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Abstract. Recently we investigated in [16] hierarchies of semidefinite approximations for the
chromatic number x(G) of a graph G. In particular, we introduced two hierarchies of lower bounds,
the ‘“¢p’-hierarchy converging to the fractional chromatic number, and the ‘¥’-hierarchy converging
to the chromatic number of a graph. In both hierarchies the first order bounds are related to the
Lovész theta number, while the second order bounds would already be too costly to compute for
large graphs. As an alternative, relaxations of the second order bounds are proposed in [16]. We
present here our experimental results with these relaxed bounds for Hamming graphs, Kneser graphs
and DIMACS benchmark graphs. Symmetry reduction plays a crucial role as it permits to compute
the bounds using more compact semidefinite programs. In particular, for Hamming and Kneser
graphs, we use the explicit block-diagonalization of the Terwilliger algebra given by Schrijver [30].
Our numerical results indicate that the new bounds can be much stronger than the Lovész theta
number. For some of the DIMACS instances we improve the best known lower bounds significantly.
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1. Introduction. The chromatic number x(G) of a graph G is the smallest
number of colors needed to color the vertices of G so that no two adjacent vertices
share the same color. Determining x(G) is an NP-hard problem [14] and it is hard
to approximate x(G) within |V(G)[!/14~¢ for any e > 0 [1]. Finding a proper vertex
coloring with a small number of colors is essential in many real world applications.
A lot of work has been done in order to develop efficient heuristics for this problem
(see e.g. [5]). Nevertheless, these methods can provide us only with upper bounds on
the chromatic number. Lower bounds were mainly obtained using linear programming
[25, 26], critical subgraphs [8] and semidefinite programming [9, 10, 11, 17, 27, 31]. The
semidefinite approaches are based on computing (variations of) the well known lower
bound 9(G) := 9 (6), the theta number of the complementary graph, introduced by
Lovész [23]. The theta number satisfies the ‘sandwich inequality’:

w(G) <I(G) < x(G),

and it can be computed to any arbitrary precision in polynomial time since it can
be formulated via a semidefinite program of size |V(G)|. Here, w(G) is the clique
number of G, defined as the maximum size of a clique (i.e., a set of pairwise adjacent
nodes) in G the stability number a(G) := w(G) of G being the maximum size of
a stable set (i.e., a set of pairwise nonadjacent nodes) in G. The theta number has
been strengthened towards the chromatic number using nonnegativity [31], triangle
inequalities [27], or some lift-and-project methods [11]. Computational results were
reported in [9, 10, 11]. A common feature shared by all these bounds is that they
remain below the fractional chromatic number x*(G). Thus they are of little use when
X*(G) is close to the clique number w(G). In [16] the authors investigated another
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type of lift-and-project approach leading to a hierarchy of bounds converging to the
chromatic number x(G). We explore in the present follow-up paper the behavior of
these bounds through experimental results on several classes of graphs.

The approach in [16] is based on the following reduction of Chvatal [6] of the
chromatic number to the stability number:

X(G) < t & a(K,0G) = |V(G)], (1.1)

where K;[JG denotes the Cartesian product of Ky, the complete graph on t nodes,
and the graph G. For a given graph parameter 3(-) satisfying a(-) < 8(-) < x(-),
define the new graph parameter Ug(-) by

Us(G) = mint st BEOG) = [V(G). (1.2)

As shown in [16], the operator ¥ is monotone nonincreasing and satisfies

W(G) = U(G) < U4(G) < Ua(G) = X(G) and Uy(G) = [E(G)] (1.3)

In other words the operator ¥ transforms upper bounds for the stability number
into lower bounds for the chromatic number. An interesting bound for «(-) from the
computational point of view is the graph parameter £(-) introduced in Laurent [20], as
relaxation of the second order bound in the Lasserre’s hierarchy for a(-) (see [18],]20]).
Two hierarchies for the chromatic number, related to the Lasserre’s hierarchy for a(-),
are studied in [16], as well as two bounds ¥(-) and ¥,(-), related to the parameter
£(+). See Section 2.2 for the precise definition of the parameters ¢, 1, U,.

In the present paper we investigate how to compute the bounds ¥(-) and ()
for Hamming graphs and for Kneser graphs. Coloring Hamming graphs is of interest
e.g. to the Borsuk problem (see [32]) and the chromatic number of Kneser graphs was
computed in the celebrated paper [22] of Lovdsz using topological methods; see e.g.
[24] for a study of topological lower bounds for the chromatic number. The Hamming
graph G = H(n,D) has nodeset V(G) = {0,1}", with an edge uv if the Hamming
distance between u,v lies in the given set D C {1,...,n}. For n > 2r, the Kneser
graph K(n,r) is the subgraph of H(n,{2r}) induced by the set of words u € {0,1}"
with weight Y ,u; = r. The Hamming graph has a large automorphism group
which enables us to block-diagonalize and reformulate the programs for ¥ (G), ¥,(G)
in such a way that they involve O(n) matrices of size O(n) (instead of 2" = |V(G)|).
As a crucial ingredient we use the block-diagonalization for the Terwilliger algebra
given by Schrijver [30]. We also use this technique, which was extended to constant-
weight codes in [30], for computing the bound ¥, (-) for Kneser graphs. For Kneser
graphs, the bound 9 (-) coincides with the fractional chromatic number (see Section
4) but, as will be seen in Table 2, ¥y(K (n,r)) can go beyond the fractional chromatic
number. We report experimental results for Hamming and Kneser graphs in Tables
1 and 2. For some instances, the parameter 1 (G) improves substantially the theta
number 9(G) and adding nonnegativity may also help; moreover, while ¥,(G) hardly
improves upon 9(G) for Hamming graphs, it does give an improvement for Kneser
graphs.

Finally we introduce a further variation ¥ i (G) of our bounds (where K is a clique
in G), which can be especially useful for graphs without apparent symmetries. Using
a simple block-diagonalization argument, ¥k (G) can be formulated via a semidefinite
program involving |K| matrices of size |V(G)| and one matrix of size |V(G)| + 1.
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The bound ¥k (G) is bounded above by the fractional chromatic number x*(G). We
report experimental results on some DIMACS benchmark instances. To the best of our
knowledge, our lower bound improves the best known lower bound in the literature for
several instances of DSJC, DSJR graphs, sometimes substantially. Moreover, for the
two instances G = DSJC125.9 and DSJR500.1c, we can determine the exact value of
the chromatic number x(G), since our lower bound matches the known upper bound
for x(G). This indicates that the bound ¥k can be quite strong for random graphs,
despite the fact that it remains below the fractional chromatic number. Moreover we
observed experimentally that adding nonnegativity constraints to the formulation of
1 does not help for the DSJC instances, which is similar to the observation made in
[9] that strengthening the theta number with nonnegativity does not help for random
graphs.
More details about the results of this paper can also be found in [15].

Contents of the paper. In Section 2 we recall the definitions of the graph
parameters £(-), 1(-) and ¥, (), and their main properties; we show how symmetry
in the semidefinite programming formulations and in the graph can be exploited to
(sometimes dramatically) reduce the sizes of the semidefinite programs defining these
bounds. Section 3 is devoted to the computation of the bounds for Hamming graphs;
we describe how to block-diagonalize the matrices in the semidefinite programs and
report computational experiments. In Section 4 we focus on the graph parameter
Wy(-) for Kneser graphs; we present the block-diagonalization of the matrices and
conclude the section with computational results. We describe in Section 5 the new
lower bound ¥k (-) which we test on some DIMACS benchmark graphs.

Notation. Given a graph G = (V, E), G denotes its complementary graph whose
edges are the pairs uv ¢ E(G) (u,v € V(G), u # v). Given a graph parameter §(-),
B(+) is the graph parameter defined by 5(G) := 3(G) for any graph G. For two graphs
G, G', their Cartesian product GOG' has node set V(G) x V(G'), with two nodes uu/,
v’ € V(G) x V(G') being adjacent in GOG' if and only if (u = v and u'v' € E(G"))
or (uw € E(G) and v’ = v’). For an integer ¢ > 1, K; is the complete graph on ¢
nodes. We also set G; = K;[1G as a short-hand notation for the Cartesian product
of G and K;.

