeintegers. For matri
es A;A0 indexed, respe
tively, by I�J , I 0�J 0, their tensor produ
tA
A0 is the matrix indexed by (I�I 0)�(J�J 0), with (A
A0)(i;i0);(j;j0) := Ai;jBi0;j0 .Moreover, the notation A � 0 means that A is a symmetri
 positive semide�nitematrix.Given a �nite set V , P(V ) denotes the 
olle
tion of all subsets of V . Given aninteger r, set Pr(V ) := fI 2 P(V ) j jIj � rg; in parti
ular, P1(V ) = f;; fig (i 2 V )g.Sometimes (e.g. when dealing with Hamming graphs) we deal with the 
olle
tionP1(V ), where V = P(N) with N = f1; : : : ; ng; then P1(V ) 
ontains ; (the emptysubset of V ) and f;g (the singleton subset of V 
onsisting of the empty subset of N).To avoid 
onfusion we use the symbol 0 to denote the empty subset of V , so thatP1(V ) = f0; fig (i 2 V )g. We sometimes identify P1(V ) n f0g with V , i.e., we writefig as i, fi; jg as ij and, given a ve
tor x 2 RP(V ) we also set xi := xfig, xij := xfi;jg,xijk := xfi;j;kg (for i; j; k 2 V ), et
.Let V be a �nite set and let G be a subgroup of Sym(V ), the group of permutationsof V , also denoted as Sym(n) if jV j = n. Then G a
ts on P(V ) by letting �(I) :=3



f�(i) j i 2 Ig for I � V , � 2 G. Moreover, G a
ts on ve
tors and matri
es indexedby Pr(V ), namely by letting �(x) := (x�(I))I2Pr(V ), �(M) := (M�(I);�(J))I;J2Pr(V )for x 2 RPr (V ), M 2 RPr (V )�Pr(V ), and � 2 G. One says that M is invariantunder a
tion of G if �(M) = M for all � 2 G; then the matrix 1jGj!P�2G �(M), the`symmetrization' ofM obtained by applying the Reynolds operator, is invariant undera
tion of G. Analogously for ve
tors. A semide�nite program is said to be invariantunder a
tion of G if, for any feasible matrix X and any � 2 G, the matrix �(X) isagain feasible with the same obje
tive value; then the optimum value of the programremains un
hanged if we restri
t to invariant feasible solutions and, in parti
ular,there is an invariant optimal solution.The automorphism group Aut(G) of a graph G = (V;E) 
onsists of all � 2Sym(V ) preserving the set of edges. G is said to be vertex-transitive when, givenany two nodes i; j 2 V , there exists � 2 Aut(G) with �(i) = j. For instan
e, for thegraph Gt = Kt�G, Sym(t) � Aut(G) � Aut(Gt), where (�; �) 2 Sym(t) � Aut(G)a
ts on V (Gt) (and thus on Pr(V (Gt)) for r 2 N ) by (�; �)(p; i) = (�(p); �(i)) for(p; i) 2 V (Kt)�V (G). We will deal in the paper with semide�nite programs involvingmatri
es indexed by Pr(V (Gt)), whi
h are invariant under this a
tion of Sym(t) �Aut(G).2. Graph parameters.2.1. Classi
 bounds. We re
all here some 
lassi
 bounds for the 
hromati
number �(G) of a graph G = (V;E). Throughout Se
tion 2, V = V (G) is the nodeset of graph G and n := jV (G)j. (For details see e.g. [16℄, [21℄, [29℄.)� The fra
tional 
hromati
 number of G:��(G) := max eTx s.t. Xi2S xi � 1 (S stable); x 2 RV+ : (2.1)
It is well-known (and easy to verify) that !(G) � ��(G) � �(G); and�(G)��(G) � jV (G)j; with equality when G is vertex-transitive. (2.2)� Lov�asz's theta number (introdu
ed in [23℄):#(G) = #(G) := max eTY es.t. Pi2V Yii = 1Yij = 0 (ij 2 E(G))Y � 0 (2.3)
where Y is a symmetri
 matrix indexed by V . For later purpose we re
all the followingequivalent formulation from ([16℄, Theorem 3.1 (b)):#(G) = min X00s.t. Xii = X0i (i 2 V )Xij = 0 (ij 2 E(G))X � 0 (2.4)
where the matrix variable X is indexed by the set P1(V ) = V [ f0g. Lov�asz [23℄proved the following analogue of (2.2) for the pair (#; #):#(G)#(G) � jV (G)j; with equality when G is vertex-transitive. (2.5)4



� Szegedy's number was �rst de�ned in [31℄. We present the following equivalentformulation from [16℄:#+(G) = #+(G) = min X00s.t. Xii = X0i (i 2 V )Xij = 0 (ij 2 E(G))X � 0; X � 0: (2.6)
The above parameters satisfy!(G) � #(G) � #+(G) � ��(G) � �(G):2.2. The bounds `,  and 	`. We review here the graph parameters `(�)proposed in [20℄ and  (�) and 	`(�) proposed in [16℄; for details see also [15℄. For asubset S � V and an integer r � 1, de�ne the ve
tors �S 2 f0; 1gV , with ith entry 1if and only if i 2 S (for i 2 V ), and �S;r 2 f0; 1gPr(V ), with Ith entry 1 if and only ifI � S (for I 2 Pr(V )). Given a ve
tor x = (xI)I2P2r(V ), 
onsider the matrix:Mr(x) := (xI[J )I;J2Pr(V )known as the (
ombinatorial) moment matrix of x of order r. Consider the programs:

las(r)(G) := maxXi2V xi s.t. Mr(x) � 0; x0 = 1; xij = 0 (ij 2 E); (2.7) (r)(G) := min t s.t. Mr(x) � 0; x0 = t; xi = 1 (i 2 V ); xij = 0 (ij 2 E); (2.8)where the variable x is indexed by P2r(V ). Note that the variable t 
an be avoided in(2.8), by repla
ing t by x0 in the obje
tive fun
tion. We 
hoose this formulation toemphasize the analogy with the formulations (2.13), (2.17), (5.1) below. The abovetwo programs were studied respe
tively in [18, 19℄ and in [16℄. In parti
ular, thefollowing holds:�(G) = las(�(G)) � ::: � las(r+1)(G) � las(r)(G) � ::: � las(1)(G) = #(G); (2.9)
#(G) =  (1)(G) � ::: �  (r)(G) �  (r+1)(G) � ::: �  (�(G))(G) = ��(G); (2.10)

 (r)(G)las(r)(G) � jV (G)j; with equality if G is vertex-transitive: (2.11)Thus the parameters las(r)(G) (for r = 1; :::; �(G)) 
reate a hierar
hy of upper boundsfor the stability number, while the parameters  (r)(G) 
reate a hierar
hy of lowerbounds for the fra
tional 
oloring number. Theoreti
ally, the parameters las(r)(G)and  (r)(G) 
an be 
omputed to any pre
ision in polynomial time for �xed r, sin
ethe semide�nite programs (2.7) and (2.8) involve matri
es of size O(nr). On the otherhand, in pra
ti
e, we are not able to 
ompute las(2)(G) or  (2)(G) for \interesting"graphs, that is, for graphs of reasonably large size. For this reason some variations ofthe parameters las(2)(G) and  (2)(G) were proposed in [16, 20℄. The idea is to 
onsider,instead of the full moment matrix of order 2, a number of prin
ipal submatri
es ofit. Namely, given h 2 V , let M2(h;x) denote the prin
ipal submatrix of M2(x)indexed by the subset P1(V ) [ ffh; ig j i 2 V g of P2(V ). Thus in order to de�ne5



the matri
es M2(h;x) for all h 2 V , one needs only the 
omponents of x indexed byP3(V ). Following [16, 20℄, de�ne the upper bound for the stability number �(G):`(G) := max Xi2V xi s.t. M2(h;x) � 0 (h 2 V ); x0 = 1; xij = 0 (ij 2 E(G)); (2.12)
and the lower bound for the fra
tional 
olouring number ��(G): (G) := min t s.t. M2(h;x) � 0 (h 2 V ); xij = 0 (ij 2 E(G))x0 = t; xi = 1 (i 2 V ) (2.13)
where the variable x is indexed by P3(V ). For the parameter `(G) we have (see [20℄)�(G) � las(2)(G) � `(G) � las(1)(G) = #(G) � �(G); (2.14)while  (G) satis�es (see [16℄)#+(G) �  (G) �  (2)(G): (2.15)They also satisfy an inequality similar to (2.11), namely (G)`(G) � jV (G)j; with equality if G is vertex-transitive: (2.16)As �(�) � `(�) � �(�) (by (2.14)), we 
an apply the operator 	 from (1.2) to `(�) andobtain the lower bound 	`(G) for �(G), de�ned as	`(G) = mint2N t s.t. `(Gt) = n: (2.17)The parameter `(Gt) is de�ned via the program`(Gt) = max Xu2V (Gt) yu s.t. M2(u; y) � 0 (u 2 V (Gt))y0 = 1; yuv = 0 (uv 2 E(Gt)); (2.18)
where the variable y is indexed by P3(V (Gt)). (Re
all Gt = Kt�G.) Finally, the twoparameters  (G) and 	`(G) were 
ompared in [16℄, where the following relation isshown: #(G) �  (G) � 	`(G) � �(G): (2.19)Let us �nally note that one 
an easily strengthen the bounds `(G),  (G), 	`(G),e.g., by requiring nonnegativity1 of the variables. Namely, let `�0(G) (resp.,  �0(G))denote the variation of `(G) (resp.,  (G)) obtained by adding the 
ondition x � 0to (2.12) (resp., (2.13)); we have again  �0(G)`�0(G) = jV (G)j when G is vertex-transitive. De�ne a

