
COMPUTING SEMIDEFINITE PROGRAMMING LOWER BOUNDSFOR THE (FRACTIONAL) CHROMATIC NUMBER VIABLOCK-DIAGONALIZATION�NEBOJ�SA GVOZDENOVI�Cy AND MONIQUE LAURENTyAbstrat. Reently we investigated in [16℄ hierarhies of semide�nite approximations for thehromati number �(G) of a graph G. In partiular, we introdued two hierarhies of lower bounds,the ` '-hierarhy onverging to the frational hromati number, and the `	'-hierarhy onvergingto the hromati number of a graph. In both hierarhies the �rst order bounds are related to theLov�asz theta number, while the seond order bounds would already be too ostly to ompute forlarge graphs. As an alternative, relaxations of the seond order bounds are proposed in [16℄. Wepresent here our experimental results with these relaxed bounds for Hamming graphs, Kneser graphsand DIMACS benhmark graphs. Symmetry redution plays a ruial role as it permits to omputethe bounds using more ompat semide�nite programs. In partiular, for Hamming and Knesergraphs, we use the expliit blok-diagonalization of the Terwilliger algebra given by Shrijver [30℄.Our numerial results indiate that the new bounds an be muh stronger than the Lov�asz thetanumber. For some of the DIMACS instanes we improve the best known lower bounds signi�antly.Key words. Chromati number, Lov�asz theta number, semide�nite programming, Terwilligeralgebra, Hamming graph, Kneser graph.AMS subjet lassi�ations. 05C15, 90C27, 90C221. Introdution. The hromati number �(G) of a graph G is the smallestnumber of olors needed to olor the verties of G so that no two adjaent vertiesshare the same olor. Determining �(G) is an NP-hard problem [14℄ and it is hardto approximate �(G) within jV (G)j1=14�� for any � > 0 [1℄. Finding a proper vertexoloring with a small number of olors is essential in many real world appliations.A lot of work has been done in order to develop eÆient heuristis for this problem(see e.g. [5℄). Nevertheless, these methods an provide us only with upper bounds onthe hromati number. Lower bounds were mainly obtained using linear programming[25, 26℄, ritial subgraphs [8℄ and semide�nite programming [9, 10, 11, 17, 27, 31℄. Thesemide�nite approahes are based on omputing (variations of) the well known lowerbound #(G) := # �G�, the theta number of the omplementary graph, introdued byLov�asz [23℄. The theta number satis�es the `sandwih inequality':!(G) � #(G) � �(G);and it an be omputed to any arbitrary preision in polynomial time sine it anbe formulated via a semide�nite program of size jV (G)j. Here, !(G) is the liquenumber of G, de�ned as the maximum size of a lique (i.e., a set of pairwise adjaentnodes) in G; the stability number �(G) := !(G) of G being the maximum size ofa stable set (i.e., a set of pairwise nonadjaent nodes) in G. The theta number hasbeen strengthened towards the hromati number using nonnegativity [31℄, triangleinequalities [27℄, or some lift-and-projet methods [11℄. Computational results werereported in [9, 10, 11℄. A ommon feature shared by all these bounds is that theyremain below the frational hromati number ��(G). Thus they are of little use when��(G) is lose to the lique number !(G). In [16℄ the authors investigated another�Supported by the Netherlands Organization for Sienti� Researh grant NWO 639.032.203 andby ADONET, Marie Curie Researh Training Network MRTN-CT-2003-504438.yCentrum voor Wiskunde en Informatia, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands;e-mails: N.Gvozdenovi�wi.nl, M.Laurent�wi.nl1



type of lift-and-projet approah leading to a hierarhy of bounds onverging to thehromati number �(G). We explore in the present follow-up paper the behavior ofthese bounds through experimental results on several lasses of graphs.The approah in [16℄ is based on the following redution of Chv�atal [6℄ of thehromati number to the stability number:�(G) � t() �(Kt�G) = jV (G)j; (1.1)where Kt�G denotes the Cartesian produt of Kt, the omplete graph on t nodes,and the graph G. For a given graph parameter �(�) satisfying �(�) � �(�) � �(�),de�ne the new graph parameter 	�(�) by	�(G) := mint2N t s.t. �(Kt�G) = jV (G)j: (1.2)As shown in [16℄, the operator 	 is monotone noninreasing and satis�es!(G) = 	�(G) � 	�(G) � 	�(G) = �(G) and 	#(G) = l#(G)m: (1.3)In other words the operator 	 transforms upper bounds for the stability numberinto lower bounds for the hromati number. An interesting bound for �(�) from theomputational point of view is the graph parameter `(�) introdued in Laurent [20℄, asrelaxation of the seond order bound in the Lasserre's hierarhy for �(�) (see [18℄,[20℄).Two hierarhies for the hromati number, related to the Lasserre's hierarhy for �(�),are studied in [16℄, as well as two bounds  (�) and 	`(�), related to the parameter`(�). See Setion 2.2 for the preise de�nition of the parameters `,  , 	`.In the present paper we investigate how to ompute the bounds  (�) and 	`(�)for Hamming graphs and for Kneser graphs. Coloring Hamming graphs is of intereste.g. to the Borsuk problem (see [32℄) and the hromati number of Kneser graphs wasomputed in the elebrated paper [22℄ of Lov�asz using topologial methods; see e.g.[24℄ for a study of topologial lower bounds for the hromati number. The Hamminggraph G = H(n;D) has nodeset V (G) = f0; 1gn, with an edge uv if the Hammingdistane between u; v lies in the given set D � f1; : : : ; ng. For n � 2r, the Knesergraph K(n; r) is the subgraph of H(n; f2rg) indued by the set of words u 2 f0; 1gnwith weight Pni=1 ui = r. The Hamming graph has a large automorphism groupwhih enables us to blok-diagonalize and reformulate the programs for  (G), 	`(G)in suh a way that they involve O(n) matries of size O(n) (instead of 2n = jV (G)j).As a ruial ingredient we use the blok-diagonalization for the Terwilliger algebragiven by Shrijver [30℄. We also use this tehnique, whih was extended to onstant-weight odes in [30℄, for omputing the bound 	`(�) for Kneser graphs. For Knesergraphs, the bound  (�) oinides with the frational hromati number (see Setion4) but, as will be seen in Table 2, 	`(K(n; r)) an go beyond the frational hromatinumber. We report experimental results for Hamming and Kneser graphs in Tables1 and 2. For some instanes, the parameter  (G) improves substantially the thetanumber �#(G) and adding nonnegativity may also help; moreover, while 	`(G) hardlyimproves upon  (G) for Hamming graphs, it does give an improvement for Knesergraphs.Finally we introdue a further variation  K(G) of our bounds (whereK is a liquein G), whih an be espeially useful for graphs without apparent symmetries. Usinga simple blok-diagonalization argument,  K(G) an be formulated via a semide�niteprogram involving jKj matries of size jV (G)j and one matrix of size jV (G)j + 1.2