Throughout, the letters I, J and e denote, respectively, the identity matrix, the
all-ones matrix and the all-ones vector (of suitable size); N is the set of nonnegative
integers. For matrices 4, A’ indexed, respectively, by I x.J, I' x.J', their tensor product
A® A’ is the matrix indexed by (I x I') x (J x J'), with (A® A") ;i) (;,j1) := A, Bir jr-
Moreover, the notation A > 0 means that A is a symmetric positive semidefinite
matrix.

Given a finite set V, P(V) denotes the collection of all subsets of V. Given an
integer r, set P.(V) := {I € P(V) | |I| < r}; in particular, P1(V) = {0, {i} (: € V)}.
Sometimes (e.g. when dealing with Hamming graphs) we deal with the collection
P1(V), where V = P(N) with N = {1,...,n}; then P;(V) contains () (the empty
subset of V) and {0} (the singleton subset of V' consisting of the empty subset of IV).
To avoid confusion we use the symbol 0 to denote the empty subset of V', so that
P1(V) ={0,{i} (i € V)}. We sometimes identify P;(V) \ {0} with V| i.e., we write
{i} as i, {i,7} as ij and, given a vector z € RP() we also set z; := Ty, Tij i= TG
Tijr i= Ty k) (for i, 5,k € V), ete.

Let V be a finite set and let G be a subgroup of Sym(V'), the group of permutations
of V, also denoted as Sym(n) if |V| = n. Then G acts on P(V) by letting o(I) :=

3



{o(@) | i € I} for I CV, o € G. Moreover, G acts on vectors and matrices indexed
by P.(V), namely by letting o(z) := (z,(1))1ep,(v), (M) := (My(1),0(0))1,06P.(V)
for z € RP-V), M € RP-V)*P~(V) and ¢ € G. One says that M is invariant
under action of G if o(M) = M for all o € G; then the matrix ‘g—l‘, Y oweg0(M), the
‘symmetrization’ of M obtained by applying the Reynolds operator, is invariant under
action of G. Analogously for vectors. A semidefinite program is said to be invariant
under action of G if, for any feasible matrix X and any o € G, the matrix o(X) is
again feasible with the same objective value; then the optimum value of the program
remains unchanged if we restrict to invariant feasible solutions and, in particular,
there is an invariant optimal solution.

The automorphism group Aut(G) of a graph G = (V, F) consists of all o €
Sym(V') preserving the set of edges. G is said to be vertex-transitive when, given
any two nodes 7,j € V, there exists ¢ € Aut(G) with o(i) = 7. For instance, for the
graph G; = K;OG, Sym(t) x Aut(G) C Aut(G:), where (7,0) € Sym(t) x Aut(G)
acts on V(G:) (and thus on P.(V(G¢)) for r € N) by (1,0)(p,i) = (7(p),o(i)) for
(p,i) € V(K;) xV(G). We will deal in the paper with semidefinite programs involving
matrices indexed by P,.(V(G;)), which are invariant under this action of Sym(¢) x
Aut(G).

2. Graph parameters.

2.1. Classic bounds. We recall here some classic bounds for the chromatic
number x(G) of a graph G = (V, E). Throughout Section 2, V = V(G) is the node
set of graph G and n := |V(G)|. (For details see e.g. [16], [21], [29].)

e The fractional chromatic number of G:

x*(G) := max eTz s.t. ZL <1 (S stable), z € RY. (2.1)
€S

It is well-known (and easy to verify) that w(G) < x*(G) < x(G), and
a(G)x*(G) > |V(G)|, with equality when G is vertex-transitive. (2.2)
e Lovdsz’s theta number (introduced in [23]):

9(G) =9(G) := max eTYe

s.t. ZiEV Y;, =1
Yo =0 (ij € B(G)) (2:3)
Y >0

where Y is a symmetric matrix indexed by V. For later purpose we recall the following
equivalent formulation from ([16], Theorem 3.1 (b)):

9(G) = min  Xgg
s.t. Xii = Xoi (Z S V)
X., =0 (ij € B(O))
X>0

(2.4)

where the matrix variable X is indexed by the set Py (V) = V U {0}. Lovdsz [23]
proved the following analogue of (2.2) for the pair (¢, 9):

I(G)I(G) > |V(G)|, with equality when G is vertex-transitive. (2.5)
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e Szegedy’s number was first defined in [31]. We present the following equivalent
formulation from [16]:

19_+(G) = 19+(6) = min X()o

s.t. (2.6)

The above parameters satisfy

w(G) < T(G) < TF(G) < x*(G) < x(G).

2.2. The bounds ¢, ¢ and ¥,. We review here the graph parameters £(-)
proposed in [20] and ¢(-) and ¥,(-) proposed in [16]; for details see also [15]. For a
subset S C V and an integer 7 > 1, define the vectors x° € {0,1}", with ith entry 1
if and only if i € S (for i € V), and x> € {0,1}P(V)| with Ith entry 1 if and only if
I C S (for I € P.(V)). Given a vector = (1) 7ep,, (v), consider the matrix:

M, (z) = (T105)1,7¢P, (V)

known as the (combinatorial) moment matriz of x of order r. Consider the programs:

las"(G) == max Y _z; s.t. My(z) =0, 7o =1, z;; =0 (ij € E), (2.7)
i€V
Y(G) :=min t s.t. Mp(z) =0, zo=t, 2, =1(i € V), 255 =0 (ij € E), (2.8)

where the variable z is indexed by Pa,.(V'). Note that the variable ¢ can be avoided in
(2.8), by replacing ¢t by zq in the objective function. We choose this formulation to
emphasize the analogy with the formulations (2.13), (2.17), (5.1) below. The above
two programs were studied respectively in [18, 19] and in [16]. In particular, the
following holds:

a(@) = 1as®@) < <1as"(@) <1as(G) < ... <lasV (@) = (@), (2.9)
I(G) = V(G) < ... <p(@) <UH(@) < .. <pNG) = x (@),  (2.10)

P (G)Nas™(G) > [V(G)], with equality if G is vertex-transitive. (2.11)

Thus the parameters las") (@) (for r = 1,...,a(@)) create a hierarchy of upper bounds
for the stability number, while the parameters (") (G) create a hierarchy of lower
bounds for the fractional coloring number. Theoretically, the parameters las(r)(G)
and Q/J(T)(G) can be computed to any precision in polynomial time for fixed r, since
the semidefinite programs (2.7) and (2.8) involve matrices of size O(n"). On the other
hand, in practice, we are not able to compute las(2)(G) or 1) (G) for “interesting”
graphs, that is, for graphs of reasonably large size. For this reason some variations of
the parameters las® (@) and (2 (G) were proposed in [16, 20]. The idea is to consider,
instead of the full moment matrix of order 2, a number of principal submatrices of
it. Namely, given h € V, let My(h;z) denote the principal submatrix of My(z)
indexed by the subset P (V) U {{h,i} | i € V} of Pa(V). Thus in order to define
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the matrices My (h;x) for all h € V, one needs only the components of z indexed by
P3(V). Following [16, 20], define the upper bound for the stability number a(G):

UG):=max Y x; st. Ma(hyz) =0 (h€V), zo =1, z;; =0 (ij € E(G)), (2.12)
i€V
and the lower bound for the fractional colouring number x*(G):

P(G):==min t st. My(hjz) =0 (heV), z;; =0 (ij € E(Q))

zo=t z;,=1(G€eV) (2.13)

where the variable z is indexed by P3(V). For the parameter £(G) we have (see [20])
a(G) <1as®(G) < 6(G) < 1as™(G) = 9(G) < X(G), (2.14)
while ¢(G) satisfies (see [16])
0H(G) < 9(G) < 9P(Q). (2.15)
They also satisfy an inequality similar to (2.11), namely