ordingly 	`�0(G), whi
h amounts to requiring y � 0 in (2.18).1Note however that the 
ondition xij � 0 8i; j 2 V already automati
ally holds in (2.12), (2.13),sin
e it is implied byM2(h; x) � 0 8h 2 V (as xhi o

urs as diagonal entry ofM2(h; x)). Analogously,yuv � 0 8u; v 2 V (Gt) automati
ally holds in (2.18).6



2.3. Exploiting symmetry to 
ompute the bounds `,  and 	`. We grouphere some observations about the 
omplexity of 
omputing the graph parameters `(�), (�) and 	`(�). We show how one 
an exploit symmetry, present in the stru
ture of thematri
es involved in the programs de�ning the parameters or in the graph instan
e,in order to redu
e the size of the programs. This symmetry redu
tion is a 
ru
ial stepas it allows reformulating the parameters via more 
ompa
t programs. In this waywe will be able to 
ompute the graph parameters for 
ertain large graphs (with asmu
h as 220 nodes for 
ertain Hamming graphs), a task that would obviously be outof rea
h without applying this symmetry redu
tion.We begin with observing that the matrix M2(h;x), used in de�nitions (2.12) and(2.13), has a spe
ial blo
k stru
ture, whose symmetry 
an be exploited to `blo
k-diagonalize' it. Re
all that M2(h;x) is indexed by the set P1(V ) [ ffh; ig j i 2 V g =f0g [ ffig j i 2 V g [ ffh; ig j i 2 V g. Here we keep the two o

urren
es of thesingleton fhg in the index set, o

urring �rst as fig for i = h and se
ond as fi; hg fori = h. Thus, the index set of M2(h;x) is partitioned into f0g and two 
opies of V .Lemma 2.1. With respe
t to this partition of its index set, the matrix M2(h;x)has the blo
k form:
M2(h;x) = 0� a 
T dT
 C Dd D D

1A ; (2.20)
where a = x0; 
i = xi; di = xhi (i 2 V ), Cij = xij ; Dij = xhij (i; j 2 V ). Then,M2(h;x) � 0() �a� 
h 
T � dT
� d C �D � � 0 and D � 0: (2.21)

Proof. The form (2.20) follows dire
tly from the de�nition of M2(h;x). To show(2.21), observe that the row of M2(h;x) indexed by fhg has the form (
h; dT ; dT ).Indeed, for i; j 2 V , Cij = xfi;jg, Dij = xfh;i;jg, 
j = xj , dj = xfh;jg, implyingChj = Dhj = dj . As in [20℄, we perform some row/
olumn manipulation on M2(h;x)to show (2.21). Namely, say the se
ond row/
olumn of M2(h;x) is indexed by fhg,i.e., h 
omes �rst when listing the elements of V . Then,
UT1 M2(h;x)U1 = 0�a� 
h 
T � dT 0
� d C D0 D D

1A ; setting U1 := 0� 1 0 0�1 1 00 0 I
1A ;

where I is the identity matrix of order 2n� 1 (n = jV j). Next,
UT2 (UT1 M2(h;x)U1)U2 = 0�a� 
h 
T � dT 0
� d C �D 00 0 D

1A ; setting U2 := 0�1 0 00 I 00 �I I
1A ;

where I has order n.Hen
e, in (2.12) and (2.13), we may repla
e ea
h 
onstraint M2(h;x) � 0 (whi
hinvolves a matrix of size 2n+ 1) by two 
onstraints involving matri
es of sizes n+ 1and n.We now 
onsider symmetries present in the graph instan
e G. Observe that theprogram (2.12) (or (2.13)) is invariant under a
tion of Aut(G). Hen
e one may assume7



that the variable x is invariant under a
tion of Aut(G). Therefore, when G is vertex-transitive, it suÆ
es to require the 
ondition M2(h;x) � 0 for one 
hoi
e of h 2 V(instead of for all h 2 V ) and thus `(G) and  (G) 
an be 
omputed via a semide�niteprogram with two LMI's involving matri
es of sizes n+1, n, and with O(n2) variables.We now turn to the graph parameter 	`(G). In order to determine 	`(G), weneed to 
ompute the parameter `(Gt) = `(Kt�G) from (2.18) (for several queries oft 2 N ). As was just observed above, the program de�ning `(Gt) is invariant undera
tion of Aut(Gt), thus in parti
ular under a
tion of Sym(t) � Aut(G), or simply ofSym(t). In parti
ular, in program (2.18), one may assume that y is invariant undera
tion of Sym(t). Moreover, it suÆ
es to require the 
ondition M2(u; y) � 0 for allu 2 V1 instead of for all u 2 V (Gt); here V1 = f1i j i 2 V g denotes the `�rst layer'of the nodeset V (Gt) = fpi j p = 1; : : : ; t; i 2 V g of Gt. Furthermore, when G isvertex-transitive, it suÆ
es to require M2(u; y) � 0 for one 
hoi
e of u 2 V1 insteadof for all u 2 V1.We now show, using the invarian
e of y under a
tion of Sym(t), that the ma-trix M2(u; y) has a spe
ial blo
k stru
ture, whose symmetry 
an be used to blo
k-diagonalize it. To begin with, with respe
t to the partition f0g[ffvg j v 2 V (Gt)g[ffu; vg j v 2 V (Gt)g of its index set, the matrix M2(u; y) has the blo
k form shownin (2.20) with a; 
; d; C;D being now de�ned in terms of y (instead of x). In view of(2.21), we have:M2(u; y) � 0() �y0 � yu 
T � dT
� d C �D � � 0 and D � 0: (2.22)Next we observe that the invarian
e of y under Sym(t) implies a spe
ial blo
k stru
turefor the matri
es C and D.Lemma 2.2. Consider the partition V (Gt) = V1 [ : : :[Vt of the nodeset of graphGt, where Vp := fpi j i 2 V g for p = 1; : : : ; t. With respe
t to this partition, thematri
es C and D have the blo
k form:
C = 0BBB� A1 A2 � � � A2A2 A1 � � � A2... ... . . . ...A2 � � � � � � A1

1CCCA ; D =
0BBBBB�

B1 B2 B2 � � � B2(B2)T B3 B4 � � � B4(B2)T B4 B3 � � � B4... ... ... . . . ...(B2)T B4 � � � � � � B3
1CCCCCA ; (2.23)

where2 A1; : : : ; B4 2 Rn�n . Moreover, setting a1 := diag(A1), b1 := diag(B1), b3 :=diag(B3), we have 
 = [aT1 ::: aT1 ℄T , and d = [bT1 bT3 bT3 ::: bT3 ℄T .Proof. Consider i; j 2 V and p; q; p0; q0 2 f1; : : : ; tg with p = q if and onlyif p0 = q0. Then Cpi;qj = yfpi;qjg = yfp0i;q0jg = Cp0i;q0j ; indeed, as there exists� 2 Sym(t) mapping fp; qg to fp0; q0g, the equality yfpi;qjg = yfp0i;q0jg follows fromthe fa
t that y is invariant under a
tion of Sym(t). This shows that C has the formindi
ated in (2.23); the argument is analogous for matrix D.To �x ideas, set u = 1h 2 V1 (where h 2 V is a given node of G). Then theentries of A1; : : : ; B4 are given byA1ij = yf1i;1jg; A2ij = yf1i;2jg; B1ij = yf1i;1h;1jg;B2ij = yf1i;1h;2jg; B3ij = yf2i;1h;2jg; B4ij = yf2i;1h;3jg (2.24)2Here Ai or Bi should not be interpreted as powers of A or B. Namely, i is just an upper index.8