The bound  K(G) is bounded above by the frational hromati number ��(G). Wereport experimental results on some DIMACS benhmark instanes. To the best of ourknowledge, our lower bound improves the best known lower bound in the literature forseveral instanes of DSJC, DSJR graphs, sometimes substantially. Moreover, for thetwo instanes G = DSJC125.9 and DSJR500.1, we an determine the exat value ofthe hromati number �(G), sine our lower bound mathes the known upper boundfor �(G). This indiates that the bound  K an be quite strong for random graphs,despite the fat that it remains below the frational hromati number. Moreover weobserved experimentally that adding nonnegativity onstraints to the formulation of K does not help for the DSJC instanes, whih is similar to the observation made in[9℄ that strengthening the theta number with nonnegativity does not help for randomgraphs.More details about the results of this paper an also be found in [15℄.Contents of the paper. In Setion 2 we reall the de�nitions of the graphparameters `(�),  (�) and 	`(�), and their main properties; we show how symmetryin the semide�nite programming formulations and in the graph an be exploited to(sometimes dramatially) redue the sizes of the semide�nite programs de�ning thesebounds. Setion 3 is devoted to the omputation of the bounds for Hamming graphs;we desribe how to blok-diagonalize the matries in the semide�nite programs andreport omputational experiments. In Setion 4 we fous on the graph parameter	`(�) for Kneser graphs; we present the blok-diagonalization of the matries andonlude the setion with omputational results. We desribe in Setion 5 the newlower bound  K(�) whih we test on some DIMACS benhmark graphs.Notation. Given a graph G = (V;E), G denotes its omplementary graph whoseedges are the pairs uv 62 E(G) (u; v 2 V (G), u 6= v). Given a graph parameter �(�),�(�) is the graph parameter de�ned by �(G) := �(G) for any graph G. For two graphsG; G0, their Cartesian produt G�G0 has node set V (G)�V (G0), with two nodes uu0;vv0 2 V (G)� V (G0) being adjaent in G�G0 if and only if (u = v and u0v0 2 E(G0))or (uv 2 E(G) and u0 = v0). For an integer t � 1, Kt is the omplete graph on tnodes. We also set Gt = Kt�G as a short-hand notation for the Cartesian produtof G and Kt.Throughout, the letters I, J and e denote, respetively, the identity matrix, theall-ones matrix and the all-ones vetor (of suitable size); N is the set of nonnegativeintegers. For matries A;A0 indexed, respetively, by I�J , I 0�J 0, their tensor produtA
A0 is the matrix indexed by (I�I 0)�(J�J 0), with (A
A0)(i;i0);(j;j0) := Ai;jBi0;j0 .Moreover, the notation A � 0 means that A is a symmetri positive semide�nitematrix.Given a �nite set V , P(V ) denotes the olletion of all subsets of V . Given aninteger r, set Pr(V ) := fI 2 P(V ) j jIj � rg; in partiular, P1(V ) = f;; fig (i 2 V )g.Sometimes (e.g. when dealing with Hamming graphs) we deal with the olletionP1(V ), where V = P(N) with N = f1; : : : ; ng; then P1(V ) ontains ; (the emptysubset of V ) and f;g (the singleton subset of V onsisting of the empty subset of N).To avoid onfusion we use the symbol 0 to denote the empty subset of V , so thatP1(V ) = f0; fig (i 2 V )g. We sometimes identify P1(V ) n f0g with V , i.e., we writefig as i, fi; jg as ij and, given a vetor x 2 RP(V ) we also set xi := xfig, xij := xfi;jg,xijk := xfi;j;kg (for i; j; k 2 V ), et.Let V be a �nite set and let G be a subgroup of Sym(V ), the group of permutationsof V , also denoted as Sym(n) if jV j = n. Then G ats on P(V ) by letting �(I) :=3



f�(i) j i 2 Ig for I � V , � 2 G. Moreover, G ats on vetors and matries indexedby Pr(V ), namely by letting �(x) := (x�(I))I2Pr(V ), �(M) := (M�(I);�(J))I;J2Pr(V )for x 2 RPr (V ), M 2 RPr (V )�Pr(V ), and � 2 G. One says that M is invariantunder ation of G if �(M) = M for all � 2 G; then the matrix 1jGj!P�2G �(M), the`symmetrization' ofM obtained by applying the Reynolds operator, is invariant underation of G. Analogously for vetors. A semide�nite program is said to be invariantunder ation of G if, for any feasible matrix X and any � 2 G, the matrix �(X) isagain feasible with the same objetive value; then the optimum value of the programremains unhanged if we restrit to invariant feasible solutions and, in partiular,there is an invariant optimal solution.The automorphism group Aut(G) of a graph G = (V;E) onsists of all � 2Sym(V ) preserving the set of edges. G is said to be vertex-transitive when, givenany two nodes i; j 2 V , there exists � 2 Aut(G) with �(i) = j. For instane, for thegraph Gt = Kt�G, Sym(t) � Aut(G) � Aut(Gt), where (�; �) 2 Sym(t) � Aut(G)ats on V (Gt) (and thus on Pr(V (Gt)) for r 2 N ) by (�; �)(p; i) = (�(p); �(i)) for(p; i) 2 V (Kt)�V (G). We will deal in the paper with semide�nite programs involvingmatries indexed by Pr(V (Gt)), whih are invariant under this ation of Sym(t) �Aut(G).2. Graph parameters.2.1. Classi bounds. We reall here some lassi bounds for the hromatinumber �(G) of a graph G = (V;E). Throughout Setion 2, V = V (G) is the nodeset of graph G and n := jV (G)j. (For details see e.g. [16℄, [21℄, [29℄.)� The frational hromati number of G:��(G) := max eTx s.t. Xi2S xi � 1 (S stable); x 2 RV+ : (2.1)
It is well-known (and easy to verify) that !(G) � ��(G) � �(G); and�(G)��(G) � jV (G)j; with equality when G is vertex-transitive. (2.2)� Lov�asz's theta number (introdued in [23℄):#(G) = #(G) := max eTY es.t. Pi2V Yii = 1Yij = 0 (ij 2 E(G))Y � 0 (2.3)
where Y is a symmetri matrix indexed by V . For later purpose we reall the followingequivalent formulation from ([16℄, Theorem 3.1 (b)):#(G) = min X00s.t. Xii = X0i (i 2 V )Xij = 0 (ij 2 E(G))X � 0 (2.4)
where the matrix variable X is indexed by the set P1(V ) = V [ f0g. Lov�asz [23℄proved the following analogue of (2.2) for the pair (#; #):#(G)#(G) � jV (G)j; with equality when G is vertex-transitive. (2.5)4



� Szegedy's number was �rst de�ned in [31℄. We present the following equivalentformulation from [16℄:#+(G) = #+(G) = min X00s.t. Xii = X0i (i 2 V )Xij = 0 (ij 2 E(G))X � 0; X � 0: (2.6)
The above parameters satisfy!(G) � #(G) � #+(G) � ��(G) � �(G):2.2. The bounds `,  and 	`. We review here the graph parameters `(�)proposed in [20℄ and  (�) and 	`(�) proposed in [16℄; for details see also [15℄. For asubset S � V and an integer r � 1, de�ne the vetors �S 2 f0; 1gV , with ith entry 1if and only if i 2 S (for i 2 V ), and �S;r 2 f0; 1gPr(V ), with Ith entry 1 if and only ifI � S (for I 2 Pr(V )). Given a vetor x = (xI)I2P2r(V ), onsider the matrix:Mr(x) := (xI[J )I;J2Pr(V )known as the (ombinatorial) moment matrix of x of order r. Consider the programs:

las(r)(G) := maxXi2V xi s.t. Mr(x) � 0; x0 = 1; xij = 0 (ij 2 E); (2.7) (r)(G) := min t s.t. Mr(x) � 0; x0 = t; xi = 1 (i 2 V ); xij = 0 (ij 2 E); (2.8)where the variable x is indexed by P2r(V ). Note that the variable t an be avoided in(2.8), by replaing t by x0 in the objetive funtion. We hoose this formulation toemphasize the analogy with the formulations (2.13), (2.17), (5.1) below. The abovetwo programs were studied respetively in [18, 19℄ and in [16℄. In partiular, thefollowing holds:�(G) = las(�(G)) � ::: � las(r+1)(G) � las(r)(G) � ::: � las(1)(G) = #(G); (2.9)
#(G) =  (1)(G) � ::: �  (r)(G) �  (r+1)(G) � ::: �  (�(G))(G) = ��(G); (2.10)

 (r)(G)las(r)(G) � jV (G)j; with equality if G is vertex-transitive: (2.11)Thus the parameters las(r)(G) (for r = 1; :::; �(G)) reate a hierarhy of upper boundsfor the stability number, while the parameters  (r)(G) reate a hierarhy of lowerbounds for the frational oloring number. Theoretially, the parameters las(r)(G)and  (r)(G) an be omputed to any preision in polynomial time for �xed r, sinethe semide�nite programs (2.7) and (2.8) involve matries of size O(nr). On the otherhand, in pratie, we are not able to ompute las(2)(G) or  (2)(G) for \interesting"graphs, that is, for graphs of reasonably large size. For this reason some variations ofthe parameters las(2)(G) and  (2)(G) were proposed in [16, 20℄. The idea is to onsider,instead of the full moment matrix of order 2, a number of prinipal submatries ofit. Namely, given h 2 V , let M2(h;x) denote the prinipal submatrix of M2(x)indexed by the subset P1(V ) [ ffh; ig j i 2 V g of P2(V ). Thus in order to de�ne5