P(G)L(G) > |V(G)|, with equality if G is vertex-transitive. (2.16)
As a(-) < () <x(-) (by (2.14)), we can apply the operator ¥ from (1.2) to £(-) and
obtain the lower bound ¥,(G) for x(G), defined as

¥,(G) =min t s.t. {(Gy) =n. (2.17)

teN

The parameter £(G;) is defined via the program

£(G) = max Z Yu St My(u;y) = 0 (u € V(Gy))
weV(Gr) (2.18)
Yo = 1, Yuv = 0 (’LL’U S E(Gt))7

where the variable y is indexed by P3(V(G;)). (Recall G; = K;[OG.) Finally, the two
parameters ¥(G) and ¥,(G) were compared in [16], where the following relation is
shown:

9(G) < Y(G) < Ty(G) < x(G). (2.19)

Let us finally note that one can easily strengthen the bounds ¢(G), ¥(G), ¥4(G),
e.g., by requiring nonnegativity® of the variables. Namely, let £>((G) (resp., ¥>0(G))
denote the variation of ¢(G) (resp., ¥(G)) obtained by adding the condition z > 0
to (2.12) (resp., (2.13)); we have again ¢>¢(G)l>0(G) = |V(G)| when G is vertex-
transitive. Define accordingly ¥, (G), which amounts to requiring y > 0 in (2.18).

! Note however that the condition z;; > 0 Vi,j € V already automatically holds in (2.12), (2.13),
since it is implied by Ma(h;z) > 0 Vh € V (as zj; occurs as diagonal entry of Ma(h;z)). Analogously,
Yuv > 0 Yu,v € V(G}) automatically holds in (2.18).
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2.3. Exploiting symmetry to compute the bounds /¢, ) and ¥,. We group
here some observations about the complexity of computing the graph parameters £(-),
¥(-) and Wy(-). We show how one can exploit symmetry, present in the structure of the
matrices involved in the programs defining the parameters or in the graph instance,
in order to reduce the size of the programs. This symmetry reduction is a crucial step
as it allows reformulating the parameters via more compact programs. In this way
we will be able to compute the graph parameters for certain large graphs (with as
much as 22° nodes for certain Hamming graphs), a task that would obviously be out
of reach without applying this symmetry reduction.

We begin with observing that the matrix Ma(h; z), used in definitions (2.12) and
(2.13), has a special block structure, whose symmetry can be exploited to ‘block-
diagonalize’ it. Recall that My (h;x) is indexed by the set Py (V)U {{h,i} |i € V} =
{0y u{{i} | i € V}U{{h,i} | i € V}. Here we keep the two occurrences of the
singleton {h} in the index set, occurring first as {i} for ¢ = h and second as {7, h} for
i = h. Thus, the index set of My(h;z) is partitioned into {0} and two copies of V.

LEMMA 2.1. With respect to this partition of its index set, the matriz Ms(h; z)
has the block form:

' dT
My (h;z) = c (2.20)
D

ao e
lw

where a = xg, ¢; = &, di = xp; (1€ V), Cij = xij, Dij = xpij (i,5 € V). Then,

a—cp, cf—dT

Mg(h;m)>-0<:><c_d C_D

> =0 and D = 0. (2.21)

Proof. The form (2.20) follows directly from the definition of M (h;z). To show
(2.21), observe that the row of My(h;x) indexed by {h} has the form (cp,d”,d7).
Indeed, for i, € V, Cy; = (i} D;; = Z{hi ) Cj = Tj, d; = Z{h,j}s implying
Chj = Dy = d;. As in [20], we perform some row/column manipulation on Ms(h; x)
to show (2.21). Namely, say the second row/column of My (h;z) is indexed by {h},
i.e., h comes first when listing the elements of V. Then,

a—cy, cF—=dT 0 1 00
UMy (h;z)Uy = | c—d c D |, settingU;:=|-1 1 0],
0 D D 0 0 I

where I is the identity matrix of order 2n — 1 (n = |V|). Next,

a—c, ¢ =dT 0 1 0 O
UN(U My(h;2)U) Uy = [ c=d C—-D 0], settingUy:= |0 I 0],
0 0 D 0 -I I
where I has order n. 0

Hence, in (2.12) and (2.13), we may replace each constraint Ma(h;z) > 0 (which
involves a matrix of size 2n + 1) by two constraints involving matrices of sizes n + 1
and n.

We now consider symmetries present in the graph instance G. Observe that the
program (2.12) (or (2.13)) is invariant under action of Aut(G). Hence one may assume
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that the variable x is invariant under action of Aut(G). Therefore, when G is vertex-
transitive, it suffices to require the condition My (h;x) = 0 for one choice of h € V
(instead of for all h € V') and thus ¢(G) and ¢(G) can be computed via a semidefinite
program with two LMI’s involving matrices of sizes n+ 1, n, and with O(n?) variables.

We now turn to the graph parameter ¥,(G). In order to determine ¥,(G), we
need to compute the parameter £(G;) = ¢(K;[JG) from (2.18) (for several queries of
t € N). As was just observed above, the program defining ¢(G;) is invariant under
action of Aut(G;), thus in particular under action of Sym(t) x Aut(G), or simply of
Sym(t). In particular, in program (2.18), one may assume that y is invariant under
action of Sym(t). Moreover, it suffices to require the condition Ms(u;y) > 0 for all
u € V; instead of for all u € V(Gy); here V3 = {17 | i € V'} denotes the ‘first layer’
of the nodeset V(Gy) = {pi | p = 1,...,t, ¢ € V} of G;. Furthermore, when G is
vertex-transitive, it suffices to require Ms(u;y) > 0 for one choice of u € Vi instead
of for all u € V7.

We now show, using the invariance of y under action of Sym(t), that the ma-
trix My (u;y) has a special block structure, whose symmetry can be used to block-
diagonalize it. To begin with, with respect to the partition {0} U{{v} | v € V(G{)} U
{{u,v} | v € V(Gy)} of its index set, the matrix M>(u;y) has the block form shown
in (2.20) with a,c,d, C, D being now defined in terms of y (instead of z). In view of
(2.21), we have:

T T
. Yo —Yu C —d
Mg(u,y)§0<:>(cd C-D

> =0 and D > 0. (2.22)
Next we observe that the invariance of y under Sym(¢) implies a special block structure
for the matrices C and D.

LEmMMA 2.2. Consider the partition V(G;) = V1 U...UV; of the nodeset of graph

Gt, where V,, == {pi | i € V} for p = 1,...,t. With respect to this partition, the
matrices C' and D have the block form:

B! B? B? ... B?
1 2. 2
ﬁQ ﬁl o ﬁQ (BQ)T BS B4 .. B4
c=| " " |, p=| B B' B® .- B | (993
.2 - ... .. .. .1 S S : . ’ E
A A (BZ)T B4 ... ... B3

where? A',...,B* € R"*", Moreover, setting a; := diag(A'), by := diag(B'), b :=
diag(B?), we have ¢ = [aT ...aT]T, and d = [bT b1 b1 ... bT]T.