for i; j 2 V . (Re
all that yf1i;1jg = yfpi;pjg, yf1i;2jg = yfpi;qjg, yf1i;2j;3hg = yfpi;qj;rhgfor any distin
t p; q; r 2 f1; : : : ; tg sin
e y is invariant under a
tion of Sym(t).) More-over, the edge 
onstraints yuv = 0 (for uv 2 E(Gt)) in (2.18) 
an be reformulatedas A1ij = 0 if ij 2 E(G);B1ij = 0 if fi; j; hg 
ontains an edge of G;B2ij = 0 if hi 2 E(G) or j 2 fi; hg;B3ij = 0 if ij 2 E(G) or if h 2 fi; jg;B4ij = 0 if h 2 fi; jg;diag(A2) = diag(B2) = diag(B4) = 0;
(2.25)

for distin
t i; j 2 V .The next lemma indi
ates how one 
an further blo
k-diagonalize the two matri
esappearing at the right hand side of the equivalen
e in (2.22).Lemma 2.3. We haveD � 0() � B1 (t� 1)B2(t� 1)(B2)T (t� 1)B3 + (t� 1)(t� 2)B4� ; B3 �B4 � 0:Moreover, �y0 � yu 
T � dT
� d C �D � � 0() A1 �B3 �A2 +B4 � 0 and0�y0 � yu aT1 � bT1 (t� 1)(aT1 � bT3 )A1 �B1 (t� 1)(A2 �B2)(t� 1)(A1 �B3) + (t� 1)(t� 2)(A2 �B4)
1A � 0:

(We wrote only the upper triangular part in the above (symmetri
) matrix.)Proof. Consider the orthogonal matri
esM := �I 00 Ut�1� ; N := �1 00 M� ;where I is the identity matrix of order n and Ut�1 is de�ned as follows. Ut�1 is a(t � 1) � (t � 1) blo
k-matrix where, for p; q = 1; : : : ; t � 1, its (p; q)th blo
k Upqt�1 isthe n� n matrix de�ned as
Upqt�1 := 8><>:

1pt�1I if p = 1 or q = 1;� 1pt�1+t�1 � 1� I if p = q � 2;1pt�1+t�1I otherwise: (2.26)
Noti
e that Ut�1 is symmetri
 and orthogonal, i.e., Ut�1(Ut�1)T = I. A simple
al
ulation shows that

MDM =
0BBBBB�

B1 pt� 1B2 0 : : : 0pt� 1(B2)T B3 + (t� 2)B4 0 : : : 00 0 B3 �B4 0... ... ... . . . ...0 0 0 : : : B3 �B4
1CCCCCA :

9



The �rst assertion of the lemma now follows after multiplying the se
ond row/
olumnblo
k by pt� 1. Next we haveN �y0 � yu 
T � dT
� d C �D �N = � y0 � yu (
� d)TMM(
� d) M(C �D)M� :As the matrix C � D has the same type of blo
k shape as D, we dedu
e from theabove that M(C � D)M is blo
k-diagonal. More pre
isely, the �rst diagonal blo
khas the form � A1 �B1 pt� 1(A2 �B2)pt� 1(A2 � B2)T (A1 �B3) + (t� 2)(A2 �B4)�and the remaining t � 2 diagonal blo
ks are all equal to A1 � B3 � A2 + B4. One
an moreover verify that (
� d)TM = �aT1 � bT1 ;pt� 1(aT1 � bT3 ); 0 : : : 0�. From thisfollows the se
ond assertion of the lemma.Summarizing, we have obtained the following more 
ompa
t semide�nite programfor the parameter `(Gt)`(Gt) = max teT a1 s.t. a1 = diag(A1); b1 = diag(B1); b3 = diag(B3) 2 Rn ;A1; A2; B1; B2; B3; B4 2 Rn�n satisfy (2:25) and0�1� (a1)h aT1 � bT1 (t� 1)(aT1 � bT3 )A1 �B1 (t� 1)(A2 �B2)(t� 1)(A1 � B3) + (t� 1)(t� 2)(A2 �B4)
1A � 0;�B1 (t� 1)B2(t� 1)B3 + (t� 1)(t� 2)B4� � 0;A1 �A2 �B3 +B4 � 0;B3 �B4 � 0: (2.27)This formulation applies when G is vertex-transitive; here h is any �xed node ofG. Hen
e 	`(G) 
an be obtained by 
omputing `(Gt) for O(logn) queries of theparameter t (see [16℄) and, for G vertex-transitive, the 
omputation of ea
h `(Gt) isvia an SDP with four LMI's involving matri
es of size 2n+ 1, 2n, n, n, respe
tively.The above redu
tions obviously apply to the stronger bound 	`�0 obtained by addingnonnegativity. Namely, simply add the 
onstraints A1; : : : ; B4 � 0 in (2.27).3. Bounds for Hamming graphs. We indi
ate here how to 
ompute the pa-rameters  (G) and 	`(G) when G is a Hamming graph. Given an integer n � 1 andD � N := f1; : : : ; ng, G is the graph H(n;D) with node set V (G) := P(N) and withan edge (I; J) if jI 4 J j 2 D (for I; J 2 P(N)). Thus we now have jV (G)j = 2n. AsG is vertex-transitive, we 
an use the program (2.27). As the program (2.27) involvesmatri
es of size O(2n), it 
annot be solved dire
tly for interesting values of n. Howeverone 
an use the fa
t that the Hamming graph G = H(n;D) has a large automorphismgroup for redu
ing the size of the matri
es A1; : : : ; B4 involved in the program (2.27).Namely, ea
h permutation � 2 Sym(n) indu
es an automorphism of G, by letting�(I) := f�(i) j i 2 Ig for I 2 P(N) and, for any K 2 P(N), the swit
hing mapping10



sK de�ned by sK(I) := I 4K (for I 2 P(N)) is also an automorphism of G. ThenAut(G) = f�sK j � 2 Sym(n); K 2 P(N)g and jAut(G)j = n!2n.It turns out that the matri
es A1; : : : ; B4 appearing in (2.27) belong to the Ter-williger algebra of the Hamming graph. Using the expli
it blo
k-diagonalization ofthe Terwilliger algebra, presented in S
hrijver [30℄, we are able to blo
k-diagonalizethe matri
es in (2.27) whi
h enables the 
omputation of 	`(G) for G = H(n;D) forn up to 20. We re
all the details needed for our treatment in the next subse
tion.3.1. The Terwilliger algebra. For i; j; p = 0; : : : ; n, let Mp;ni;j denote the 0=1matrix indexed by P(N) whose (I; J)-th entry is 1 if jIj = i, jJ j = j, jI \ J j = p, andequal to 0 otherwise. The set
An := 8<: nXi;j;p=0 xpi;jMp;ni;j j xpi;j 2 R9=;is an algebra, known as the Terwilliger algebra of the Hamming graph. For k =0; : : : ; n, letMnk be the matrix indexed by P(N) whose (I; J)-th entry is 1 if jI4J j = kand 0 otherwise. The set Bn := ( nXk=0xkMnk j xk 2 R)is an algebra, known as the Bose-Mesner algebra of the Hamming graph. Obviously,Bn � An, sin
e Mnk =Pi;j;pji+j�2p=kMp;ni;j . As is well known, Bn is a 
ommutativealgebra and thus all matri
es in Bn 
an be simultaneously diagonalized (
f. Delsarte[7℄). The Terwilliger algebra is not 
ommutative, thus it 
annot be diagonalized,however it 
an be blo
k-diagonalized, as explained in [30℄. We re
all the main resultbelow.Given integers i; j; k; p = 0; : : : ; n, set�p;ni;j;k := nXu=0(�1)p�u�up�� n� 2kn� k � u��n� k � ui� u ��n� k � uj � u �; (3.1)

�p;ni;j;k := �p;ni;j;k�n� 2ki� k �� 12�n� 2kj � k �� 12 : (3.2)Theorem 3.1. [30℄ For a matrix M =Pi;j;pMp;ni;j xpi;j in the Terwilliger algebra,
M � 0()Mk :=  Xp �p;ni;j;kxpi;j!n�ki;j=k � 0 for k = 0; 1; : : : ; jn2 k : (3.3)

To show this, S
hrijver [30℄ 
onstru
ts an orthogonal matrix U having the follow-ing property:
UTMU =