the matries M2(h;x) for all h 2 V , one needs only the omponents of x indexed byP3(V ). Following [16, 20℄, de�ne the upper bound for the stability number �(G):`(G) := max Xi2V xi s.t. M2(h;x) � 0 (h 2 V ); x0 = 1; xij = 0 (ij 2 E(G)); (2.12)
and the lower bound for the frational olouring number ��(G): (G) := min t s.t. M2(h;x) � 0 (h 2 V ); xij = 0 (ij 2 E(G))x0 = t; xi = 1 (i 2 V ) (2.13)
where the variable x is indexed by P3(V ). For the parameter `(G) we have (see [20℄)�(G) � las(2)(G) � `(G) � las(1)(G) = #(G) � �(G); (2.14)while  (G) satis�es (see [16℄)#+(G) �  (G) �  (2)(G): (2.15)They also satisfy an inequality similar to (2.11), namely (G)`(G) � jV (G)j; with equality if G is vertex-transitive: (2.16)As �(�) � `(�) � �(�) (by (2.14)), we an apply the operator 	 from (1.2) to `(�) andobtain the lower bound 	`(G) for �(G), de�ned as	`(G) = mint2N t s.t. `(Gt) = n: (2.17)The parameter `(Gt) is de�ned via the program`(Gt) = max Xu2V (Gt) yu s.t. M2(u; y) � 0 (u 2 V (Gt))y0 = 1; yuv = 0 (uv 2 E(Gt)); (2.18)
where the variable y is indexed by P3(V (Gt)). (Reall Gt = Kt�G.) Finally, the twoparameters  (G) and 	`(G) were ompared in [16℄, where the following relation isshown: #(G) �  (G) � 	`(G) � �(G): (2.19)Let us �nally note that one an easily strengthen the bounds `(G),  (G), 	`(G),e.g., by requiring nonnegativity1 of the variables. Namely, let `�0(G) (resp.,  �0(G))denote the variation of `(G) (resp.,  (G)) obtained by adding the ondition x � 0to (2.12) (resp., (2.13)); we have again  �0(G)`�0(G) = jV (G)j when G is vertex-transitive. De�ne aordingly 	`�0(G), whih amounts to requiring y � 0 in (2.18).1Note however that the ondition xij � 0 8i; j 2 V already automatially holds in (2.12), (2.13),sine it is implied byM2(h; x) � 0 8h 2 V (as xhi ours as diagonal entry ofM2(h; x)). Analogously,yuv � 0 8u; v 2 V (Gt) automatially holds in (2.18).6



2.3. Exploiting symmetry to ompute the bounds `,  and 	`. We grouphere some observations about the omplexity of omputing the graph parameters `(�), (�) and 	`(�). We show how one an exploit symmetry, present in the struture of thematries involved in the programs de�ning the parameters or in the graph instane,in order to redue the size of the programs. This symmetry redution is a ruial stepas it allows reformulating the parameters via more ompat programs. In this waywe will be able to ompute the graph parameters for ertain large graphs (with asmuh as 220 nodes for ertain Hamming graphs), a task that would obviously be outof reah without applying this symmetry redution.We begin with observing that the matrix M2(h;x), used in de�nitions (2.12) and(2.13), has a speial blok struture, whose symmetry an be exploited to `blok-diagonalize' it. Reall that M2(h;x) is indexed by the set P1(V ) [ ffh; ig j i 2 V g =f0g [ ffig j i 2 V g [ ffh; ig j i 2 V g. Here we keep the two ourrenes of thesingleton fhg in the index set, ourring �rst as fig for i = h and seond as fi; hg fori = h. Thus, the index set of M2(h;x) is partitioned into f0g and two opies of V .Lemma 2.1. With respet to this partition of its index set, the matrix M2(h;x)has the blok form:
M2(h;x) = 0� a T dT C Dd D D

1A ; (2.20)
where a = x0; i = xi; di = xhi (i 2 V ), Cij = xij ; Dij = xhij (i; j 2 V ). Then,M2(h;x) � 0() �a� h T � dT� d C �D � � 0 and D � 0: (2.21)

Proof. The form (2.20) follows diretly from the de�nition of M2(h;x). To show(2.21), observe that the row of M2(h;x) indexed by fhg has the form (h; dT ; dT ).Indeed, for i; j 2 V , Cij = xfi;jg, Dij = xfh;i;jg, j = xj , dj = xfh;jg, implyingChj = Dhj = dj . As in [20℄, we perform some row/olumn manipulation on M2(h;x)to show (2.21). Namely, say the seond row/olumn of M2(h;x) is indexed by fhg,i.e., h omes �rst when listing the elements of V . Then,
UT1 M2(h;x)U1 = 0�a� h T � dT 0� d C D0 D D

1A ; setting U1 := 0� 1 0 0�1 1 00 0 I
1A ;

where I is the identity matrix of order 2n� 1 (n = jV j). Next,
UT2 (UT1 M2(h;x)U1)U2 = 0�a� h T � dT 0� d C �D 00 0 D

1A ; setting U2 := 0�1 0 00 I 00 �I I
1A ;

where I has order n.Hene, in (2.12) and (2.13), we may replae eah onstraint M2(h;x) � 0 (whihinvolves a matrix of size 2n+ 1) by two onstraints involving matries of sizes n+ 1and n.We now onsider symmetries present in the graph instane G. Observe that theprogram (2.12) (or (2.13)) is invariant under ation of Aut(G). Hene one may assume7



that the variable x is invariant under ation of Aut(G). Therefore, when G is vertex-transitive, it suÆes to require the ondition M2(h;x) � 0 for one hoie of h 2 V(instead of for all h 2 V ) and thus `(G) and  (G) an be omputed via a semide�niteprogram with two LMI's involving matries of sizes n+1, n, and with O(n2) variables.We now turn to the graph parameter 	`(G). In order to determine 	`(G), weneed to ompute the parameter `(Gt) = `(Kt�G) from (2.18) (for several queries oft 2 N ). As was just observed above, the program de�ning `(Gt) is invariant underation of Aut(Gt), thus in partiular under ation of Sym(t) � Aut(G), or simply ofSym(t). In partiular, in program (2.18), one may assume that y is invariant underation of Sym(t). Moreover, it suÆes to require the ondition M2(u; y) � 0 for allu 2 V1 instead of for all u 2 V (Gt); here V1 = f1i j i 2 V g denotes the `�rst layer'of the nodeset V (Gt) = fpi j p = 1; : : : ; t; i 2 V g of Gt. Furthermore, when G isvertex-transitive, it suÆes to require M2(u; y) � 0 for one hoie of u 2 V1 insteadof for all u 2 V1.We now show, using the invariane of y under ation of Sym(t), that the ma-trix M2(u; y) has a speial blok struture, whose symmetry an be used to blok-diagonalize it. To begin with, with respet to the partition f0g[ffvg j v 2 V (Gt)g[ffu; vg j v 2 V (Gt)g of its index set, the matrix M2(u; y) has the blok form shownin (2.20) with a; ; d; C;D being now de�ned in terms of y (instead of x). In view of(2.21), we have:M2(u; y) � 0() �y0 � yu T � dT� d C �D � � 0 and D � 0: (2.22)Next we observe that the invariane of y under Sym(t) implies a speial blok struturefor the matries C and D.Lemma 2.2. Consider the partition V (Gt) = V1 [ : : :[Vt of the nodeset of graphGt, where Vp := fpi j i 2 V g for p = 1; : : : ; t. With respet to this partition, thematries C and D have the blok form:
C = 0BBB� A1 A2 � � � A2A2 A1 � � � A2... ... . . . ...A2 � � � � � � A1

1CCCA ; D =
0BBBBB�

B1 B2 B2 � � � B2(B2)T B3 B4 � � � B4(B2)T B4 B3 � � � B4... ... ... . . . ...(B2)T B4 � � � � � � B3
1CCCCCA ; (2.23)

where2 A1; : : : ; B4 2 Rn�n . Moreover, setting a1 := diag(A1), b1 := diag(B1), b3 :=diag(B3), we have  = [aT1 ::: aT1 ℄T , and d = [bT1 bT3 bT3 ::: bT3 ℄T .Proof. Consider i; j 2 V and p; q; p0; q0 2 f1; : : : ; tg with p = q if and onlyif p0 = q0. Then Cpi;qj = yfpi;qjg = yfp0i;q0jg = Cp0i;q0j ; indeed, as there exists� 2 Sym(t) mapping fp; qg to fp0; q0g, the equality yfpi;qjg = yfp0i;q0jg follows fromthe fat that y is invariant under ation of Sym(t). This shows that C has the formindiated in (2.23); the argument is analogous for matrix D.To �x ideas, set u = 1h 2 V1 (where h 2 V is a given node of G). Then theentries of A1; : : : ; B4 are given byA1ij = yf1i;1jg; A2ij = yf1i;2jg; B1ij = yf1i;1h;1jg;B2ij = yf1i;1h;2jg; B3ij = yf2i;1h;2jg; B4ij = yf2i;1h;3jg (2.24)2Here Ai or Bi should not be interpreted as powers of A or B. Namely, i is just an upper index.8



for i; j 2 V . (Reall that yf1i;1jg = yfpi;pjg, yf1i;2jg = yfpi;qjg, yf1i;2j;3hg = yfpi;qj;rhgfor any distint p; q; r 2 f1; : : : ; tg sine y is invariant under ation of Sym(t).) More-over, the edge onstraints yuv = 0 (for uv 2 E(Gt)) in (2.18) an be reformulatedas A1ij = 0 if ij 2 E(G);B1ij = 0 if fi; j; hg ontains an edge of G;B2ij = 0 if hi 2 E(G) or j 2 fi; hg;B3ij = 0 if ij 2 E(G) or if h 2 fi; jg;B4ij = 0 if h 2 fi; jg;diag(A2) = diag(B2) = diag(B4) = 0;
(2.25)

for distint i; j 2 V .The next lemma indiates how one an further blok-diagonalize the two matriesappearing at the right hand side of the equivalene in (2.22).Lemma 2.3. We haveD � 0() � B1 (t� 1)B2(t� 1)(B2)T (t� 1)B3 + (t� 1)(t� 2)B4� ; B3 �B4 � 0:Moreover, �y0 � yu T � dT� d C �D � � 0() A1 �B3 �A2 +B4 � 0 and0�y0 � yu aT1 � bT1 (t� 1)(aT1 � bT3 )A1 �B1 (t� 1)(A2 �B2)(t� 1)(A1 �B3) + (t� 1)(t� 2)(A2 �B4)
1A � 0:

(We wrote only the upper triangular part in the above (symmetri) matrix.)Proof. Consider the orthogonal matriesM := �I 00 Ut�1� ; N := �1 00 M� ;where I is the identity matrix of order n and Ut�1 is de�ned as follows. Ut�1 is a(t � 1) � (t � 1) blok-matrix where, for p; q = 1; : : : ; t � 1, its (p; q)th blok Upqt�1 isthe n� n matrix de�ned as
Upqt�1 := 8><>:

1pt�1I if p = 1 or q = 1;� 1pt�1+t�1 � 1� I if p = q � 2;1pt�1+t�1I otherwise: (2.26)
Notie that Ut�1 is symmetri and orthogonal, i.e., Ut�1(Ut�1)T = I. A simplealulation shows that

MDM =
0BBBBB�

B1 pt� 1B2 0 : : : 0pt� 1(B2)T B3 + (t� 2)B4 0 : : : 00 0 B3 �B4 0... ... ... . . . ...0 0 0 : : : B3 �B4
1CCCCCA :

9



The �rst assertion of the lemma now follows after multiplying the seond row/olumnblok by pt� 1. Next we haveN �y0 � yu T � dT� d C �D �N = � y0 � yu (� d)TMM(� d) M(C �D)M� :As the matrix C � D has the same type of blok shape as D, we dedue from theabove that M(C � D)M is blok-diagonal. More preisely, the �rst diagonal blokhas the form � A1 �B1 pt� 1(A2 �B2)pt� 1(A2 � B2)T (A1 �B3) + (t� 2)(A2 �B4)�and the remaining t � 2 diagonal bloks are all equal to A1 � B3 � A2 + B4. Onean moreover verify that (� d)TM = �aT1 � bT1 ;pt� 1(aT1 � bT3 ); 0 : : : 0�. From thisfollows the seond assertion of the lemma.Summarizing, we have obtained the following more ompat semide�nite programfor the parameter `(Gt)`(Gt) = max teT a1 s.t. a1 = diag(A1); b1 = diag(B1); b3 = diag(B3) 2 Rn ;A1; A2; B1; B2; B3; B4 2 Rn�n satisfy (2:25) and0�1� (a1)h aT1 � bT1 (t� 1)(aT1 � bT3 )A1 �B1 (t� 1)(A2 �B2)(t� 1)(A1 � B3) + (t� 1)(t� 2)(A2 �B4)
1A � 0;�B1 (t� 1)B2(t� 1)B3 + (t� 1)(t� 2)B4� � 0;A1 �A2 �B3 +B4 � 0;B3 �B4 � 0: (2.27)This formulation applies when G is vertex-transitive; here h is any �xed node ofG. Hene 	`(G) an be obtained by omputing `(Gt) for O(logn) queries of theparameter t (see [16℄) and, for G vertex-transitive, the omputation of eah `(Gt) isvia an SDP with four LMI's involving matries of size 2n+ 1, 2n, n, n, respetively.The above redutions obviously apply to the stronger bound 	`�0 obtained by addingnonnegativity. Namely, simply add the onstraints A1; : : : ; B4 � 0 in (2.27).3. Bounds for Hamming graphs. We indiate here how to ompute the pa-rameters  (G) and 	`(G) when G is a Hamming graph. Given an integer n � 1 andD � N := f1; : : : ; ng, G is the graph H(n;D) with node set V (G) := P(N) and withan edge (I; J) if jI 4 J j 2 D (for I; J 2 P(N)). Thus we now have jV (G)j = 2n. AsG is vertex-transitive, we an use the program (2.27). As the program (2.27) involvesmatries of size O(2n), it annot be solved diretly for interesting values of n. Howeverone an use the fat that the Hamming graph G = H(n;D) has a large automorphismgroup for reduing the size of the matries A1; : : : ; B4 involved in the program (2.27).Namely, eah permutation � 2 Sym(n) indues an automorphism of G, by letting�(I) := f�(i) j i 2 Ig for I 2 P(N) and, for any K 2 P(N), the swithing mapping10



sK de�ned by sK(I) := I 4K (for I 2 P(N)) is also an automorphism of G. ThenAut(G) = f�sK j � 2 Sym(n); K 2 P(N)g and jAut(G)j = n!2n.It turns out that the matries A1; : : : ; B4 appearing in (2.27) belong to the Ter-williger algebra of the Hamming graph. Using the expliit blok-diagonalization ofthe Terwilliger algebra, presented in Shrijver [30℄, we are able to blok-diagonalizethe matries in (2.27) whih enables the omputation of 	`(G) for G = H(n;D) forn up to 20. We reall the details needed for our treatment in the next subsetion.3.1. The Terwilliger algebra. For i; j; p = 0; : : : ; n, let Mp;ni;j denote the 0=1matrix indexed by P(N) whose (I; J)-th entry is 1 if jIj = i, jJ j = j, jI \ J j = p, andequal to 0 otherwise. The set
An := 8<: nXi;j;p=0 xpi;jMp;ni;j j xpi;j 2 R9=;is an algebra, known as the Terwilliger algebra of the Hamming graph. For k =0; : : : ; n, letMnk be the matrix indexed by P(N) whose (I; J)-th entry is 1 if jI4J j = kand 0 otherwise. The set Bn := ( nXk=0xkMnk j xk 2 R)is an algebra, known as the Bose-Mesner algebra of the Hamming graph. Obviously,Bn � An, sine Mnk =Pi;j;pji+j�2p=kMp;ni;j . As is well known, Bn is a ommutativealgebra and thus all matries in Bn an be simultaneously diagonalized (f. Delsarte[7℄). The Terwilliger algebra is not ommutative, thus it annot be diagonalized,however it an be blok-diagonalized, as explained in [30℄. We reall the main resultbelow.Given integers i; j; k; p = 0; : : : ; n, set�p;ni;j;k := nXu=0(�1)p�u�up�� n� 2kn� k � u��n� k � ui� u ��n� k � uj � u �; (3.1)

�p;ni;j;k := �p;ni;j;k�n� 2ki� k �� 12�n� 2kj � k �� 12 : (3.2)Theorem 3.1. [30℄ For a matrix M =Pi;j;pMp;ni;j xpi;j in the Terwilliger algebra,
M � 0()Mk :=  Xp �p;ni;j;kxpi;j!n�ki;j=k � 0 for k = 0; 1; : : : ; jn2 k : (3.3)

To show this, Shrijver [30℄ onstruts an orthogonal matrix U having the follow-ing property:
UTMU =

0BBBB�
M0 0 : : : 00 M1 : : : 0... ... . . . 00 0 : : : Mbn=2

1CCCCA ; where Mk =
0BBB�Mk 0 : : : 00 Mk : : : 0... ... . . . 00 0 : : : Mk

1CCCA11



with blok Mk being repeated �nk�� � nk�1� times, for k = 0; : : : ; bn=2.The result extends to a blok matrix whose bloks all lie in the Terwilliger algebraand whih has a border of a speial form. We state Lemma 3.2 for a 2�2 blok matrixbut the analogous result holds obviously for any number of bloks.Lemma 3.2. Let A;B;C 2 An; say, A = Pi;j;p api;jMp;ni;j , B = Pi;j;p bpi;jMp;ni;j ,C =Pi;j;p pi;jMp;ni;j and de�ne aordingly
Ak =  Xp �p;ni;j;kapi;j!n�ki;j=k ; Bk =  Xp �p;ni;j;kbpi;j!n�ki;j=k ; Ck =  Xp �p;ni;j;kpi;j!n�ki;j=k :Then, � A BBT C� � 0() �Ak BkBTk Ck� � 0 8k = 0; 1; : : : ; jn2 k :