Proof. Consider i,j5 € V and p,q,p’,q € {1,...,t} with p = ¢ if and only
if p’ = ¢. Then Chiqi = Yipigj} = Yipiaj} = Cpigy; indeed, as there exists
o € Sym(t) mapping {p,q} to {p',q'}, the equality y(,i 453 = Ygpri,qj3 follows from
the fact that y is invariant under action of Sym(¢). This shows that C' has the form
indicated in (2.23); the argument is analogous for matrix D. O

To fix ideas, set v = 1h € V; (where h € V is a given node of G). Then the
entries of A',..., B* are given by

A%j = Y{1i,15}>» A?j = Y{14,25}> Bilj = Y{1i,1h,15}> (2 24)
B@'Zj = Y{1i,1h,2j5}> B?j = Y{2i,1h,2j}s B;‘Ij = Y{2i,1h,35} '

2Here A' or B should not be interpreted as powers of A or B. Namely, ¢ is just an upper index.
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for i,j € V. (Recall that y1i15) = Yipips}s Y1025} = Y(piaj}s Y{10.2.3h) = Yipi.ajrh}
for any distinct p,q,r € {1,...,t} since y is invariant under action of Sym(t).) More-
over, the edge constraints y,, = 0 (for uv € E(G;)) in (2.18) can be reformulated
as

AL =0 if ij € B(G),

Bl =0 if {i,j,h} contains an edge of G,
33; =0 if hie E(G)or j € {i,h},

B =0 if ij € B(G) orif h € {i,j},

BY =0 i he i},

diag(A?) = diag(B?) = diag(B*) = 0,

(2.25)

for distinct 7,7 € V.

The next lemma indicates how one can further block-diagonalize the two matrices
appearing at the right hand side of the equivalence in (2.22).

LEMMA 2.3. We have

B! (tfl)B2 s .
D>0<:)<(t1)(32)1" (t—1)B*+ (t —1)(t — 2)B* , B3—B*>0.
Moreover,
_ T T
(y?:z" CC'(117>>0<:> A'—B* - A2+ B*>0 and
Yo — Yu a,{—b’{ (t_l)(a’{_bg)

Al - B! (t—1)(A? — B?) = 0.
(t—1)(A' — B¥ + (t — 1)(t — 2)(A> — BY)

(We wrote only the upper triangular part in the above (symmetric) matriz.)
Proof. Consider the orthogonal matrices

I 0 1 0
i (5 ol ) v (6 )

where I is the identity matrix of order n and U; 1 is defined as follows. U; 1 is a
(t — 1) x (t — 1) block-matrix where, for p,q = 1,...,t — 1, its (p, ¢)th block U?, is
the n X n matrix defined as

\/%I ifp=1lorqg=1,
ur'y =3 (gt — 1)1 ifp=g>2, (2.26)
ﬁl otherwise.

Notice that U; ; is symmetric and orthogonal, i.e., U; 1 (U; ;)T = L. A simple
calculation shows that

B! Vit —1B? 0 0

Vt—1(B2)T B3+ (t-2)B* 0 0
MDM = 0 0 B3 - B4 0
0 0 0 ... B*-_pB*



The first assertion of the lemma now follows after multiplying the second row/column
block by v/t — 1. Next we have

s emp) = (i afie Tow)

As the matrix C — D has the same type of block shape as D, we deduce from the
above that M(C — D)M is block-diagonal. More precisely, the first diagonal block
has the form

Al - Bt VEI—1(A?2 - B?)
<m(A2 CBYT (A B4 (1 2)(A% - B4>>

and the remaining ¢t — 2 diagonal blocks are all equal to A' — B3 — A%2 + B*. One
can moreover verify that (¢ — d)"M = (a] — b],v/t —1(a] — b3),0...0). From this
follows the second assertion of the lemma. a

Summarizing, we have obtained the following more compact semidefinite program
for the parameter £(G;)

((Gy) = max teTa; s.t. a; = diag(A'), by = diag(B'), bs = diag(B?) € R,
A', A% B! B?, B3, B* € R"*" satisfy (2.25) and

1—(a1)n af —b7 (t—1)(af —b3)
Al - B! (t — 1)(A? — BY) =0
(t—1)(A' — B%) + (t — 1)(t — 2)(A2 — BY)

B! (t—1)B? -0
(t—1)B3+(t-1)(t—-2)B*) =
Al — A? - B*+ B~ 0,

B3 — B* > 0.

(2.27)
This formulation applies when G is vertex-transitive; here h is any fixed node of
G. Hence ¥y(G) can be obtained by computing ¢(G;) for O(logn) queries of the
parameter ¢ (see [16]) and, for G vertex-transitive, the computation of each £(G;) is
via an SDP with four LMI’s involving matrices of size 2n + 1, 2n, n, n, respectively.
The above reductions obviously apply to the stronger bound ¥, obtained by adding
nonnegativity. Namely, simply add the constraints A',..., B* > 0 in (2.27).

3. Bounds for Hamming graphs. We indicate here how to compute the pa-
rameters ¢(G) and ¥y(G) when G is a Hamming graph. Given an integer n > 1 and
D C N:={1,...,n}, G is the graph H(n,D) with node set V(G) := P(N) and with
an edge (I,J) if [T A J| € D (for I,J € P(N)). Thus we now have |V(G)| = 2". As
G is vertex-transitive, we can use the program (2.27). As the program (2.27) involves
matrices of size O(2™), it cannot be solved directly for interesting values of n. However
one can use the fact that the Hamming graph G = H(n, D) has a large automorphism
group for reducing the size of the matrices A, ..., B* involved in the program (2.27).
Namely, each permutation o € Sym(n) induces an automorphism of G, by letting
o(I) :={o(i) | i € I} for I € P(N) and, for any K € P(N), the switching mapping
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sk defined by sk (I) := I A K (for I € P(N)) is also an automorphism of G. Then
Aut(G) = {osk | 0 € Sym(n), K € P(N)} and |Aut(G)| = n!2".

It turns out that the matrices A!,..., B* appearing in (2.27) belong to the Ter-
williger algebra of the Hamming graph. Using the explicit block-diagonalization of
the Terwilliger algebra, presented in Schrijver [30], we are able to block-diagonalize
the matrices in (2.27) which enables the computation of ¥,(G) for G = H(n, D) for
n up to 20. We recall the details needed for our treatment in the next subsection.

3.1. The Terwilliger algebra. For i,5,p = 0,...,n, let Mp’] denote the 0/1
matrix indexed by P(N) whose (I, J)-th entry is 1 if \I\ =14, |J| =7, [INJ|=p, and
equal to 0 otherwise. The set

. p Pa P
A, = Z ol MP" | af € R

%,5,p=0

is an algebra, known as the Terwilliger algebra of the Hamming graph. For k =
0,...,n,let M’ be the matrix indexed by P(N) whose (I, J)-th entry is 1 if |[IAJ| =k
and 0 otherwise. The set

B, = {kaM,’g | 2 € R}

k=0
is an algebra, known as the Bose-Mesner algebra of the Hamming graph. Obviously,
B, C A,, since M} = Z 7 plicki—2p=k Mp’ As is well known, B,, is a commutative
algebra and thus all matrices in B,, can be simultaneously diagonalized (cf. Delsarte
[7]). The Terwilliger algebra is not commutative, thus it cannot be diagonalized,
however it can be block-diagonalized, as explained in [30]. We recall the main result
below.

Given integers 4,7, k,p = 0,...,n, set

=G I (G5 e

_1 _1
o apm (M—2K\ 2 (n—2k\ >
Qi gk T i,j,k( ik > (j k : (3.2)

THEOREM 3.1. [30] For a matriz M =, ; M2} ; in the Terwilliger algebra,

n—k
M>0<:>Mk(zaw”> =0 fork:(),l,...,gj. (3.3)

P ij=k

To show this, Schrijver [30] constructs an orthogonal matrix U having the follow-
ing property:

—

My 0 ... 0 M, 0 ... 0
0 M, ... 0 — 0 M ... O
UTMU = . . ) , where M}, = . .
: : ) 0 : : -0
0 0 M[n/QJ 0 0 v My

11



with block M}, being repeated (Z) - (kﬁl) times, for k =0,..., |n/2].

The result extends to a block matrix whose blocks all lie in the Terwilliger algebra
and which has a border of a special form. We state Lemma 3.2 for a 2 x 2 block matrix
but the analogous result holds obviously for any number of blocks.