0BBBB�

M0 0 : : : 00 
M1 : : : 0... ... . . . 00 0 : : : 
Mbn=2


1CCCCA ; where 
Mk =
0BBB�Mk 0 : : : 00 Mk : : : 0... ... . . . 00 0 : : : Mk

1CCCA11



with blo
k Mk being repeated �nk�� � nk�1� times, for k = 0; : : : ; bn=2
.The result extends to a blo
k matrix whose blo
ks all lie in the Terwilliger algebraand whi
h has a border of a spe
ial form. We state Lemma 3.2 for a 2�2 blo
k matrixbut the analogous result holds obviously for any number of blo
ks.Lemma 3.2. Let A;B;C 2 An; say, A = Pi;j;p api;jMp;ni;j , B = Pi;j;p bpi;jMp;ni;j ,C =Pi;j;p 
pi;jMp;ni;j and de�ne a

ordingly
Ak =  Xp �p;ni;j;kapi;j!n�ki;j=k ; Bk =  Xp �p;ni;j;kbpi;j!n�ki;j=k ; Ck =  Xp �p;ni;j;k
pi;j!n�ki;j=k :Then, � A BBT C� � 0() �Ak BkBTk Ck� � 0 8k = 0; 1; : : : ; jn2 k :

Proof. Dire
tly from the above using the orthogonal matrix �U 00 U�.Lemma 3.3. (see Lemma 1 in [20℄) Let M = Pni;j;p=0 xpi;jMp;ni;j 2 An, 
 =Pni=0 
i�i, where �i 2 f0; 1gP(N) with �iI = 1 if jIj = i (for I 2 P(N)), and d 2 R .Then, �d 
T
 M� � 0() 8<: Mk � 0 for k = 1; : : : ; �n2 � ;~M0 := �d ~
T~
 M0� � 0
after setting ~
T := �
iq�ni��ni=0.3.2. Compa
t formulation for  (G) for Hamming graphs. As the graphG = H(n;D) is vertex-transitive, we have  (G) = 2n`(G) by (2.16). It is shown in [20℄how to 
ompute the parameter `(G) (when D is an interval [1; d℄ but the reasoning isthe same for any D). The basi
 idea is that the matrix M2(h;x) appearing in (2.12)is a blo
k matrix whose blo
ks lie in the Terwilliger algebra and thus it 
an be blo
k-diagonalized. We re
all the details, dire
tly for the parameter  (G) from (2.13), asthey will be useful for our treatment of the parameter 	`(G) in the next se
tion.Let x be feasible for the program (2.13). As G is vertex-transitive it suÆ
es torequire the 
onditionM2(h;x) � 0 in (2.13) for one 
hoi
e of h 2 V (G). Moreover, wemay assume that the variable x is invariant under a
tion of the automorphism groupof G. To �x ideas, let us 
hoose the node h := ; of G (the empty subset of N). Thematrix M2(;;x) has the blo
k form

M2(;;x) = 0�t eT bTe A Bb B B
1A (3.4)

where A;B; e; b are indexed by V (G) = P(N) and diag(A) = e and diag(B) = b. ByLemma 2.1, we have:M2(;;x) � 0() �t� 1 eT � bTe� b A�B � � 0 and B � 0: (3.5)12



As x is invariant under a
tion of Aut(G), it follows that AI;J = xfI;Jg = xfI0;J0g =AI0;J0 if jI 4 J j = jI 0 4 J 0j. In other words, the matrix A lies in the Bose-Mesneralgebra; say, A = nXk=0xkMnk = nXi;j;p=0 xi+j�2pMp;ni;j (3.6)
for some reals xk. Moreover, BI;J = xf;;I;Jg = xf;;I0;J0g = BI0;J0 if jI 0j = jIj,jJ 0j = jJ j and jI 0 \ J 0j = jI \ J j. In other words, the matrix B lies in the Terwilligeralgebra; say, B = nXi;j;p=0 xpi;jMp;ni;j (3.7)
for some reals xpi;j . The following relations link the parameters xi; xpi;j .Lemma 3.4. For i; j; p = 0; : : : ; n,xi = x00;i;xpi;j = xpj;i = xj�pi+j�2p;j = xi�pi+j�2p;i (3.8)and the edge equations readxpi;j = 0 if fi; j; i+ j � 2pg \ D 6= ;: (3.9)

Proof. If jIj = i, then xi = A;;I = xf;;Ig = B;;I = x00;i. Let jIj = i, jJ j = jand jI \ J j = p. Then, xpi;j = BI;J = BJ;I = xpj;i. Moreover, xpi;j = BI;J =xf;;I;Jg = xfI;;;I4Jg = BI;I4J = xi�pi+j�2p;i: This shows (3.8). The edge 
onditionsread BI;J = xfI;;;Jg = 0 if fjIj; jJ j; jI 4 J jg \ D 6= ;, giving (3.9).We 
an now use the results from the previous subse
tion (Theorem 3.1 and Lemma3.3) for blo
k-diagonalizing the matri
es o

urring in (3.5). For k = 0; : : : ; bn=2
,de�ne the matri
esAk :=  Xp �p;ni;j;kx00;i+j�2p!n�ki;j=k ; Bk :=  Xp �p;ni;j;kxpi;j!n�ki;j=k (3.10)

orresponding respe
tively to the matri
es A, B in (3.6) and (3.7). De�ne the ve
tor

~
 :=  s�ni��1� x00;i�!ni=0 2 Rn+1 : (3.11)Then the parameter  (H(n;D)) 
an be reformulated in the following way: (H(n;D)) = min t s.t. x00;0 = 1; xpi;j satisfy (3:8); (3:9); andAk �Bk � 0 for k = 1; : : : ; bn=2
;Bk � 0 for k = 0; 1; : : : ; bn=2
;�t� 1 ~
T~
 A0 �B0� � 0; (3.12)
where Ak; Bk; ~
 are as in (3.10) and (3.11). To 
ompute  �0(H(n;D)), simply addthe nonnegativity 
ondition xpi;j � 0 to (3.12).13



3.3. Compa
t formulation for 	`(G) for Hamming graphs. We now give amore 
ompa
t formulation for the parameter 	`(G) whenG = H(n;D). As mentionedabove, one has to evaluate `(Gt) for various 
hoi
es of t 2 N , with `(Gt) being givenby (2.27). As for the parameter  (H(n;D)), we now observe that A1; : : : ; B4 and thusall blo
ks in the matri
es in (2.27) lie in the Terwilliger algebra. (As in the previousse
tion we �x h := ;, the empty subset of N .)Lemma 3.5. The matri
es As (s = 1; 2) belong to the Bose-Mesner algebraBn and the matri
es Bs (s = 1; 2; 3; 4) belong to the Terwilliger algebra An. Say,As =Pni=0 x(s)iMni (s = 1; 2) and Bs =Pni;j;p=0 y(s)pi;jMp;ni;j (s = 1; 2; 3; 4). Then,x(s)i = y(s)00;i for s = 1; 2; i = 1; : : : ; n;y(s)pi;j = y(s)pj;i = y(s)j�pi+j�2p;j = y(s)i�pi+j�2p;i (for s = 1; 4);y(2)pi;j = y(2)i�pi;i+j�2p; y(3)pi;j = y(3)pj;i;y(3)pi;j = y(2)i�pi+j�2p;i for i; j; p = 0; : : : ; n:
(3.13)

Moreover, the edge 
onditions 
an be reformulated asy(1)pi;j = 0 if fi; j; i+ j � 2pg \ D 6= ;;y(2)ii;i = y(4)ii;i = 0 for i = 0; : : : ; n;y(2)pi;j = 0 if i 2 D or j = 0;y(3)pi;j = 0 if i+ j � 2p 2 D or i = 0 or j = 0;y(4)pi;j = 0 if i = 0 or j = 0; (3.14)
for distin
t i; j 2 f0; 1; : : : ; ng.Proof. We use the fa
t that A1; : : : ; B4 satisfy (2.24) and (2.25) where the variabley is assumed to be invariant under a
tion of Sym(t) � Aut(G) � Aut(Gt). We haveA1; A2 2 Bn, sin
e the entries A1I;J = yf1I;1Jg and A2I;J = yf1I;2Jg depend only onjI 4 J j. (Indeed, if jI 0 4 J 0j = jI 4 J j then there exists � 2 Aut(G) mapping fI; Jgto fI 0; J 0g and thus, by the invarian
e of y under a
tion of �, yf1I;1Jg = yf1I0;1J0gand yf1I;2Jg = yf1I0;2J0g.) Similarly, for s = 1; : : : ; 4, Bs 2 An sin
e the entry BsI;Jdepends only on jIj; jJ j; jI \ J j. The proof for the identities x(s)i = y(s)00;i (s = 1; 2)and y(1)pi;j = : : : = y(1)i�pi+j�2p;i is identi
al to the proof of (3.8). Let I; J 2 P(N)with jIj = i, jJ j = j, jI \ J j = p. Then, y(4)pi;j = B4I;J = yf1;;2I;3Jg = yf1;;3I;2Jg(use the invarian
e of y under the permutation (2; 3) 2 Sym(t)), thus equal toB4J;I = y(4)pj;i. Moreover, y(4)pi;j = yf1;;2I;3Jg = yf1I;2;;3I4Jg = yf2I;1;;3I4Jg (�rstapply the swit
hing mapping by I and then permute the indi
es 1; 2), thus equal toB4I;I4J = y(4)i�pi;i+j�2p. Next we have: y(2)pi;j = B2I;J = yf1I;1;;2Jg = yf1;;1I;2I4Jg(apply the swit
hing mapping by I), thus equal to B2I;I4J = y(2)i�pi;i+j�2p. Fi-nally, y(3)pi;j = B3I;J = yf2I;1;;2Jg = B3J;I = y(3)pj;i, and y(3)pi;j = yf2I;1;;2Jg =yf2;;1I;2I4Jg = yf1;;2I;1I4Jg (�rst swit
h by I and then permute 1; 2), thus equal toB2I4J;I = y(2)i�pi+j�2p;i. The identities (3.14) follow dire
tly from (2.25).As the blo
ks of the matri
es in the program (2.27) lie in the Terwilliger algebra,the matri
es in (2.27) 
an be blo
k-diagonalized, as explained in Se
tion 3.1. For this,de�ne the matri
esAsk :=  Xp �p;ni;j;ky(s)0i+j�2p;0!n�ki;j=k ; Bsk :=  Xp �p;ni;j;ky(s)pi;j!n�ki;j=k (3.15)14