Proof. Diretly from the above using the orthogonal matrix �U 00 U�.Lemma 3.3. (see Lemma 1 in [20℄) Let M = Pni;j;p=0 xpi;jMp;ni;j 2 An,  =Pni=0 i�i, where �i 2 f0; 1gP(N) with �iI = 1 if jIj = i (for I 2 P(N)), and d 2 R .Then, �d T M� � 0() 8<: Mk � 0 for k = 1; : : : ; �n2 � ;~M0 := �d ~T~ M0� � 0
after setting ~T := �iq�ni��ni=0.3.2. Compat formulation for  (G) for Hamming graphs. As the graphG = H(n;D) is vertex-transitive, we have  (G) = 2n`(G) by (2.16). It is shown in [20℄how to ompute the parameter `(G) (when D is an interval [1; d℄ but the reasoning isthe same for any D). The basi idea is that the matrix M2(h;x) appearing in (2.12)is a blok matrix whose bloks lie in the Terwilliger algebra and thus it an be blok-diagonalized. We reall the details, diretly for the parameter  (G) from (2.13), asthey will be useful for our treatment of the parameter 	`(G) in the next setion.Let x be feasible for the program (2.13). As G is vertex-transitive it suÆes torequire the onditionM2(h;x) � 0 in (2.13) for one hoie of h 2 V (G). Moreover, wemay assume that the variable x is invariant under ation of the automorphism groupof G. To �x ideas, let us hoose the node h := ; of G (the empty subset of N). Thematrix M2(;;x) has the blok form

M2(;;x) = 0�t eT bTe A Bb B B
1A (3.4)

where A;B; e; b are indexed by V (G) = P(N) and diag(A) = e and diag(B) = b. ByLemma 2.1, we have:M2(;;x) � 0() �t� 1 eT � bTe� b A�B � � 0 and B � 0: (3.5)12



As x is invariant under ation of Aut(G), it follows that AI;J = xfI;Jg = xfI0;J0g =AI0;J0 if jI 4 J j = jI 0 4 J 0j. In other words, the matrix A lies in the Bose-Mesneralgebra; say, A = nXk=0xkMnk = nXi;j;p=0 xi+j�2pMp;ni;j (3.6)
for some reals xk. Moreover, BI;J = xf;;I;Jg = xf;;I0;J0g = BI0;J0 if jI 0j = jIj,jJ 0j = jJ j and jI 0 \ J 0j = jI \ J j. In other words, the matrix B lies in the Terwilligeralgebra; say, B = nXi;j;p=0 xpi;jMp;ni;j (3.7)
for some reals xpi;j . The following relations link the parameters xi; xpi;j .Lemma 3.4. For i; j; p = 0; : : : ; n,xi = x00;i;xpi;j = xpj;i = xj�pi+j�2p;j = xi�pi+j�2p;i (3.8)and the edge equations readxpi;j = 0 if fi; j; i+ j � 2pg \ D 6= ;: (3.9)

Proof. If jIj = i, then xi = A;;I = xf;;Ig = B;;I = x00;i. Let jIj = i, jJ j = jand jI \ J j = p. Then, xpi;j = BI;J = BJ;I = xpj;i. Moreover, xpi;j = BI;J =xf;;I;Jg = xfI;;;I4Jg = BI;I4J = xi�pi+j�2p;i: This shows (3.8). The edge onditionsread BI;J = xfI;;;Jg = 0 if fjIj; jJ j; jI 4 J jg \ D 6= ;, giving (3.9).We an now use the results from the previous subsetion (Theorem 3.1 and Lemma3.3) for blok-diagonalizing the matries ourring in (3.5). For k = 0; : : : ; bn=2,de�ne the matriesAk :=  Xp �p;ni;j;kx00;i+j�2p!n�ki;j=k ; Bk :=  Xp �p;ni;j;kxpi;j!n�ki;j=k (3.10)
orresponding respetively to the matries A, B in (3.6) and (3.7). De�ne the vetor

~ :=  s�ni��1� x00;i�!ni=0 2 Rn+1 : (3.11)Then the parameter  (H(n;D)) an be reformulated in the following way: (H(n;D)) = min t s.t. x00;0 = 1; xpi;j satisfy (3:8); (3:9); andAk �Bk � 0 for k = 1; : : : ; bn=2;Bk � 0 for k = 0; 1; : : : ; bn=2;�t� 1 ~T~ A0 �B0� � 0; (3.12)
where Ak; Bk; ~ are as in (3.10) and (3.11). To ompute  �0(H(n;D)), simply addthe nonnegativity ondition xpi;j � 0 to (3.12).13



3.3. Compat formulation for 	`(G) for Hamming graphs. We now give amore ompat formulation for the parameter 	`(G) whenG = H(n;D). As mentionedabove, one has to evaluate `(Gt) for various hoies of t 2 N , with `(Gt) being givenby (2.27). As for the parameter  (H(n;D)), we now observe that A1; : : : ; B4 and thusall bloks in the matries in (2.27) lie in the Terwilliger algebra. (As in the previoussetion we �x h := ;, the empty subset of N .)Lemma 3.5. The matries As (s = 1; 2) belong to the Bose-Mesner algebraBn and the matries Bs (s = 1; 2; 3; 4) belong to the Terwilliger algebra An. Say,As =Pni=0 x(s)iMni (s = 1; 2) and Bs =Pni;j;p=0 y(s)pi;jMp;ni;j (s = 1; 2; 3; 4). Then,x(s)i = y(s)00;i for s = 1; 2; i = 1; : : : ; n;y(s)pi;j = y(s)pj;i = y(s)j�pi+j�2p;j = y(s)i�pi+j�2p;i (for s = 1; 4);y(2)pi;j = y(2)i�pi;i+j�2p; y(3)pi;j = y(3)pj;i;y(3)pi;j = y(2)i�pi+j�2p;i for i; j; p = 0; : : : ; n:
(3.13)

Moreover, the edge onditions an be reformulated asy(1)pi;j = 0 if fi; j; i+ j � 2pg \ D 6= ;;y(2)ii;i = y(4)ii;i = 0 for i = 0; : : : ; n;y(2)pi;j = 0 if i 2 D or j = 0;y(3)pi;j = 0 if i+ j � 2p 2 D or i = 0 or j = 0;y(4)pi;j = 0 if i = 0 or j = 0; (3.14)
for distint i; j 2 f0; 1; : : : ; ng.Proof. We use the fat that A1; : : : ; B4 satisfy (2.24) and (2.25) where the variabley is assumed to be invariant under ation of Sym(t) � Aut(G) � Aut(Gt). We haveA1; A2 2 Bn, sine the entries A1I;J = yf1I;1Jg and A2I;J = yf1I;2Jg depend only onjI 4 J j. (Indeed, if jI 0 4 J 0j = jI 4 J j then there exists � 2 Aut(G) mapping fI; Jgto fI 0; J 0g and thus, by the invariane of y under ation of �, yf1I;1Jg = yf1I0;1J0gand yf1I;2Jg = yf1I0;2J0g.) Similarly, for s = 1; : : : ; 4, Bs 2 An sine the entry BsI;Jdepends only on jIj; jJ j; jI \ J j. The proof for the identities x(s)i = y(s)00;i (s = 1; 2)and y(1)pi;j = : : : = y(1)i�pi+j�2p;i is idential to the proof of (3.8). Let I; J 2 P(N)with jIj = i, jJ j = j, jI \ J j = p. Then, y(4)pi;j = B4I;J = yf1;;2I;3Jg = yf1;;3I;2Jg(use the invariane of y under the permutation (2; 3) 2 Sym(t)), thus equal toB4J;I = y(4)pj;i. Moreover, y(4)pi;j = yf1;;2I;3Jg = yf1I;2;;3I4Jg = yf2I;1;;3I4Jg (�rstapply the swithing mapping by I and then permute the indies 1; 2), thus equal toB4I;I4J = y(4)i�pi;i+j�2p. Next we have: y(2)pi;j = B2I;J = yf1I;1;;2Jg = yf1;;1I;2I4Jg(apply the swithing mapping by I), thus equal to B2I;I4J = y(2)i�pi;i+j�2p. Fi-nally, y(3)pi;j = B3I;J = yf2I;1;;2Jg = B3J;I = y(3)pj;i, and y(3)pi;j = yf2I;1;;2Jg =yf2;;1I;2I4Jg = yf1;;2I;1I4Jg (�rst swith by I and then permute 1; 2), thus equal toB2I4J;I = y(2)i�pi+j�2p;i. The identities (3.14) follow diretly from (2.25).As the bloks of the matries in the program (2.27) lie in the Terwilliger algebra,the matries in (2.27) an be blok-diagonalized, as explained in Setion 3.1. For this,de�ne the matriesAsk :=  Xp �p;ni;j;ky(s)0i+j�2p;0!n�ki;j=k ; Bsk :=  Xp �p;ni;j;ky(s)pi;j!n�ki;j=k (3.15)14