. _ P o P 2rPs
LEMMA 3.2. Let A,B,C € A,; say, A = Z”p ”M” , B= Z”pb”M’J ,
C =3¢ ;M and define accordingly
n—k n—k n—k
n(Sepaty) . m- (Saznn) o (Sema)
i,j=k i,j=k p i,j=k

Then,
A B Ak. Bk _ E
<BT C) -0 = <BkT Ck) tOkao,l,...,bJ.

Proof. Directly from the above using the orthogonal matrix <(({ 3) 0

LEMMA 3.3. (see Lemma 1 n [20]) Let M = Z”p 0 tp MY € A, e

S ocixt, where xt € {0, 13PN with xi = 1 4f [I| =i (for I € ’P( )), and d € R.
Then,

4 o o My =0 fochT:I,...,L%J,
< ~
(2 ) =0={

n
after setting ¢’ := (Ci (?))izo-

3.2. Compact formulation for (G) for Hamming graphs. As the graph
G = H(n,D) is vertex-transitive, we have ¢(G) = % by (2.16). It is shown in [20]
how to compute the parameter {(G) (when D is an interval [1,d] but the reasoning is
the same for any D). The basic idea is that the matrix My(h;z) appearing in (2.12)
is a block matrix whose blocks lie in the Terwilliger algebra and thus it can be block-
diagonalized. We recall the details, directly for the parameter ¢ (G) from (2.13), as
they will be useful for our treatment of the parameter ¥,(G) in the next section.

Let z be feasible for the program (2.13). As G is vertex-transitive it suffices to
require the condition My (h;x) > 0 in (2.13) for one choice of h € V(G). Moreover, we
may assume that the variable z is invariant under action of the automorphism group
of G. To fix ideas, let us choose the node h := @) of G (the empty subset of N). The
matrix My (0; z) has the block form

el T

M5 (0;z) = (3.4)

St o+

A B
B B
where A, B, e, b are indexed by V(G) = P(N) and diag(A) = e and diag(B) = b. By

Lemma 2.1, we have:

t—1 T —pT
e—b A-B
12

Mg((b;m)>-0<:>< ) >0 and B = 0. (3.5)



As z is invariant under action of Aut(G), it follows that Ay ; = z(; 53 = 24 1} =
Ap g it [I A J| = |I' A J'|. In other words, the matrix A lies in the Bose-Mesner
algebra; say,

A= kaMk = Z Tij—opM, (3.6)

1,5,p=0

for some reals x3. Moreover, By ; = z¢or1.5y = 20,19y = Bpr gy if [I'l = |I],
|J'| =|J| and |I' N J'| = |[I N J|. In other words, the matrix B lies in the Terwilliger
algebra; say,

Z xl MPT (3.7)

%,5,p=0
for some reals z? ij- The followmg relations link the parameters z;, xf}j.
LEmMA 3.4. Fori,j,p=0,...,n,

— 0
r; = mol,

A mjfp .= xlfp . (38)
,J Jyi i+j—2p,j i+j—2p,i

and the edge equations read

al, =0 if {i,ji+j—2p}ND#0. (3.9)

Proof. If |I| = i, then x, = Ay = zg91y = By = z0,;- Let \I\ =1 |J =3

and |[I NJ| = p. Then, m” = Bryg = By = fl Moreover m” = By =
T(g1,0y = T{r,0,1n0y = Briag = x% . This shows (3.8). The edge conditions
read By y = x93 =0 1f{|I| []], \IAJ|}0D # (), giving (3.9). O

We can now use the results from the previous subsection (Theorem 3.1 and Lemma
3.3) for block-diagonalizing the matrices occurring in (3.5). For k = 0,...,|n/2],
define the matrices

n—k

n—k
Ay = (Za”’;’k 0isj 2p> , By = (Zaw m> (3.10)
=k

P ij= ij=k
corresponding respectively to the matrices A4, B in (3.6) and (3.7). Define the vector

n

éi= ( <’:> (1 —xgﬁi)) e R, (3.11)

Then the parameter ¥ (H(n, D)) can be reformulated in the following way:

Y(H(n,D)) =min t st. 20y=1, = ”- satisfy (3.8), (3.9), and
A —Br =0 fork=1,...,|n/2],
B =0 fork=0,1,...,|n/2], (3.12)

t—1 éT
< é AOBO> =0,

where Ay, By, ¢ are as in (3. 10) and (3.11). To compute ¥>o(H(n, D)), simply add
the nonnegativity condition =} ; > 0 to (3.12).
13



3.3. Compact formulation for ¥,(G) for Hamming graphs. We now give a
more compact formulation for the parameter ¥,;(G) when G = H(n, D). As mentioned
above, one has to evaluate £(G}) for various choices of ¢ € N, with £(G;) being given
by (2.27). As for the parameter )(H (n, D)), we now observe that A!,..., B* and thus
all blocks in the matrices in (2.27) lie in the Terwilliger algebra. (As in the previous
section we fix h := (), the empty subset of N.)

LEMMA 3.5. The matrices A® (s = 1,2) belong to the Bose-Mesner algebra
B, and the matrices B* (s = 1,2,3,4) belong to the Terwilliger algebra A,,. Say,
A =3" Ja(s)iM! (s=1,2) and B* = Z?Jp 0U(8); ;MY (s =1,2,3,4). Then,

x(s)i =y(s)g; fors=1,2, i=1,...,n,

y(s)f,] = y(s)ii = y( )Z+f 2p,j y( )Z+? 2p,i (fU’I" §= 1’4)7

(3.13)
y(2)€,j = y(2)§ zij 2ps y(S)f,j = y(g)g,ia
y(?’)f,] = y(2)11§)72p’1 fO’I" iajap = Oa N
Moreover, the edge conditions can be reformulated as
y(1)7; =0 if {i,4,i+3j—2p}ND #0,
y(2)z,z = 9(4)2,1 =0 fOT‘i = 05"'5”7
y(2)7;=0 ifi €D orj=0, (3.14)
y(3)f = ifi+j—2p€Dori=0o0rj=0,
y(4)p’J:O ifi=0o0rj=0,

for distinct i,5 € {0,1,...,n}.

Proof. We use the fact that A, ..., B satisfy (2.24) and (2.25) where the variable
y is assumed to be invariant under action of Sym(t) x Aut(G) C Aut(G;). We have
A', A% € B, since the entries AI 7 = yqiragy and AI 7 = Yqir,27} depend only on
\IA J|. (Indeed, if |I' A J'| = |I A J| then there exists o € Aut(G) mapping {I,J}
to {I',J'} and thus, by the invariance of y under action of o, Y1717y = Ypir10}
and yqir27) = Y{ir 2g0y-) Similarly, for s = 1,...,4, B® € A, since the entry B} ;
depends only on |I|,|J|,|I N J|. The proof for the 1dent1tles z(s)i = y(s)g (s =1,2)
and y(1 ) I y(l)l+]72p’i is identical to the proof of (3.8). Let I,J € P(N)

with |I| = i, \J\ =j, [INJ| = p. Then, 9(4)% = BfrI,J = Y{106,21,37} = Y{10,31,2J}
use the invariance of y under the permutation (2,3) € Sym(t)), thus equal to
( Y P ; y ; q

B‘}I = (4)51 Moreover, 9(4)p = Y{10,21,37} = Y{11,20,31AJ} = Y{2I,10,31AJ} (first
apply the switching mapping by T and then permute the indices 1,2), thus equal to

BI,IAJ = y(4)z,zi]72p Next we have: y(2) i BI,J = Y{ur1027y = Y{10.11,21073
(apply the switching mapping by I), thus equal to B%IAJ = y(Q);;ﬁjfgp. Fi-

nally, y(3)7; = B} ; = ypara02y = By = y(3)},, and y(3)]; = yreri020y =
Yg20.11,2100} = Y110,21,1145} (first switch by I and then permute 1,2), thus equal to