orresponding, respe
tively, to the matri
es As (s = 1; 2) and Bs (s = 1; 2; 3; 4) andde�ne the ve
tors
~a :=  s�ni��y(1)00;0 � y(1)ii;i�!ni=0 ; ~b :=  

s�ni��y(1)ii;i � y(3)ii;i�!ni=0 2 Rn+1 :(3.16)Using Lemmas 3.2 and 3.3, we obtain the following reformulation for the parameter`(Gt) from (2.27)`(Gt) = max 2nty(1)00;0 s.t. y(s)pi;j (s = 1; : : : ; 4) satisfy (3:13); (3:14) and0�1� y(1)00;0 ~aT (t� 1)~bTA10 �B10 (t� 1)(A20 �B20)(t� 1)(A10 �B30) + (t� 1)(t� 2)(A20 �B40)
1A � 0;�A1k �B1k (t� 1)(A2k �B2k)(t� 1)(A1k �B3k) + (t� 1)(t� 2)(A2k �B4k)� � 0 for k = 1; :::; bn=2
;�B1k (t� 1)B2k(t� 1)B3k + (t� 1)(t� 2)B4k� � 0 for k = 0; : : : ; bn=2
;A1k �A2k �B3k +B4k � 0 for k = 0; : : : ; bn=2
;B3k �B4k � 0 for k = 0; : : : ; bn=2
; (3.17)where Ask; Bsk; ~a;~b are as in (3.15), (3.16). To 
ompute `�0(Gt) simply add the non-negativity 
ondition y(s)pi;j � 0 on all variables.3.4. Numeri
al results for Hamming graphs. We have tested the variousbounds on some instan
es of Hamming graphs. In what follows we use the following
onvention: For an integer 1 � d � n, H(n; d) (resp., H�(n; d), H+(n; d)) denotesthe graph H(n;D) with D = fdg (resp., D = f1; : : : ; dg, fd; : : : ; ng). The papers[9, 10, 11℄ give numeri
al results for the parameters # (G), #+ (G) for su
h instan
es.Moreover, a bound related to 
opositive programming is 
omputed in [11℄ (
alled K1-bound in [11℄, or �(1) bound in [16℄); it is shown in [16℄ that this bound is dominatedby our parameter  �0.In Table 1, the symbol `*' indi
ates the stri
t inequality 	`(G) > d (G)e, whi
hhappens for H(10; 8) and H+(10; 8), and we indi
ate in bold the values satisfying LB= �(G) for the obtained lower bound LB. (Indeed in these instan
es, LB = 2n�1,while P(V ) 
an be 
overed by the 2n�1 distin
t pairs fI; V n Ig (I � V ) whi
h arestable sets as n 62 D.)The results in Table 1 indi
ate that the parameters  (G) and  �0(G) give onsome instan
es a major improvement on Szegedy's bound #+ (G). On the other hand,in most 
ases, the parameter 	`(G) gives no improvement sin
e 	`(G) = d (G)e. It
ould be that this feature is spe
i�
 to Hamming graphs. As we will see in the nextse
tion, the bound 	`(G) does improve the bound d (G)e for Kneser graphs.
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graph # (G) #+ (G)  (G) 	`(G)  �0(G) 	`�0(G)H�(7; 4) 36 42.6667 64 64 64 64H�(8; 5) 72 85.3333 128 128 128 128H(10; 6) 6 8.7273 10.4366 11 10.8936 11H�(10; 6) 207.36 320 512 512 512 512H(10; 8) 2.6667 3.2 3.9232 5� 3.9232 5�H+(10; 8) 3.2 3.2 3.9232 5� 3.9232 5�H(11; 4) 16 21.5652 25.7351 26 25.7351 26H(11; 6) 12 12 12 12 15.2836 16H�(11; 7) 414.72 640 1024 1024 1024 1024H�(11; 8) 711.1111 819.2 1024 1024 1024 1024H(11; 8) 3.2 4.9383 5.7805 6 5.7805 6H(13; 8) 5.3333 9.4118 12.1429 13 13.6533 14H(15; 6) 27.7647 30.7368 46.4371 47 50.3036 51H(16; 8) 16 16 16 16 28.4444 29H(17; 6) 35 48.2222 86.3086 87 88.3204 89H(17; 8) 18 18 32 32 46.5122 47H(17; 10) 6.6666 12.6315 15.8750 16 25.8405 26H(18; 10) 10 16 18.3076 19 38.8844 -H(20; 6) 59.3735 59.3735 140.9586 141 140.9586 -H(20; 8) 41.7143 60.9524 107.1489 - 136.4115 -Table 1: Bounds for the 
hromati
 number of Hamming graphs4. Bounds for Kneser graphs. We have seen that the parameter  (G) isbounded by ��(G) and that, for vertex-transitive graphs, it 
oin
ides with the boundjV (G)j=`(G). On the other hand 	`(G) 
an sometimes be stri
tly greater then d (G)e,e.g., for the Hamming graphH(10; 8) (re
all Table 1). We present here some numeri
alresults showing that 	`(G) 
an in fa
t be stri
tly greater then d��(G)e for Knesergraphs.Given integers n � 2r, the Kneser graph K(n; r) is the graph whose verti
es arethe subsets of size r of a set N with jN j = n, two verti
es being adja
ent if and only ifthey are disjoint. As shown in [23℄, �(K(n; r)) = �n�1r�1�, and thus ��(K(n; r)) = nr inview of (2.2) asK(n; r) is vertex-transitive. Lov�asz proved that �(K(n; r)) = n�2r+2in his 
elebrated paper [22℄. Thus the fra
tional 
hromati
 number and the 
hromati
number of K(n; r) 
an di�er signi�
antly, while the fra
tional 
hromati
 number is
lose to the 
lique number !(K(n; r)) = bnr 
. Moreover, Lov�asz [23℄ proved that forG = K(n; r), �(G) = #(G). Hen
e, `(G) = �(G), implying  (G) = jV (G)j`(G) = ��(G) =n=r. Therefore, 	`(G) � dn=re. We show in this se
tion how to 
ompute 	`(G).The Kneser graph K(n; r) 
oin
ides with the subgraph of the Hamming graphH(n; f2rg) indu
ed by the subset P=r(N) := fI 2 P(N) j jIj = rg. It will be
onvenient to view the Kneser graph also in the following alternative way. Fix a setT � N with jT j = r and de�neP(N; T ) := f(I 0; I 00) 2 P(T )� P(N n T ) j jI 0j = jI 00jg:The mapping P=r(N) �! P(N; T )I 7! (T n I; I n T ) (4.1)16



is a bije
tion and jI4J j = j(T nI)4(T nJ)j+j(InT )4(JnT )j holds for I; J 2 P=r(N).Hen
e K(n; r) 
an also be viewed as the graph with nodeset P(N; T ), with two nodes(I 0; I 00); (J 0; J 00) 2 P(N; T ) being adja
ent if jI 0 4 J 0j+ jI 00 4 J 00j = 2r.As we will see below, the matri
es involved in the program (2.27) for the 
om-putation of 	`(K(n; r)) lie in Br;r0 (r0 = n � r), a subalgebra of a tensor produ
tof two Terwilliger algebras, whi
h has also been studied and blo
k-diagonalized byS
hrijver [30℄ (in 
onne
tion with 
onstant weight 
odes). We follow the same stepsas in Se
tion 3 for the 
omputation of `(Gt) for Hamming graphs, whi
h we now 
arryout for Kneser graphs.4.1. The subalgebra Br;r0 . As above, jN j = n and we �x a subset T � N withjT j = r and set r0 := n � r. For i; j; p = 0; 1; :::; r (resp., i0; j0; q = 0; 1; :::; r0), letMp;ri;j (resp., Mq;r0i0;j0) be the matri
es indexed by P(T ) (resp., P(N n T )) de�ning theTerwilliger algebra Ar (resp., Ar0) as in Se
tion 3.1. Let now Ar;r0 be the algebragenerated by the tensor produ
ts of matri
es in Ar and Ar0 ; that is,Ar;r0 := 8<: Xi;j;p;i0;j0;q xp;qi;j;i0;j0Mp;ri;j 
Mq;r0i0;j0 j xp;qi;j;i0;j0 2 R9=; :
Matri
es in Ar;r0 are indexed by the set P(T )� P(N n T ). Consider the subalgebra

