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Abstract. Lovdsz and Schrijver [13] have constructed semidefinite relaxations for the stable
set polytope of a graph G = (V, E) by a sequence of lift-and-project operations; their procedure
finds the stable set polytope in at most a(G) steps, where a(G) is the stability number of G.
Two other hierarchies of semidefinite bounds for the stability number have been proposed by
Lasserre [7],[8] and by de Klerk and Pasechnik [5], which are based on relaxing nonnegativity
of a polynomial by requiring the existence of a sum of squares decomposition. The hierarchy of
Lasserre is known to converge in a(G) steps as it refines the hierarchy of Lovész and Schrijver,
and de Klerk and Pasechnik conjecture that their hierarchy also finds the stability number
after a(G) steps. We prove this conjecture for graphs with stability number at most 8 and we
show that the hierarchy of Lasserre refines the hierarchy of de Klerk and Pasechnik.

Key words. Stability number of a graph, semidefinite programming, sum of
squares of polynomials

1. Introduction

Semidefinite programming plays an essential role for constructing good relax-
ations for hard combinatorial optimization problems, in particular, for the max-
imum stable set problem which will be considered in the present paper (see, e.g.,
[11] for a detailed account). Lovész [12] introduced the theta number J(G) as
an upper bound for the stability number a(G) of a graph G = (V, E). The theta
number can be formulated via the semidefinite program:

Y(G) :==max Tr(JX)st. Tr(X)=1,X;; =03Gje E), X =0, (1)

and thus computed efficiently (to any arbitrary precision) using, e.g., interior
point methods (cf. [2,25]). It is also known that ¥(G) coincides with a(G) when
G is a perfect graph (see [6]). Lovdsz and Schrijver [13] construct a hierarchy
of semidefinite relaxations for the stable set polytope of G by a sequence of
lift-and-project operations; their procedure is finite and it finds the stable set
polytope in at most a(G) steps.

Two other hierarchies of semidefinite bounds for the stability number have
been proposed by Lasserre [7,8] and by de Klerk and Pasechnik [5]. They use
the following notions about sums of squares of polynomials. Given a polynomial
f € Rlzy, ..., zy], one says that f is a sum of squares of polynomials if it can be
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written as f = g7 + g5 + ... + g2, where g1,..., gm € R[z1, ..., 2,,]. Obviously, f is
nonnegative on R™ if it can be written as a sum of squares of polynomials. The
hierarchies of Lasserre and of de Klerk and Pasechnik are based on the following
paradigm: While testing nonnegativity of a polynomial is a hard problem, one
can test efficiently whether a polynomial can be written as a sum of squares of
polynomials via semidefinite programming. As was already proved by Hilbert in
1888 not every nonnegative multivariate polynomial can be written as a sum of
squares (see Reznick [19] for a nice survey on this topic). However, some repre-
sentation theorems have been proved ensuring the existence of certain sums of
squares decompositions under some assumption, like positivity of the polynomial
on a compact basic closed semi-algebraic set (see, e.g., [24] for an exposition of
such results). An early such result is due to Pélya [18] who showed that, if p(z)
is a homogeneous polynomial which is positive on R \ {0}, then (3°1 ; z;)"p(z)
has only nonnegative coefficients (and thus (3., #7)"p(3,...,22) is a sum of
squares) for some sufficiently large integer r.

The starting point for Lasserre’s construction is that the stability number
a(G) of a graph G = (V, E) can be expressed as the smallest scalar ¢ for which
the polynomial t — >, @; is nonnegative on the set {z € RY | z;z; =0 (ij €
E), 22 = z; (i € V)}. Requiring the weaker condition that the polynomial
t — Y icy Ti can be written as a sum of squares modulo the ideal generated by
z;x; (ij € E) and 2 — z; (i € V) with given degree bounds, yields a hierarchy
of semidefinite upper bounds for a(G). The dual approach (in terms of moment
matrices) yields the hierarchy of Lasserre [7,8] of semidefinite relaxations for the
stable set polytope. This hierarchy refines the hierarchy of Lovasz and Schrijver
(see [9]) and thus it also finds the stable set polytope in a(G) steps.