B?AJ,I = y(2)l+] 2p.i- The identities (3.14) follow directly from (2.25). O
As the blocks of the matrices in the program (2.27) lie in the Terwilliger algebra,

the matrices in (2.27) can be block-diagonalized, as explained in Section 3.1. For this,
define the matrices

n—k n—k
(Za i3, RY(s l+j2p,0> , By = (Z Ofﬁ}?ky(s)f,j) (3.15)

i,j=k p =k
14



corresponding, respectively, to the matrices A* (s = 1,2) and B® (s = 1,2,3,4) and
define the vectors

a:=< (") (y<1>3,0—y<1>z;i)>i , 5:=< (”) (y<1>zi,,»—y<3>zi,i)>i_ e R,

(3.16)
Using Lemmas 3.2 and 3.3, we obtain the following reformulation for the parameter
0(Gy) from (2.27)

{(G;) = max 2"ty(1)8,0 st. y(s);; (s =1,...,4) satisfy (3.13), (3.14) and

1-y()g,  a’ (t —1)b7
- Aj- B (t — 1)(AF - Bj) =0,
(t = 1)(Ag — BY) + (t — 1)(t — 2) (A7 — Bg)

<Ai - By (t = 1)(A7 — BY)

(t—1)(A} — BY) + (t — 1)(t — 2)(A3 — B;‘i)) = 0fork=1,..,|n/2],

B} (t- 1B} _
( 5 (t_1)Bg+(t—1’§(t—2)Bﬁ> =0fork=0,...,|n/2],

Al — A2 -B}+Bi>=0 fork=0,...,|n/2],

B — Bl =0 fork=0,...,|n/2],
(3.17)
where A$, Bi,a,b are as in (3.15), (3.16). To compute £>¢(G;) simply add the non-
negativity condition y(s)y; > 0 on all variables.

3.4. Numerical results for Hamming graphs. We have tested the various
bounds on some instances of Hamming graphs. In what follows we use the following
convention: For an integer 1 < d < n, H(n,d) (resp., H™ (n,d), H*(n,d)) denotes
the graph H(n,D) with D = {d} (resp., D = {1,...,d}, {d,...,n}). The papers
9, 10, 11] give numerical results for the parameters 9 (G), 9+ (G) for such instances.
Moreover, a bound related to copositive programming is computed in [11] (called KC1-
bound in [11], or £(*) bound in [16]); it is shown in [16] that this bound is dominated
by our parameter ¢>¢.

In Table 1, the symbol “*’ indicates the strict inequality ¥,(G) > [¢(G)], which
happens for H(10,8) and H*(10,8), and we indicate in bold the values satisfying LB
= Xx(G) for the obtained lower bound LB. (Indeed in these instances, LB = 271,
while P(V) can be covered by the 2"~1 distinct pairs {I,V \ I} (I C V) which are
stable sets as n ¢ D.)

The results in Table 1 indicate that the parameters ¢(G) and ¥>((G) give on
some instances a major improvement on Szegedy’s bound ¥+ (G). On the other hand,
in most cases, the parameter ¥,(G) gives no improvement since ¥,(G) = [¢(G)]. It
could be that this feature is specific to Hamming graphs. As we will see in the next
section, the bound ¥,(G) does improve the bound [¢(G)] for Kneser graphs.
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graph D(G) | 9(G) | W(G) | TuG) | ¥>0(G) | Weso(G)

H (7,4) 36 42.6667 64 64 64 64
H~=(8,5) 72 85.3333 | 128 128 128 128
H(10,6) 6 8.7273 | 10.4366 | 11 | 10.8936 11
H~(10,6) | 207.36 320 512 512 512 512
H(10,8) | 2.6667 3.2 3.9232 5* 3.9232 5*
H*(10,8) 3.2 3.2 3.9232 5* 3.9232 5*
H(11,4) 16 21.5652 | 25.7351 | 26 | 25.7351 26
H(11,6) 12 12 12 12 | 15.2836 16
H-(11,7) | 414.72 640 1024 | 1024 | 1024 1024
H—(11,8) | 711.1111 | 819.2 1024 | 1024 | 1024 1024
H(11,8) 3.2 4.9383 | 5.7805 6 5.7805 6
H(13,8) | 5.3333 | 9.4118 | 12,1429 | 13 | 13.6533 14
H(15,6) | 27.7647 | 30.7368 | 46.4371 | 47 | 50.3036 51
H(16,8) 16 16 16 16 | 28.4444 29
H(17,6) 35 48.2222 | 86.3086 | 87 | 88.3204 89
H(17,8) 18 18 32 32 | 46.5122 47
H(17,10) | 6.6666 | 12.6315 | 15.8750 | 16 | 25.8405 26
H(18,10) 10 16 18.3076 | 19 | 38.8844 -
H(20,6) | 59.3735 | 59.3735 | 140.9586 | 141 | 140.9586 -
H(20,8) | 41.7143 | 60.9524 | 107.1489 | - 136.4115 -

Table 1: Bounds for the chromatic number of Hamming graphs

4. Bounds for Kneser graphs. We have seen that the parameter (G) is
bounded by x*(G) and that, for vertex-transitive graphs, it coincides with the bound
|[V(G)|/£(G). On the other hand ¥;(G) can sometimes be strictly greater then [¢(G)],
e.g., for the Hamming graph H (10, 8) (recall Table 1). We present here some numerical
results showing that ¥,(G) can in fact be strictly greater then [x*(G)] for Kneser
graphs.

Given integers n > 2r, the Kneser graph K(n,r) is the graph whose vertices are
the subsets of size r of a set N with |N| = n, two vertices being adjacent if and only if
they are disjoint. As shown in [23], a(K (n,r)) = (::i), and thus x*(K(n,r)) = 2 in
view of (2.2) as K (n,r) is vertex-transitive. Lovdsz proved that x(K(n,r)) = n—2r+2
in his celebrated paper [22]. Thus the fractional chromatic number and the chromatic
number of K (n,r) can differ significantly, while the fractional chromatic number is
close to the clique number w(K(n,7)) = [%|. Moreover, Lovasz [23] proved that for

G = K(n,7), a(G) = #(G). Hence, /(G) = a(G), implying (G) = G = x*(G) =
n/r. Therefore, ¥,(G) > [n/r]. We show in this section how to compute ¥,(G).

The Kneser graph K(n,r) coincides with the subgraph of the Hamming graph
H(n,{2r}) induced by the subset P_.(N) := {I € P(N) | [I| = r}. It will be
convenient to view the Kneser graph also in the following alternative way. Fix a set
T C N with |T| = r and define

P(N,T):={(I',1") e P(T) x P(N\T) | [I'| = [I"[}.
The mapping
P_.(N) — P(N,T)

i —  (T\I,I\T)
16
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is a bijection and [IAJ| = |(T\I)A(T\J)|+|(I\T)A(J\T)| holds for I, J € P—,.(N).
Hence K (n,r) can also be viewed as the graph with nodeset P(N,T), with two nodes
(I',I"),(J', J") € P(N,T) being adjacent if |[I' A J'| + |I" A J"| = 2r.

As we will see below, the matrices involved in the program (2.27) for the com-
putation of U,(K(n,r)) lie in B, , (r' = n —r), a subalgebra of a tensor product
of two Terwilliger algebras, which has also been studied and block-diagonalized by
Schrijver [30] (in connection with constant weight codes). We follow the same steps
as in Section 3 for the computation of ¢(G}) for Hamming graphs, which we now carry
out for Kneser graphs.

4.1. The subalgebra B, ,.. As above, |[N| =n and we fix a subset T C N with
|T| = r and set ' := n — r. For i,j5,p = 0,1,...,r (resp., i',5',q = 0,1,...,7"), let
My (vesp., Mlq,;’,) be the matrices indexed by P(T) (resp., P(N \ T)) defining the
Terwilliger algebra A, (resp., A,) as in Section 3.1. Let now A, ,  be the algebra
generated by the tensor products of matrices in A, and A,; that is,

A =3 Y MPT @ MET, | &P, . €R

z J i3’ 4,3,8,7
4,7,p,4",5"5q

Matrices in A, , are indexed by the set P(T') x P(N \ T'). Consider the subalgebra

B, = Z yzuq Mq, ‘ yp,q cR

5,0,

So B, , consists of all matrices from A, ,  satisfying mf”;{i,’j, =0ifi#4 orj#j.
Hence, for M € B,, and (I,I'),(J,J") € P(T) x P(N\T), Mgy, = 0 if
|I| # |I'| orif |J| # |J'|. Therefore any row/column of M indexed by (I,I') ¢ P(N,T)
is identically zero and we may thus restrict matrices in B, ,s to being indexed by the
subset P(N,T) of P(T) x P(N\T).