Br;r0 := 8<:Xi;j;p;q yp;qi;j Mp;ri;j 
Mq;r0i;j j yp;qi;j 2 R9=; :
So Br;r0 
onsists of all matri
es from Ar;r0 satisfying xp;qi;j;i0;j0 = 0 if i 6= i0 or j 6= j0.Hen
e, for M 2 Br;r0 and (I; I 0); (J; J 0) 2 P(T ) � P(N n T ), M(I;I0);(J;J0) = 0 ifjIj 6= jI 0j or if jJ j 6= jJ 0j. Therefore any row/
olumn ofM indexed by (I; I 0) 62 P(N; T )is identi
ally zero and we may thus restri
t matri
es in Br;r0 to being indexed by thesubset P(N; T ) of P(T )� P(N n T ).For k � r, let Mn;rk be the matrix indexed by P(N; T ), whose ((I; I 0); (J; J 0))thentry is equal to 1 if jI4J j+jI 04J 0j = 2k, and to 0 otherwise. ThusMn;rk 
orrespondsto the prin
ipal submatrix of Mn2k (in the Bose-Mesner algebra Bn) indexed by thesubset P=r(N) and Mn;rk 2 Br;r0 as Mn;rk = Pi;j;p;qji+j�p�q=kMp;ri;j 
Mq;r0i;j : Hen
ethe set Brn := ( rXk=0xkMn;rk j xk 2 R)is a subalgebra of Br;r0 .S
hrijver [30℄ proved the following analogue of Theorem 3.1, giving the expli
itblo
k-diagonalization for matri
es in Br;r0 . For k = 0; : : : ; � r2�, l = 0; : : : ; j r02 k setWkl := fk; k + 1; :::; r � kg \ fl; l + 1; :::; r0 � lg:Theorem 4.1. [30℄ For a matrix M =Pi;j;p;q yp;qi;j Mp;ri;j 
Mq;r0i;j in Br;r0 ,M � 0()Mk;l := �Pp;q �p;ri;j;k�q;r0i;j;lyp;qi;j �i;j2Wkl � 0 for ea
h

k = 0; 1; : : : ; � r2� and l = 0; 1; : : : ; j r02 k : (4.2)
17



We have the following analogues of Lemmas 3.2 and 3.3.Lemma 4.2. Let A = Pi;j;p;q ap;qi;jMp;ri;j 
Mq;r0i;j , B = Pi;j;p;q bp;qi;jMp;ri;j 
Mq;r0i;j ,C =Pi;j;p;q 
p;qi;jMp;ri;j 
Mq;r0i;j be matri
es in Br;r0 and de�ne a

ordinglyAkl =  Xp;q �p;ri;j;k�q;r0i;j;lap;qi;j !i;j2Wkl ; Bkl =  Xp;q �p;ri;j;k�q;r0i;j;lbp;qi;j !i;j2Wkl ;Ckl =  Xp;q �p;ri;j;k�q;r0i;j;l
p;qi;j !i;j2Wkl :Then,� A BBT C� � 0() �Akl BklBTkl Ckl� � 0 8k = 0; 1; : : : ; jr2k and l = 0; 1; : : : ;�r02 � :Lemma 4.3. Let M =Pni;j;p;q=0 xp;qi;jMp;ri;j 
Mq;r0i;j 2 Br;r0 , 
 =Pni=0 
i�i, where�i 2 f0; 1gP(N;T ) with �i(I;I0) = 1 if jIj = i, (for (I; I 0) 2 P(N; T )), and d 2 R . Then,�d 
T
 M� � 0() 8><>: Mkl � 0 for k = 0; : : : ; � r2� ; l = 0; : : : ; j r02 k ; k + l > 0;~M00 := �d ~
T~
 M00� � 0
after setting ~
T := �
iq�ri��r0i ��ri=0.4.2. Compa
t formulation for 	`(G) for Kneser graphs. In order to 
om-pute 	`(G) for the Kneser graph G = K(n; r), one has to evaluate `(Gt) for various
hoi
es of t. As G is vertex-transitive, `(Gt) 
an be 
omputed using the program(2.27). We now �x h := T 2 P=r(N) 
orresponding to (;; ;) 2 P(N; T ) as 
hosennode of G. We now show that the matri
es A1; : : : ; B4 appearing in program (2.27)lie in the algebra Br;r0 and thus they 
an be blo
k-diagonalized using Theorem 4.1.The following lemma is the analogue of Lemma 3.5.Lemma 4.4. The matri
es As (s = 1; 2) belong to Brn and the matri
es Bs(s = 1; 2; 3; 4) belong to Br;r0 . Say, As = Pri=0 x(s)iMn;ri (s = 1; 2) and Bs =Pri;j;p;q=0 y(s)p;qi;jM t;ri;j 
Mq;r0i;j (s = 1; 2; 3; 4). We havex(s)i = y(s)0;00;i for s = 1; 2; i = 1; : : : ; r;y(s)p;qi;j = y(s)p;qj;i = y(s)i�q;i�pi;i+j�p�q = yj�q;j�pj;i+j�p�q for s = 1; 4;y(2)p;qi;j = y(2)i�q;i�pi;i+j�p�q; y(3)p;qi;j = y(3)p;qj;i ;y(3)p;qi;j = y(2)i�q;i�pi+j�p�q;i for i; j; p; q = 0; : : : ; r:

(4.3)
Moreover, the edge 
onditions 
an be reformulated asy(1)p;qi;j = 0 if i = r or j = r or i+ j � p� q = r;y(2)p;qi;j = 0 if i = r or j = 0 or i+ j � p� q = 0;y(3)p;qi;j = 0 if i = 0 or j = 0 or i+ j � p� q = r;y(4)p;qi;j = 0 if i = 0 or j = 0 or i+ j � p� q = 0: (4.4)
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Proof. As in the proof of Lemma 3.5, the matri
es A1; : : : ; B4 satisfy (2.24)and (2.25), where the variable y is invariant under a
tion of Sym(t) � Aut(G). Amain di�eren
e with the 
ase of the Hamming graph is that, for the Kneser graphG = K(n; r), Aut(G) � Sym(n), i.e., the only automorphisms of G arise from thepermutations of N . Re
all that � 2 Sym(n) a
ts on P=r(N) in the obvious way;namely, �(I) = f�(i) j i 2 Ig for I 2 P=r(N).Let us �rst show that A1 2 Brn; that is, A1I;J depends only on jI 4 J j (forI; J 2 P=r(N)). For this, let I; J; I 0; J 0 2 P=r(N) with jI 4 J j = jI 0 4 J 0j. Then,jI\J j = jI 0\J 0j and thus there exists � 2 Sym(n) su
h that �(I) = I 0 and �(J) = J 0.Hen
e, A1I;J = yf1I;1Jg = yf1�(I);1�(J)g = A1I0;J0 sin
e y is invariant under a
tion of �.The proof for A2 2 Brn, Bs 2 Br;r0 is along the same lines.
T
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Fig. 4.1. Venn diagrams
Let us now prove the identity y(1)p;qi;j = y(1)i�q;i�pi;i+j�p�q; the proofs for the remainingidentities are along the same lines and thus omitted. Say, y(1)p;qi;j = B1I;J , whereI; J 2 P=r(N) with jT n Ij = i, jT n J j = j, j(T n I) \ (T n J)j = p and j(I n T ) \(J n T )j = q. See Figure 4.1 for the Venn diagram of the sets I; J; T . Consider setsI 0; J 0 2 P=r(N) whi
h together with the set T have the Venn diagram shown in Figure4.1. Then, B1I0;J0 = y(1)i�q;i�pi;i+j�p�q and there exists � 2 Sym(n) su
h that �(T ) = I 0,�(I) = T , �(J) = J 0. Therefore, y(1)p;qi;j = B1I;J = yf1I;1J;1Tg = yf1�(I);1�(J);1�(T )g =yf1T;1J0;1I0g = B1I0;J0 = y(1)i�q;i�pi;i+j�p�q.For k = 0; :::; br=2
, l = 0; :::; br0=2
, de�ne the matri
es