orresponding, respetively, to the matries As (s = 1; 2) and Bs (s = 1; 2; 3; 4) andde�ne the vetors
~a :=  s�ni��y(1)00;0 � y(1)ii;i�!ni=0 ; ~b :=  

s�ni��y(1)ii;i � y(3)ii;i�!ni=0 2 Rn+1 :(3.16)Using Lemmas 3.2 and 3.3, we obtain the following reformulation for the parameter`(Gt) from (2.27)`(Gt) = max 2nty(1)00;0 s.t. y(s)pi;j (s = 1; : : : ; 4) satisfy (3:13); (3:14) and0�1� y(1)00;0 ~aT (t� 1)~bTA10 �B10 (t� 1)(A20 �B20)(t� 1)(A10 �B30) + (t� 1)(t� 2)(A20 �B40)
1A � 0;�A1k �B1k (t� 1)(A2k �B2k)(t� 1)(A1k �B3k) + (t� 1)(t� 2)(A2k �B4k)� � 0 for k = 1; :::; bn=2;�B1k (t� 1)B2k(t� 1)B3k + (t� 1)(t� 2)B4k� � 0 for k = 0; : : : ; bn=2;A1k �A2k �B3k +B4k � 0 for k = 0; : : : ; bn=2;B3k �B4k � 0 for k = 0; : : : ; bn=2; (3.17)where Ask; Bsk; ~a;~b are as in (3.15), (3.16). To ompute `�0(Gt) simply add the non-negativity ondition y(s)pi;j � 0 on all variables.3.4. Numerial results for Hamming graphs. We have tested the variousbounds on some instanes of Hamming graphs. In what follows we use the followingonvention: For an integer 1 � d � n, H(n; d) (resp., H�(n; d), H+(n; d)) denotesthe graph H(n;D) with D = fdg (resp., D = f1; : : : ; dg, fd; : : : ; ng). The papers[9, 10, 11℄ give numerial results for the parameters # (G), #+ (G) for suh instanes.Moreover, a bound related to opositive programming is omputed in [11℄ (alled K1-bound in [11℄, or �(1) bound in [16℄); it is shown in [16℄ that this bound is dominatedby our parameter  �0.In Table 1, the symbol `*' indiates the strit inequality 	`(G) > d (G)e, whihhappens for H(10; 8) and H+(10; 8), and we indiate in bold the values satisfying LB= �(G) for the obtained lower bound LB. (Indeed in these instanes, LB = 2n�1,while P(V ) an be overed by the 2n�1 distint pairs fI; V n Ig (I � V ) whih arestable sets as n 62 D.)The results in Table 1 indiate that the parameters  (G) and  �0(G) give onsome instanes a major improvement on Szegedy's bound #+ (G). On the other hand,in most ases, the parameter 	`(G) gives no improvement sine 	`(G) = d (G)e. Itould be that this feature is spei� to Hamming graphs. As we will see in the nextsetion, the bound 	`(G) does improve the bound d (G)e for Kneser graphs.
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graph # (G) #+ (G)  (G) 	`(G)  �0(G) 	`�0(G)H�(7; 4) 36 42.6667 64 64 64 64H�(8; 5) 72 85.3333 128 128 128 128H(10; 6) 6 8.7273 10.4366 11 10.8936 11H�(10; 6) 207.36 320 512 512 512 512H(10; 8) 2.6667 3.2 3.9232 5� 3.9232 5�H+(10; 8) 3.2 3.2 3.9232 5� 3.9232 5�H(11; 4) 16 21.5652 25.7351 26 25.7351 26H(11; 6) 12 12 12 12 15.2836 16H�(11; 7) 414.72 640 1024 1024 1024 1024H�(11; 8) 711.1111 819.2 1024 1024 1024 1024H(11; 8) 3.2 4.9383 5.7805 6 5.7805 6H(13; 8) 5.3333 9.4118 12.1429 13 13.6533 14H(15; 6) 27.7647 30.7368 46.4371 47 50.3036 51H(16; 8) 16 16 16 16 28.4444 29H(17; 6) 35 48.2222 86.3086 87 88.3204 89H(17; 8) 18 18 32 32 46.5122 47H(17; 10) 6.6666 12.6315 15.8750 16 25.8405 26H(18; 10) 10 16 18.3076 19 38.8844 -H(20; 6) 59.3735 59.3735 140.9586 141 140.9586 -H(20; 8) 41.7143 60.9524 107.1489 - 136.4115 -Table 1: Bounds for the hromati number of Hamming graphs4. Bounds for Kneser graphs. We have seen that the parameter  (G) isbounded by ��(G) and that, for vertex-transitive graphs, it oinides with the boundjV (G)j=`(G). On the other hand 	`(G) an sometimes be stritly greater then d (G)e,e.g., for the Hamming graphH(10; 8) (reall Table 1). We present here some numerialresults showing that 	`(G) an in fat be stritly greater then d��(G)e for Knesergraphs.Given integers n � 2r, the Kneser graph K(n; r) is the graph whose verties arethe subsets of size r of a set N with jN j = n, two verties being adjaent if and only ifthey are disjoint. As shown in [23℄, �(K(n; r)) = �n�1r�1�, and thus ��(K(n; r)) = nr inview of (2.2) asK(n; r) is vertex-transitive. Lov�asz proved that �(K(n; r)) = n�2r+2in his elebrated paper [22℄. Thus the frational hromati number and the hromatinumber of K(n; r) an di�er signi�antly, while the frational hromati number islose to the lique number !(K(n; r)) = bnr . Moreover, Lov�asz [23℄ proved that forG = K(n; r), �(G) = #(G). Hene, `(G) = �(G), implying  (G) = jV (G)j`(G) = ��(G) =n=r. Therefore, 	`(G) � dn=re. We show in this setion how to ompute 	`(G).The Kneser graph K(n; r) oinides with the subgraph of the Hamming graphH(n; f2rg) indued by the subset P=r(N) := fI 2 P(N) j jIj = rg. It will beonvenient to view the Kneser graph also in the following alternative way. Fix a setT � N with jT j = r and de�neP(N; T ) := f(I 0; I 00) 2 P(T )� P(N n T ) j jI 0j = jI 00jg:The mapping P=r(N) �! P(N; T )I 7! (T n I; I n T ) (4.1)16



is a bijetion and jI4J j = j(T nI)4(T nJ)j+j(InT )4(JnT )j holds for I; J 2 P=r(N).Hene K(n; r) an also be viewed as the graph with nodeset P(N; T ), with two nodes(I 0; I 00); (J 0; J 00) 2 P(N; T ) being adjaent if jI 0 4 J 0j+ jI 00 4 J 00j = 2r.As we will see below, the matries involved in the program (2.27) for the om-putation of 	`(K(n; r)) lie in Br;r0 (r0 = n � r), a subalgebra of a tensor produtof two Terwilliger algebras, whih has also been studied and blok-diagonalized byShrijver [30℄ (in onnetion with onstant weight odes). We follow the same stepsas in Setion 3 for the omputation of `(Gt) for Hamming graphs, whih we now arryout for Kneser graphs.4.1. The subalgebra Br;r0 . As above, jN j = n and we �x a subset T � N withjT j = r and set r0 := n � r. For i; j; p = 0; 1; :::; r (resp., i0; j0; q = 0; 1; :::; r0), letMp;ri;j (resp., Mq;r0i0;j0) be the matries indexed by P(T ) (resp., P(N n T )) de�ning theTerwilliger algebra Ar (resp., Ar0) as in Setion 3.1. Let now Ar;r0 be the algebragenerated by the tensor produts of matries in Ar and Ar0 ; that is,Ar;r0 := 8<: Xi;j;p;i0;j0;q xp;qi;j;i0;j0Mp;ri;j 
Mq;r0i0;j0 j xp;qi;j;i0;j0 2 R9=; :
Matries in Ar;r0 are indexed by the set P(T )� P(N n T ). Consider the subalgebra