For k < r, let M;"" be the matrix indexed by P(N,T), whose ((I,I'),(J,J'))th
entry is equal to 1if [TAJ|+|I' AJ'| = 2k, and to 0 otherwise. Thus M;"" corresponds
to the principal submatrix of Mj, (in the Bose-Mesner algebra B,,) indexed by the
subset P—,(N) and M}"" € B,,» as M;"" = >, M ® Mq’ . Hence
the set

i,3,0,q|i+35—p—q=k

= {kaM,;” | z), € R}
k=0

is a subalgebra of B, .
Schrijver [30] proved the following analogue of Theorem 3.1, giving the explicit

block-diagonalization for matrices in B, ,,. For k=0, ..., L%J, l=0,..., {%’J set

Wi i ={k,k+1,..,r =k} {l,l+1, ey — 1}.

THEOREM 4.1. [30] For a matriz M =3, .y} ® M ™ in By,
M >0 M, ::< ol ad” p’q) =0 for each
= kil Z i,g.k Y51 Y5 ieWa f

(4.2)
k=01, 3] andl=0,1,....]5].
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We have the following analogues of Lemmas 3.2 and 3.3.

Lewua 4.2. Let A = 5,5, alfM{T © M, B = 3,5, I MET © MIT,

C=3ipa I MPT ® MZ’]-T be matrices in By, and define accordingly

_ ar’ p.aq _ pr a4 ppa
Akl_(Zau,k Q;51@ w) ’Bkl_<§:o‘uk z]l7]> ’
1, EWki 1,JEWki

p.q p:q
- (Serstsity)
p,q i,jEWk
Then,
A B Ak‘l Bkl T T"
= > = R = AU (e
<BT C>0‘:’<BIE o) movk =01, M and 1=0,1,..., | 5
LEMMA 4.3. Let M = Z”pq o0 Th MY ®M‘” € Bry, c =S g cixt, where

X' € {0, YPNT) with xi, 1y = 1if 1] = 4, (for (I, I’) € P(N,T)), and d € R. Then,

(d CT>>O<:> Mkltoforkzo,atgjalzoa7\‘%J,k+l>0,

_ T
c M My := (Cél M00> =0

after setting ¢ := (ci (:) (:’))
=0

4.2. Compact formulation for ¥,(G) for Kneser graphs. In order to com-
pute ¥,y(G) for the Kneser graph G = K (n,r), one has to evaluate £(G;) for various
choices of t. As G is vertex-transitive, ¢(G;) can be computed using the program
(2.27). We now fix h := T € P_,.(N) corresponding to (0,0) € P(N,T) as chosen
node of G. We now show that the matrices A!,..., B* appearing in program (2.27)
lie in the algebra B, ,, and thus they can be block-diagonalized using Theorem 4.1.
The following lemma is the analogue of Lemma 3.5.

LEMMA 4.4. The matrices A* (s = 1,2) belong to B, and the matrices B*
(s = 1,2,3,4) belong to BTT Say, A* = YI_,x(s); M”T (s = 1,2) and B® =

ZT,]pq 0y(s )qu”®Mq’ (s =1,2,3,4). We have
z(s); = (s)g:? fors=1,2, i=1,...,7,

y(s)iy = y(s)jd = y(s )ZZiJZ pa = yjﬂj]] g Jors=1,4,
(4.3)
Y208 =y(2): 870y = y(3)%,
y(?’)f’]q - y(2)z;§f;fq,z fOT 7:7jap7 q= 03 A
Moreover, the edge conditions can be reformulated as
y()P! =0 if i=rorj=roritj-—p-—q=r,
y2p’q—0 ifi=rorj=0o0ri+j—p—q=0, (4.4)

ifi=0o0rj=0o0ri+j—p—gq=r,
ifi=0o0rj=0o0ri+j—p—q=0.
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Proof. As in the proof of Lemma 3.5, the matrices Al,..., B* satisfy (2.24)
and (2.25), where the variable y is invariant under action of Sym(¢) x Aut(G). A
main difference with the case of the Hamming graph is that, for the Kneser graph
G = K(n,r), Aut(G) ~ Sym(n), i.e., the only automorphisms of G arise from the
permutations of N. Recall that o € Sym(n) acts on P_,(N) in the obvious way;
namely, o(I) = {o(i) | i € I} for T € P_,.(N).

Let us first show that A' € Bj; that is, A} ; depends only on [T A J| (for
I,J € P—.(N)). For this, let I, J,I',J € 'P:r( ) with |[I A J| = |I' A J'|. Then,
|[INJ| = |I'NJ’| and thus there exists ¢ € Sym(n) such that o(I) = I' and o(J) = J'.
Hence, A}J = Y(r1,19} = Y{lo),10(J)} = A},’J, since y is invariant under action of o.
The proof for A% € Bl,, B* € B,.,+ is along the same lines.

Fi1a. 4.1. Venn diagrams

i—q,i—p
ivitj—p—q’
identities are along the same lines and thus omitted. Say, y(1)j = B} 7. where

1,0 € P—p(N) with [T\ 1| =i, [T\ J| = j, (T\ )N (T\ J)| = p and [(I\ T) N
(J\T)| = q. See Figure 4.1 for the Venn diagram of the sets I, J,T. Consider sets
I',J" € P_,(N) which together with the set T have the Venn diagram shown in Figure

4.1. Then, By, ; = y(l):’;j_’;fgfq and there exists o € Sym(n) such that o(T) = I,

o(I) =T, o(J) = J'. Therefore, y(1 )p’q B},J = Y{11,1J1TY = Y{lo(I),16(J),10(T)} =

vararary = Bhoy = y(0)i5570 . a

For k=0,...,[r/2|,1=0,..,|r" /2], define the matrices

Let us now prove the identity y(1)? = =y(1) the proofs for the remaining

s } : 0,0 s } : P:q
Akl - ( Oé ,J k: 'L,] ly )0,i+qu) ’Bkl - ( Ot ,j k: 'L,j ly ) )
1,j€EWpk 1,JEWpk

P.q P.q

(4.5)
corresponding, respectively, to the matrices A* (s = 1,2) and B*® (s = 1,2,3,4) and
define the vectors

o= (VOO (0ss i) 5= (VOO (i o))
i=0 i=0

(4.6)

Using Lemmas 4.2 and 4.3, we obtain the following reformulation for the parameter
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0(Gy) from (2.27)

¢(Gt) = max " ty(1)0) st. y(s)P?, s=1,...,4 satisfy (4.3), (4.4) and
, 0,0

3,77
1—y(1) a” (t - 1)b7
Ago — By (t —1)(Afo — Bgo) = 0;
(t —1)(Ago — Bio) + (t — 1)(t — 2)(A450 — Bgo)
<Allcl — By ) (t; 1)(A%, — BRy) \ . ) “ 0
(t=1)(Ag — Biy) + (= 1)(t=2)(Ay, — Br)/) —

for k=0,..,[r/2],l=0,...,[r"/2], E+1>0;

B1 (t _ 1)32 B - I |
< N (t=1)Bj + (t— lk)l(t - 2)B;§l> =0fork=0,..[r/2],0=0,..[r/2];

A}, — A} — B} + B, =0 fork=0,...,[r/2],l =0,...,|r/2];

B} — B}, =0 for k=0,...,|r/2],l =0,..|r'/2],
. (4.7)
where A3, B}, a,b are as in (4.5), (4.6). To compute ¢>((G;) simply add the non-

negativity condition y(s)”'? > 0 on all variables.
gativity y(s)hs

4.3. Numerical results for Kneser graphs. We show in Table 2 below our

numerical results for the bounds ¥,(G) and ¥,_,(G) for several instances of Kneser
graphs. We indicate in bold the values achieving the chromatic number.