Askl =  Xp;q �p;ri;j;k�q;r0i;j;ly(s)0;00;i+j�p�q!i;j2Wkl ; Bskl =  Xp;q �p;ri;j;k�q;r0i;j;ly(s)p;qi;j!i;j2Wkl(4.5)
orresponding, respe
tively, to the matri
es As (s = 1; 2) and Bs (s = 1; 2; 3; 4) andde�ne the ve
tors
~a := �q�ri��r0i � �y(1)0;00;0 � y(1)i;ii;i��ri=0 ;~b := �q�ri��r0i � �y(1)i;ii;i � y(3)i;ii;i��ri=0 :(4.6)Using Lemmas 4.2 and 4.3, we obtain the following reformulation for the parameter19



`(Gt) from (2.27)`(Gt) = max �nr�ty(1)0;00;0 s.t. y(s)p;qi;j ; s = 1; : : : ; 4 satisfy (4:3); (4:4) and0�1� y(1)0;00;0 ~aT (t� 1)~bTA100 �B100 (t� 1)(A200 �B200)(t� 1)(A100 �B300) + (t� 1)(t� 2)(A200 �B400)
1A � 0;�A1kl �B1kl (t� 1)(A2kl �B2kl)(t� 1)(A1kl �B3kl) + (t� 1)(t� 2)(A2kl �B4kl)� � 0for k = 0; :::; br=2
; l = 0; :::; br0=2
; k + l > 0;�B1kl (t� 1)B2kl(t� 1)B3kl + (t� 1)(t� 2)B4kl� � 0 for k = 0; :::; br=2
; l = 0; :::; br0=2
;A1kl �A2kl �B3kl +B4kl � 0 for k = 0; :::; br=2
; l = 0; :::; br0=2
;B3kl �B4kl � 0 for k = 0; :::; br=2
; l = 0; :::; br0=2
; (4.7)where Askl; Bskl; ~a;~b are as in (4.5), (4.6). To 
ompute `�0(Gt) simply add the non-negativity 
ondition y(s)p;qi;j � 0 on all variables.4.3. Numeri
al results for Kneser graphs. We show in Table 2 below ournumeri
al results for the bounds 	`(G) and 	`�0(G) for several instan
es of Knesergraphs. We indi
ate in bold the values a
hieving the 
hromati
 number.

Graph d��(G)e = dn=re 	`(G) 	`�0(G) �(G) = n� 2r + 2K(6; 2) 3 4 4 4K(7; 2) 4 4 5 5K(8; 3) 3 4 4 4K(9; 3) 3 4 4 5K(10; 4) 3 3 4 4K(11; 3) 4 5 5 7K(11; 4) 3 4 4 5K(12; 3) 4 5 6 8K(12; 4) 3 4 4 6K(12; 5) 3 3 4 4K(13; 5) 3 4 4 5K(14; 5) 3 4 4 6K(15; 3) 5 6 6 11K(16; 4) 4 5 6 10K(24; 6) 4 4 6 14K(25; 5) 5 6 7 17K(34; 7) 5 6 7 22K(36; 6) 6 7 9 26Table 2: Bounds for the 
hromati
 number of Kneser graphs20



5. Computing the new bound  K for DIMACS ben
hmark graphs. Sofar we have been dealing with vertex-transitive graphs and with the bounds  (�) and	`(�). For the formulation of  (G), it was observed in Se
tion 2 that, when G isvertex-transitive, it suÆ
es to require in (2.13) positive semide�niteness of M2(h; x)for only one h 2 V (G) instead of for all h 2 V (G). In 
ase of a non-symmetri
graph G one would need to require M2(h; x) � 0 for all h 2 V (G); therefore, withn := jV (G)j, in order to 
ompute  (G), (resp., `(Gt), and thus 	`(G)), one wouldhave to solve a semide�nite program with 2n (resp., 4n) matri
es of order � n + 1(resp., � 2n + 1). For graphs that are of interest, e.g. with n � 100, this 
annot bedone with the 
urrently available software for semide�nite programming.For non-symmetri
 graphs we propose another variant of the bound  (2)(G).Namely, given a 
lique K in G, letM2(K;x) denote the prin
ipal submatrix ofM2(x)indexed by the multiset P1(V ) [ ([h2Kffh; ig j i 2 V g). Now de�ne the parameter K(G) := min t s.t. x0 = t; xi = 1 (i 2 V ); M2(K;x) � 0;xI = 0 for all I 
ontaining an edge: (5.1)Then #(G) �  K(G) � ��(G). (The left inequality follows using (2.4) and the rightinequality follows from  K(G) �  (2)(G) � ��(G) using (2.8), (2.10).) Set k := jKjand assume w.l.o.g. that K = f1; 2; :::; kg. With respe
t to the partition of its indexset as f0g [ ffig j i 2 V g [ [kh=1ffh; ig j i 2 V g, the matrix M2(K;x) has the blo
kform
M2(K;x) =

0BBBBBBBB�
t aT0 aT1 aT2 : : : aTka0 A0 A1 A2 : : : Aka1 A1 A1 0 : : : 0a2 A2 0 A2 . . . ...... ... ... . . . . . . 0ak Ak 0 : : : 0 Ak

1CCCCCCCCA
where a0; : : : ; ak; A0; : : : ; Ak are indexed by V , ai = diag(Ai) (0 � i � k), a0 = e,(A0)ij = xij , (Ah)ij = xfh;i;jg for h 2 K, i; j 2 V . Note that for h 2 V the 
olumnsof A0 and Ah indexed by fhg are both equal to ah. Hen
e, as in the proof of Lemma2.1, we 
an do some row/
olumn manipulations and verify thatM2(K;x) � 0()  t� k eT � (Pkh=1 ah)Te�Pkh=1 ah A0 �Pkh=1Ah ! � 0; A1; : : : ; Ak � 0:Hen
e  K(G) 
an be 
omputed via a semide�nite program involving k + 1 matri
esof sizes n+ 1 (on
e) and n (k times).We have 
ondu
ted experiments for some DIMACS ben
hmark graphs (stud-ied e.g. in [4, 5, 8, 9, 12, 25, 26℄). In Table 3 we present our lower bounds forthe 
hromati
 number of the graphs DSJCa:b. Re
all that DSJCa:b are randomgraphs with a verti
es, two verti
es being adja
ent with probability 10�1b. The graphDSJR500.1 is a geometri
 graph with 500 nodes randomly distributed in the unitsquare, with an edge between two nodes if their distan
e is less than 0.1. The graphDSJR500.1
 is the 
omplement of DSJR500.1. The graphs 
an be downloaded fromhttp://mat.gsia.
mu.edu/COLOR03/.In Table 3, the 
olumn `LB' 
ontains the previously best known lower boundstaken from [8, 25, 26℄, and the values into parentheses 
ome from [3℄; the bound21



82 for DSJR500.1
 is the size of a 
lique obtained using the heuristi
 of [2℄. The
olumn `UB' 
ontains the best known upper bounds taken from [4, 12, 13℄, i.e. thenumber of 
olors in the best 
olourings found so far. The 
olumn `K' 
ontains thesize of the 
lique used for 
omputing the parameter  K(G) (the 
lique is found usingthe heuristi
 from [2℄). We also indi
ate the value of the theta number �#(G) (also
omputed in [9, 10℄ for some instan
es), whi
h already improves the best lower boundin several instan
es. We indi
ate in bold our best new lower bounds for the 
hromati
number. On several instan
es they give a signi�
ant improvement on the best knownlower bound. Moreover, in two instan
es, we are able to 
lose the gap as our lowerbound mat
hes the upper bound. Namely we �nd the exa
t value of the 
hromati
number for the graphs DSJC125.9 (�(G) = 43) and DSJR500.1
 (�(G) = 85), whi
hwere not known before to the best of our knowledge. These results demonstrate thatour bounds are quite strong.We should also point out that the semide�nite program for the parameter  K ,for instan
e, for the graph DSJC500:9, 
ontains a matrix of size 501 � 501 and 56matri
es of size 500� 500. One 
annot hope to solve su
h a big problem using solversbased on interior point methods. The values in 
olumns ` #(G) ' and `  K(G) ' were
omputed using the boundary point method of Povh, Rendl and Wiegele [28℄. Thismethod allows to 
ompute the Lov�asz theta number and its variations (e.g.  K(G))to reasonably high a