Br;r0 := 8<:Xi;j;p;q yp;qi;j Mp;ri;j 
Mq;r0i;j j yp;qi;j 2 R9=; :
So Br;r0 onsists of all matries from Ar;r0 satisfying xp;qi;j;i0;j0 = 0 if i 6= i0 or j 6= j0.Hene, for M 2 Br;r0 and (I; I 0); (J; J 0) 2 P(T ) � P(N n T ), M(I;I0);(J;J0) = 0 ifjIj 6= jI 0j or if jJ j 6= jJ 0j. Therefore any row/olumn ofM indexed by (I; I 0) 62 P(N; T )is identially zero and we may thus restrit matries in Br;r0 to being indexed by thesubset P(N; T ) of P(T )� P(N n T ).For k � r, let Mn;rk be the matrix indexed by P(N; T ), whose ((I; I 0); (J; J 0))thentry is equal to 1 if jI4J j+jI 04J 0j = 2k, and to 0 otherwise. ThusMn;rk orrespondsto the prinipal submatrix of Mn2k (in the Bose-Mesner algebra Bn) indexed by thesubset P=r(N) and Mn;rk 2 Br;r0 as Mn;rk = Pi;j;p;qji+j�p�q=kMp;ri;j 
Mq;r0i;j : Henethe set Brn := ( rXk=0xkMn;rk j xk 2 R)is a subalgebra of Br;r0 .Shrijver [30℄ proved the following analogue of Theorem 3.1, giving the expliitblok-diagonalization for matries in Br;r0 . For k = 0; : : : ; � r2�, l = 0; : : : ; j r02 k setWkl := fk; k + 1; :::; r � kg \ fl; l + 1; :::; r0 � lg:Theorem 4.1. [30℄ For a matrix M =Pi;j;p;q yp;qi;j Mp;ri;j 
Mq;r0i;j in Br;r0 ,M � 0()Mk;l := �Pp;q �p;ri;j;k�q;r0i;j;lyp;qi;j �i;j2Wkl � 0 for eah

k = 0; 1; : : : ; � r2� and l = 0; 1; : : : ; j r02 k : (4.2)
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We have the following analogues of Lemmas 3.2 and 3.3.Lemma 4.2. Let A = Pi;j;p;q ap;qi;jMp;ri;j 
Mq;r0i;j , B = Pi;j;p;q bp;qi;jMp;ri;j 
Mq;r0i;j ,C =Pi;j;p;q p;qi;jMp;ri;j 
Mq;r0i;j be matries in Br;r0 and de�ne aordinglyAkl =  Xp;q �p;ri;j;k�q;r0i;j;lap;qi;j !i;j2Wkl ; Bkl =  Xp;q �p;ri;j;k�q;r0i;j;lbp;qi;j !i;j2Wkl ;Ckl =  Xp;q �p;ri;j;k�q;r0i;j;lp;qi;j !i;j2Wkl :Then,� A BBT C� � 0() �Akl BklBTkl Ckl� � 0 8k = 0; 1; : : : ; jr2k and l = 0; 1; : : : ;�r02 � :Lemma 4.3. Let M =Pni;j;p;q=0 xp;qi;jMp;ri;j 
Mq;r0i;j 2 Br;r0 ,  =Pni=0 i�i, where�i 2 f0; 1gP(N;T ) with �i(I;I0) = 1 if jIj = i, (for (I; I 0) 2 P(N; T )), and d 2 R . Then,�d T M� � 0() 8><>: Mkl � 0 for k = 0; : : : ; � r2� ; l = 0; : : : ; j r02 k ; k + l > 0;~M00 := �d ~T~ M00� � 0
after setting ~T := �iq�ri��r0i ��ri=0.4.2. Compat formulation for 	`(G) for Kneser graphs. In order to om-pute 	`(G) for the Kneser graph G = K(n; r), one has to evaluate `(Gt) for varioushoies of t. As G is vertex-transitive, `(Gt) an be omputed using the program(2.27). We now �x h := T 2 P=r(N) orresponding to (;; ;) 2 P(N; T ) as hosennode of G. We now show that the matries A1; : : : ; B4 appearing in program (2.27)lie in the algebra Br;r0 and thus they an be blok-diagonalized using Theorem 4.1.The following lemma is the analogue of Lemma 3.5.Lemma 4.4. The matries As (s = 1; 2) belong to Brn and the matries Bs(s = 1; 2; 3; 4) belong to Br;r0 . Say, As = Pri=0 x(s)iMn;ri (s = 1; 2) and Bs =Pri;j;p;q=0 y(s)p;qi;jM t;ri;j 
Mq;r0i;j (s = 1; 2; 3; 4). We havex(s)i = y(s)0;00;i for s = 1; 2; i = 1; : : : ; r;y(s)p;qi;j = y(s)p;qj;i = y(s)i�q;i�pi;i+j�p�q = yj�q;j�pj;i+j�p�q for s = 1; 4;y(2)p;qi;j = y(2)i�q;i�pi;i+j�p�q; y(3)p;qi;j = y(3)p;qj;i ;y(3)p;qi;j = y(2)i�q;i�pi+j�p�q;i for i; j; p; q = 0; : : : ; r:

(4.3)
Moreover, the edge onditions an be reformulated asy(1)p;qi;j = 0 if i = r or j = r or i+ j � p� q = r;y(2)p;qi;j = 0 if i = r or j = 0 or i+ j � p� q = 0;y(3)p;qi;j = 0 if i = 0 or j = 0 or i+ j � p� q = r;y(4)p;qi;j = 0 if i = 0 or j = 0 or i+ j � p� q = 0: (4.4)
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Proof. As in the proof of Lemma 3.5, the matries A1; : : : ; B4 satisfy (2.24)and (2.25), where the variable y is invariant under ation of Sym(t) � Aut(G). Amain di�erene with the ase of the Hamming graph is that, for the Kneser graphG = K(n; r), Aut(G) � Sym(n), i.e., the only automorphisms of G arise from thepermutations of N . Reall that � 2 Sym(n) ats on P=r(N) in the obvious way;namely, �(I) = f�(i) j i 2 Ig for I 2 P=r(N).Let us �rst show that A1 2 Brn; that is, A1I;J depends only on jI 4 J j (forI; J 2 P=r(N)). For this, let I; J; I 0; J 0 2 P=r(N) with jI 4 J j = jI 0 4 J 0j. Then,jI\J j = jI 0\J 0j and thus there exists � 2 Sym(n) suh that �(I) = I 0 and �(J) = J 0.Hene, A1I;J = yf1I;1Jg = yf1�(I);1�(J)g = A1I0;J0 sine y is invariant under ation of �.The proof for A2 2 Brn, Bs 2 Br;r0 is along the same lines.
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Fig. 4.1. Venn diagrams
Let us now prove the identity y(1)p;qi;j = y(1)i�q;i�pi;i+j�p�q; the proofs for the remainingidentities are along the same lines and thus omitted. Say, y(1)p;qi;j = B1I;J , whereI; J 2 P=r(N) with jT n Ij = i, jT n J j = j, j(T n I) \ (T n J)j = p and j(I n T ) \(J n T )j = q. See Figure 4.1 for the Venn diagram of the sets I; J; T . Consider setsI 0; J 0 2 P=r(N) whih together with the set T have the Venn diagram shown in Figure4.1. Then, B1I0;J0 = y(1)i�q;i�pi;i+j�p�q and there exists � 2 Sym(n) suh that �(T ) = I 0,�(I) = T , �(J) = J 0. Therefore, y(1)p;qi;j = B1I;J = yf1I;1J;1Tg = yf1�(I);1�(J);1�(T )g =yf1T;1J0;1I0g = B1I0;J0 = y(1)i�q;i�pi;i+j�p�q.For k = 0; :::; br=2, l = 0; :::; br0=2, de�ne the matries

Askl =  Xp;q �p;ri;j;k�q;r0i;j;ly(s)0;00;i+j�p�q!i;j2Wkl ; Bskl =  Xp;q �p;ri;j;k�q;r0i;j;ly(s)p;qi;j!i;j2Wkl(4.5)orresponding, respetively, to the matries As (s = 1; 2) and Bs (s = 1; 2; 3; 4) andde�ne the vetors
~a := �q�ri��r0i � �y(1)0;00;0 � y(1)i;ii;i��ri=0 ;~b := �q�ri��r0i � �y(1)i;ii;i � y(3)i;ii;i��ri=0 :(4.6)Using Lemmas 4.2 and 4.3, we obtain the following reformulation for the parameter19



`(Gt) from (2.27)`(Gt) = max �nr�ty(1)0;00;0 s.t. y(s)p;qi;j ; s = 1; : : : ; 4 satisfy (4:3); (4:4) and0�1� y(1)0;00;0 ~aT (t� 1)~bTA100 �B100 (t� 1)(A200 �B200)(t� 1)(A100 �B300) + (t� 1)(t� 2)(A200 �B400)
1A � 0;�A1kl �B1kl (t� 1)(A2kl �B2kl)(t� 1)(A1kl �B3kl) + (t� 1)(t� 2)(A2kl �B4kl)� � 0for k = 0; :::; br=2; l = 0; :::; br0=2; k + l > 0;�B1kl (t� 1)B2kl(t� 1)B3kl + (t� 1)(t� 2)B4kl� � 0 for k = 0; :::; br=2; l = 0; :::; br0=2;A1kl �A2kl �B3kl +B4kl � 0 for k = 0; :::; br=2; l = 0; :::; br0=2;B3kl �B4kl � 0 for k = 0; :::; br=2; l = 0; :::; br0=2; (4.7)where Askl; Bskl; ~a;~b are as in (4.5), (4.6). To ompute `�0(Gt) simply add the non-negativity ondition y(s)p;qi;j � 0 on all variables.4.3. Numerial results for Kneser graphs. We show in Table 2 below ournumerial results for the bounds 	`(G) and 	`�0(G) for several instanes of Knesergraphs. We indiate in bold the values ahieving the hromati number.