Graph | [x*(G)] = [n/r] | Wu(G) | ¥eo(G) | X(G) =n —2r +2
K (6,2) 3 4 4 4
K(7,2) 4 4 5 5
K(8,3) 3 4 4 4
K(9,3) 3 4 4 5
K(10,4) 3 3 4 4
K(11,3) 4 5 5 7
K(11,4) 3 4 4 5
K(12,3) 4 5 6 8
K(12,4) 3 4 4 6
K(12,5) 3 3 4 4
K(13,5) 3 4 4 5
K(14,5) 3 4 4 6
K(15,3) 5 6 6 11
K(16,4) 4 5 6 10
K (24,6) 4 4 6 14
K(25,5) 5 6 7 17
K(34,7) 5 6 7 22
K(36,6) 6 7 9 26

Table 2: Bounds for the chromatic number of Kneser graphs
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5. Computing the new bound ¥k for DIMACS benchmark graphs. So
far we have been dealing with vertex-transitive graphs and with the bounds 9 (-) and
Wy(-). For the formulation of ¢(G), it was observed in Section 2 that, when G is
vertex-transitive, it suffices to require in (2.13) positive semidefiniteness of Ms(h, )
for only one h € V(QG) instead of for all h € V(G). In case of a non-symmetric
graph G one would need to require My(h,z) > 0 for all h € V(G); therefore, with
n := |V(G)|, in order to compute ¥(G), (resp., £(Gt), and thus ¥,(G)), one would
have to solve a semidefinite program with 2n (resp., 4n) matrices of order < n + 1
(resp., < 2n + 1). For graphs that are of interest, e.g. with n > 100, this cannot be
done with the currently available software for semidefinite programming.

For non-symmetric graphs we propose another variant of the bound () (Q).
Namely, given a clique K in G, let M3 (K;x) denote the principal submatrix of My(z)
indexed by the multiset Py (V) U (Upex{{h,i} | i € V}). Now define the parameter

Y (G):=min t st. xzo=t, z;=1(€V), Ma(K;z) =0,

xy = 0 for all I containing an edge. (5.1)

Then 9(G) < Yr(G) < x*(G). (The left inequality follows using (2.4) and the right
inequality follows from ¢ (G) < ¥ (G) < x*(G) using (2.8), (2.10).) Set k := |K|
and assume w.l.o.g. that K = {1,2,...,k}. With respect to the partition of its index
set as {0} U {{i} |i € VIUUF_,{{h,i} | i € V}, the matrix My(K;z) has the block

form

t af of o ... a{
ag Ao A1 Ay ... A

ap A1 A1 0 e 0

M2(K; .’17) - ag A2 0 Ag :
S .0
ar Ak 0 e 0 Ak

where ag,...,ax, Ag, ..., A; are indexed by V, a; = diag(4;) (0 < i < k), ag = e,
(Ao)ij = zijy (An)ij = 2qn,ijy for h € K, 4,5 € V. Note that for h € V the columns
of Ag and A}, indexed by {h} are both equal to aj. Hence, as in the proof of Lemma
2.1, we can do some row/column manipulations and verify that

_ T k T
My (K;z) = 0 <> t kk € (Zh,;l“h) =0, Ay,..., Ax = 0.
€ — Zh:l ah Ao — Zh:l Ap

Hence ¥k (G) can be computed via a semidefinite program involving k + 1 matrices
of sizes n + 1 (once) and n (k times).

We have conducted experiments for some DIMACS benchmark graphs (stud-
ied e.g. in [4, 5, 8, 9, 12, 25, 26]). In Table 3 we present our lower bounds for
the chromatic number of the graphs DSJCa.b. Recall that DSJCa.b are random
graphs with a vertices, two vertices being adjacent with probability 10~ 'b. The graph
DSJR500.1 is a geometric graph with 500 nodes randomly distributed in the unit
square, with an edge between two nodes if their distance is less than 0.1. The graph
DSJR500.1c is the complement of DSJR500.1. The graphs can be downloaded from
http://mat.gsia.cmu.edu/COLORO3/.

In Table 3, the column ‘LB’ contains the previously best known lower bounds
taken from [8, 25, 26], and the values into parentheses come from [3]; the bound
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82 for DSJR500.1c is the size of a clique obtained using the heuristic of [2]. The
column ‘UB’ contains the best known upper bounds taken from [4, 12, 13], i.e. the
number of colors in the best colourings found so far. The column ‘K’ contains the
size of the clique used for computing the parameter 1k (G) (the clique is found using
the heuristic from [2]). We also indicate the value of the theta number 9(G) (also
computed in [9, 10] for some instances), which already improves the best lower bound
in several instances. We indicate in bold our best new lower bounds for the chromatic
number. On several instances they give a significant improvement on the best known
lower bound. Moreover, in two instances, we are able to close the gap as our lower
bound matches the upper bound. Namely we find the exact value of the chromatic
number for the graphs DSJC125.9 (x(G) = 43) and DSIJR500.1¢ (x(G) = 85), which
were not known before to the best of our knowledge. These results demonstrate that
our bounds are quite strong.

We should also point out that the semidefinite program for the parameter 9,
for instance, for the graph DSJC500.9, contains a matrix of size 501 x 501 and 56
matrices of size 500 x 500. One cannot hope to solve such a big problem using solvers
based on interior point methods. The values in columns ‘ 9(G) * and ¢ ¥ (G) * were
computed using the boundary point method of Povh, Rendl and Wiegele [28]. This
method allows to compute the Lovdsz theta number and its variations (e.g. ¥ (G))
to reasonably high accuracy even for graphs with several hundred nodes.

One may wonder why we did not add nonnegativity constraints in the formulation
for Y. The reason is that for random graphs adding nonnegativity constraints gives
only a negligible improvement. This fact was already observed for the Lovasz theta
number in [9].

Graph LB | 9(G) [ﬁ(oﬂ K | vx(Q) | Tvx(G)] | UB
DSJC125.1 5 4.1062 5 4 4.337 5 5
DSJC125.5 14 (17) | 11.7844 12 10 | 13.942 14 17
DSJC125.9 42 37.768 38 34 | 42.53 43 43
DSJC250.1 6 (8) 4.906 5 4 5.208 6 8
DSJC250.5 14 16.234 17 12 | 19.208 20 28
DSJC250.9 48 55.152 56 43 66.15 67 72
DSJC500.1 6 6.217 7 5 6.542 7 12
DSJC500.5 | 13 (16) | 20.542 21 13 | 27.791 28 48
DSJC500.9 59 84.04 85 56 | 100.43 101 126
DSJC1000.1 6 8.307 9 5 - - 20
DSJC1000.5 | 15 (17) 31.89 32 14 - - 83
DSJC1000.9 66 122.67 123 65 - - 224
DSJR500.1¢ | 82 (83) 83.74 84 77| 84.12 85 85

Table 3: Bounds for the chromatic number of DIMACS instances

Remarks. The computational results reported in Tables 1 and 2 were carried
out using the open source codes for semidefinite programming CSDP 5.0 and DSDP
5.8 available, respectively, at http://infohost.nmt.edu/"borchers/csdp.html and
http://www-unix.mcs.anl.gov/ benson/dsdp/.

For finding large cliques in the instances in Table 3 we used the heuristic Max-AO
(based on [2]) available at
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http://dollar.biz.uiowa.edu/ burer/software/Max-A0/index.html

The boundary point method code is available at

http://www.math.uni-klu.ac.at/or/Software/theta_bp.m
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