ura
y even for graphs with several hundred nodes.One may wonder why we did not add nonnegativity 
onstraints in the formulationfor  K . The reason is that for random graphs adding nonnegativity 
onstraints givesonly a negligible improvement. This fa
t was already observed for the Lov�asz thetanumber in [9℄.
Graph LB #(G) l#(G)m K  K(G) d K(G)e UBDSJC125.1 5 4.1062 5 4 4.337 5 5DSJC125.5 14 (17) 11.7844 12 10 13.942 14 17DSJC125.9 42 37.768 38 34 42.53 43 43DSJC250.1 6 (8) 4.906 5 4 5.208 6 8DSJC250.5 14 16.234 17 12 19.208 20 28DSJC250.9 48 55.152 56 43 66.15 67 72DSJC500.1 6 6.217 7 5 6.542 7 12DSJC500.5 13 (16) 20.542 21 13 27.791 28 48DSJC500.9 59 84.04 85 56 100.43 101 126DSJC1000.1 6 8.307 9 5 - - 20DSJC1000.5 15 (17) 31.89 32 14 - - 83DSJC1000.9 66 122.67 123 65 - - 224DSJR500.1
 82 (83) 83.74 84 77 84.12 85 85Table 3: Bounds for the 
hromati
 number of DIMACS instan
esRemarks. The 
omputational results reported in Tables 1 and 2 were 
arriedout using the open sour
e 
odes for semide�nite programming CSDP 5.0 and DSDP5.8 available, respe
tively, at http://infohost.nmt.edu/~bor
hers/
sdp.html andhttp://www-unix.m
s.anl.gov/~benson/dsdp/.For �nding large 
liques in the instan
es in Table 3 we used the heuristi
 Max-AO(based on [2℄) available at 22



http://dollar.biz.uiowa.edu/~burer/software/Max-AO/index.htmlThe boundary point method 
ode is available athttp://www.math.uni-klu.a
.at/or/Software/theta_bp.mA
knowledgments. We are very grateful to two referees for their 
arefulreading and their useful suggestions whi
h helped improve the presentation of thepaper. We also thank Mar
o Chiarandini and Mi
hael Tri
k for telling us about
oloring results for DIMACS ben
hmark graphs, and Janez Povh, Franz Rendl andAngelika Wiegele for adapting their boundary point algorithm 
ode in su
h a waythat it now exploits the blo
k-diagonal stru
ture in semide�nite programs.REFERENCES[1℄ Bellare, M., Sudan, M. 1994. Improved non-approximability results. Pro
eedings of the 26thAnnual ACM Symposium on Theory of Computing, 184{193.[2℄ Burer, S., Monteiro, R., Zhang, Y. 2002. Maximum stable set formulations and heuristi
s basedon 
ontinuous optimization. Mathemati
al Programming Ser. A, 94:137-166[3℄ Caramia, M., Dell'Olmo, P. 2004. Bounding vertex 
oloring by trun
ated multistage bran
h andbound. Networks, 44:231{242.[4℄ Caramia, M., Dell'Olmo, P. 2007. Coloring graphs by iterated lo
al sear
h traversing feasibleand infeasible solutions. Dis
rete Applied Mathemati
s, doi:10.1016/j.dam.2006.07.013.[5℄ Chiarandini, M. 2005. Sto
hasti
 Lo
al Sear
h Methods for Highly Constrained CombinatorialOptimisation Problems. PhD thesis, Darmstadt University of Te
hnology.[6℄ Chv�atal, V. 1973. Edmonds polytopes and a hierar
hy of 
ombinatorial problems. Dis
rete Math-emati
s, 4:305{337.[7℄ Delsarte, P. 1973. An Algebrai
 Approa
h to the Asso
iation S
hemes of Coding Theory. [PhilipsResear
h Reports Supplements (1973) No. 10℄ Philips Resear
h Laboratories, Eindhoven.[8℄ Desrosiers, C., Galinier, P., Hertz, A. 2007. EÆ
ient algorithms for �nding 
riti
al subgraphs.Dis
rete Applied Mathemati
s, doi:10.1016/j.dam.2006.07.019.[9℄ Dukanovi
, I., Rendl, F. 2007. Semide�nite programming relaxations for graph 
oloring andmaximal 
lique problems. Mathemati
al Programming, 109(2-3):345{365.[10℄ Dukanovi
, I., Rendl, F. 2007. A semide�nite programming based heuristi
 for graph 
oloring.Dis
rete Applied Mathemati
s, doi:10.1016/j.dam.2006.07.014.[11℄ Dukanovi
, I., Rendl, F. 2006. Copositive programming motivated bounds onthe 
lique and the 
hromati
 number. Available at Optimization Online:http://www.optimization-online.org/DB_HTML/2006/05/1403.html[12℄ Galinier, P., Hao J.-K. 1999. Hybrid Evolutionary Algorithms for Graph Coloring. Journal ofCombinatorial Optimization, 3:379{397.[13℄ Galinier, P., Hertz, A., Zu�erey, N. 2007. An adaptive memory algorithm for the k-
olouringproblem. Dis
rete Applied Mathemati
s, doi:10.1016/j.dam.2006.07.017.[14℄ Garey, M.R., Johnson, D.S. 1979. Computers and Intra
tability: A Guide to the Theory ofNP-Completeness. Freeman, San Fran
is
o.[15℄ Gvozdenovi�
, N. Approximating the Stable Set and the Chromati
 Number of a Graph UsingHierar
hies of SDP Bounds. PhD thesis, in preparation.[16℄ Gvozdenovi�
, N., Laurent, M. 2007. The operator 	 for the 
hromati
 number of a graph.Preprint. Available at http://www.
wi.nl/~monique[17℄ Karger, D., Motwani, R., Sudan, M. 1998. Approximate graph 
oloring by semide�nite pro-gramming. Journal of the ACM, 45:246{265.[18℄ Lasserre, J.B. 2001. An expli
it exa
t SDP relaxation for nonlinear 0�1 programs. In K. Aardaland A.M.H. Gerards (eds.), Le
ture Notes in Computer S
ien
e, 2081:293{303.[19℄ Laurent, M. 2003. A 
omparison of the Sherali-Adams, Lov�asz-S
hrijver and Lasserre relaxationsfor 0� 1 programming. Mathemati
s of Operations Resear
h, 28:470{496.[20℄ Laurent, M. 2007. Strengthened semide�nite programming bounds for 
odes.Mathemati
al Pro-gramming. 109(2-3):239-261.[21℄ Laurent, M., Rendl, F. 2005. Semide�nite programming and integer programming. In K. Aardal,G. Nemhauser, R. Weismantel (eds.), Handbook on Dis
rete Optimization, pp 393{514,Elsevier B.V.[22℄ Lov�asz, L. 1978. Kneser's Conje
ture, Chromati
 Numbers and Homotopy. Journal of Combi-natorial Theory A, 25:319{324. 23



[23℄ Lov�asz, L. 1979. On the Shannon 
apa
ity of a graph. IEEE Transa
tions on InformationTheory, 25:1{7.[24℄ Matousek, J., Ziegler, G. 2004. Topologi
al lower bounds for the 
hromati
 number: A hierar
hy.Jahresberi
ht der DMV, 106:71{90.[25℄ M�endez-Diaz, I.M., Zabala, P. 2006. A bran
h-and-
ut algorithm for graph 
oloring. Dis
reteApplied Mathemati
s, 154(5):826{847.[26℄ M�endez-Diaz, I., Zabala, P. 2007.Dis
rete Applied Mathemati
s, doi:10.1016/j.dam.2006.07.010.[27℄ Meurdesoif, P. 2005. Strengthening the Lov�asz � �G� bound for graph 
oloring. Mathemati
alProgramming, 102:577{588.[28℄ Povh, J., Rendl, F., Wiegele, A. 2006. A boundary point method to solve semide�nite programs.Computing, 78(3):277{286[29℄ S
hrijver, A. 2003. Combinatorial Optimization - Polyhedra and EÆ
ien
y, Springer-Verlag,Berlin.[30℄ S
hrijver, A. 2005. New 
ode upper bounds from the Terwilliger algebra and semide�nite pro-gramming. IEEE Transa
tions on Information Theory, 51:2859{2866.[31℄ Szegedy, M. 1994. A note on the theta number of Lov�asz and the generalized Delsarte bound.35th Annual Symposium on Foundations of Computer S
ien
e, pages 36{39.[32℄ Ziegler, G. 2001. Coloring Hamming graphs, Optimal Binary Codes, and the 0/1-Borsuk Prob-lem in Low Dimensions. Le
ture Notes in Computer S
ien
e, vol. 2122, pp. 159-171.

24