Graph d��(G)e = dn=re 	`(G) 	`�0(G) �(G) = n� 2r + 2K(6; 2) 3 4 4 4K(7; 2) 4 4 5 5K(8; 3) 3 4 4 4K(9; 3) 3 4 4 5K(10; 4) 3 3 4 4K(11; 3) 4 5 5 7K(11; 4) 3 4 4 5K(12; 3) 4 5 6 8K(12; 4) 3 4 4 6K(12; 5) 3 3 4 4K(13; 5) 3 4 4 5K(14; 5) 3 4 4 6K(15; 3) 5 6 6 11K(16; 4) 4 5 6 10K(24; 6) 4 4 6 14K(25; 5) 5 6 7 17K(34; 7) 5 6 7 22K(36; 6) 6 7 9 26Table 2: Bounds for the hromati number of Kneser graphs20



5. Computing the new bound  K for DIMACS benhmark graphs. Sofar we have been dealing with vertex-transitive graphs and with the bounds  (�) and	`(�). For the formulation of  (G), it was observed in Setion 2 that, when G isvertex-transitive, it suÆes to require in (2.13) positive semide�niteness of M2(h; x)for only one h 2 V (G) instead of for all h 2 V (G). In ase of a non-symmetrigraph G one would need to require M2(h; x) � 0 for all h 2 V (G); therefore, withn := jV (G)j, in order to ompute  (G), (resp., `(Gt), and thus 	`(G)), one wouldhave to solve a semide�nite program with 2n (resp., 4n) matries of order � n + 1(resp., � 2n + 1). For graphs that are of interest, e.g. with n � 100, this annot bedone with the urrently available software for semide�nite programming.For non-symmetri graphs we propose another variant of the bound  (2)(G).Namely, given a lique K in G, letM2(K;x) denote the prinipal submatrix ofM2(x)indexed by the multiset P1(V ) [ ([h2Kffh; ig j i 2 V g). Now de�ne the parameter K(G) := min t s.t. x0 = t; xi = 1 (i 2 V ); M2(K;x) � 0;xI = 0 for all I ontaining an edge: (5.1)Then #(G) �  K(G) � ��(G). (The left inequality follows using (2.4) and the rightinequality follows from  K(G) �  (2)(G) � ��(G) using (2.8), (2.10).) Set k := jKjand assume w.l.o.g. that K = f1; 2; :::; kg. With respet to the partition of its indexset as f0g [ ffig j i 2 V g [ [kh=1ffh; ig j i 2 V g, the matrix M2(K;x) has the blokform
M2(K;x) =

0BBBBBBBB�
t aT0 aT1 aT2 : : : aTka0 A0 A1 A2 : : : Aka1 A1 A1 0 : : : 0a2 A2 0 A2 . . . ...... ... ... . . . . . . 0ak Ak 0 : : : 0 Ak

1CCCCCCCCA
where a0; : : : ; ak; A0; : : : ; Ak are indexed by V , ai = diag(Ai) (0 � i � k), a0 = e,(A0)ij = xij , (Ah)ij = xfh;i;jg for h 2 K, i; j 2 V . Note that for h 2 V the olumnsof A0 and Ah indexed by fhg are both equal to ah. Hene, as in the proof of Lemma2.1, we an do some row/olumn manipulations and verify thatM2(K;x) � 0()  t� k eT � (Pkh=1 ah)Te�Pkh=1 ah A0 �Pkh=1Ah ! � 0; A1; : : : ; Ak � 0:Hene  K(G) an be omputed via a semide�nite program involving k + 1 matriesof sizes n+ 1 (one) and n (k times).We have onduted experiments for some DIMACS benhmark graphs (stud-ied e.g. in [4, 5, 8, 9, 12, 25, 26℄). In Table 3 we present our lower bounds forthe hromati number of the graphs DSJCa:b. Reall that DSJCa:b are randomgraphs with a verties, two verties being adjaent with probability 10�1b. The graphDSJR500.1 is a geometri graph with 500 nodes randomly distributed in the unitsquare, with an edge between two nodes if their distane is less than 0.1. The graphDSJR500.1 is the omplement of DSJR500.1. The graphs an be downloaded fromhttp://mat.gsia.mu.edu/COLOR03/.In Table 3, the olumn `LB' ontains the previously best known lower boundstaken from [8, 25, 26℄, and the values into parentheses ome from [3℄; the bound21



82 for DSJR500.1 is the size of a lique obtained using the heuristi of [2℄. Theolumn `UB' ontains the best known upper bounds taken from [4, 12, 13℄, i.e. thenumber of olors in the best olourings found so far. The olumn `K' ontains thesize of the lique used for omputing the parameter  K(G) (the lique is found usingthe heuristi from [2℄). We also indiate the value of the theta number �#(G) (alsoomputed in [9, 10℄ for some instanes), whih already improves the best lower boundin several instanes. We indiate in bold our best new lower bounds for the hromatinumber. On several instanes they give a signi�ant improvement on the best knownlower bound. Moreover, in two instanes, we are able to lose the gap as our lowerbound mathes the upper bound. Namely we �nd the exat value of the hromatinumber for the graphs DSJC125.9 (�(G) = 43) and DSJR500.1 (�(G) = 85), whihwere not known before to the best of our knowledge. These results demonstrate thatour bounds are quite strong.We should also point out that the semide�nite program for the parameter  K ,for instane, for the graph DSJC500:9, ontains a matrix of size 501 � 501 and 56matries of size 500� 500. One annot hope to solve suh a big problem using solversbased on interior point methods. The values in olumns ` #(G) ' and `  K(G) ' wereomputed using the boundary point method of Povh, Rendl and Wiegele [28℄. Thismethod allows to ompute the Lov�asz theta number and its variations (e.g.  K(G))to reasonably high auray even for graphs with several hundred nodes.One may wonder why we did not add nonnegativity onstraints in the formulationfor  K . The reason is that for random graphs adding nonnegativity onstraints givesonly a negligible improvement. This fat was already observed for the Lov�asz thetanumber in [9℄.
Graph LB #(G) l#(G)m K  K(G) d K(G)e UBDSJC125.1 5 4.1062 5 4 4.337 5 5DSJC125.5 14 (17) 11.7844 12 10 13.942 14 17DSJC125.9 42 37.768 38 34 42.53 43 43DSJC250.1 6 (8) 4.906 5 4 5.208 6 8DSJC250.5 14 16.234 17 12 19.208 20 28DSJC250.9 48 55.152 56 43 66.15 67 72DSJC500.1 6 6.217 7 5 6.542 7 12DSJC500.5 13 (16) 20.542 21 13 27.791 28 48DSJC500.9 59 84.04 85 56 100.43 101 126DSJC1000.1 6 8.307 9 5 - - 20DSJC1000.5 15 (17) 31.89 32 14 - - 83DSJC1000.9 66 122.67 123 65 - - 224DSJR500.1 82 (83) 83.74 84 77 84.12 85 85Table 3: Bounds for the hromati number of DIMACS instanesRemarks. The omputational results reported in Tables 1 and 2 were arriedout using the open soure odes for semide�nite programming CSDP 5.0 and DSDP5.8 available, respetively, at http://infohost.nmt.edu/~borhers/sdp.html andhttp://www-unix.ms.anl.gov/~benson/dsdp/.For �nding large liques in the instanes in Table 3 we used the heuristi Max-AO(based on [2℄) available at 22
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