By a result of Motzkin and Straus [15], one may alternatively express a(G) as
the smallest scalar ¢ for which the matrix M := ¢(I + Ag) — J (with entries ¢ —1
on the diagonal and at positions corresponding to edges and —1 elsewhere) is
copositive, meaning that the polynomial pas(z) := 3, ;cy @727 M;; is nonnega-
tive on R™. Following Parrilo [16], de Klerk and Pasechnik [5] propose to relax the
nonnegativity condition on pys(x) and to require instead that (3, #7)"pas(z)
be a sum of squares for some integer r > 0. In this way they define a hierar-
chy of bounds ¥(")(G) (for r > 0). The convergence of these bounds to a(G)
is guaranteed by the above mentioned result of Pdlya. The first bound in the
hierarchy coincides with the strengthening ¢ (G) of the theta number introduced
by McEliece, Rodemich and Rumsey [14] and Schrijver [21] (see (8) below). It
is however not clear how the next bounds relate to the bounds provided by the
construction of Lasserre. It is conjectured in [5] that the stability number is
found after a(G) steps. In this paper we study this conjecture and develop a
proof technique which enables us to show that the conjecture holds for graphs
with stability number at most 8. Moreover, we show that the hierarchy of bounds
of Lasserre (enhanced by adding some nonnegativity constraint) refines the hi-
erarchy of bounds of de Klerk and Pasechnik, answering another open question
of [5].

The paper is organized as follows. In Section 2, we first recall some definitions
and results related to the hierarchies of bounds of Lasserre and of de Klerk and
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Pasechnik. Next we introduce a dual formulation for the latter bounds, as well as
a weighted analogue and new semidefinite relaxations of the stable set polytope.
We complete the section with our main results. The proofs are delayed till Section
3, where we prove the conjecture for graphs with stability number at most 8,
till Section 4, where we prove a partial result for the weighted analogue of the
conjecture, and till Section 5, where we prove the relation between the hierarchies
of Lasserre and of de Klerk and Pasechnik. Section 6 contains some variations
and new interpretations of the bounds ¥(")(G). Finally some variations of the
main conjecture about the convergence to the stability number in a(G) steps
are given.

Some notation. Throughout, G = (V, F) denotes a graph with node set
V ={1,...,n}. For a node i € V, N(i) denotes the set of nodes adjacent to
i and we set it := i U N(i). Similarly for S C V, N(S) denotes the set of
nodes adjacent to some node in S and we set S* := S U N(S). For two nodes
w,v € V, write u ~ v if u = v or wv € E, and u % v otherwise. Let a(G)
denote the stability number of G, i.e., the largest cardinality of a stable set
in G. The matrix Ag denotes the adjacency matrix of G, i.e., Ag is the 0/1
matrix indexed by V whose (i, j)-th entry is 1 when ij € E. All matrices are
assumed to be symmetric and I, J, e, ¢; (i =1,...,n) denote, respectively, the
identity matrix, the all-ones matrix, the all-ones vector, and the standard unit
vectors of suitable sizes. A matrix M is copositive if T Mz > 0 for all z € R%}
and C,, denotes the copositive cone, consisting of the n X n copositive matrices.
For a symmetric matrix M, we write M > 0 if all entries are nonnegative, and
M » 0if M is positive semidefinite. The trace of M is denoted by T'r(M), while
diag(M) denotes the vector containing the diagonal entries of M. Given a vector
v € R”, we let Diag(v) denote the diagonal matrix whose diagonal entries are
the components of v. Next, 1 denotes the vector with entries L (i = 1,...,n). For

i

a sequence 3 € Z1t, we set |8 := Y1 Bi, Bl:= B!+ Bnl, S(B) :={i | Bi # 0},
and S,q4(B) := {i | B; is odd}. One says that § is even when S,44(8) = 0. We
also set I(n,r) :== {8 € Z} | |B| = r} and P (V) := {S C V | |S| < r}. For
z € R® and 8 € I(n,r) we write 2 := H?erc’fi. A polynomial p € R[zy,...,z,]
of the form p(z) = > 5¢c7(n.r) ppz? is said to be homogeneous of degree r, and
we let p = (pg) € RI(™7) denote the vector containing its coefficients. For a
cone of symmetric matrices K C R"*"™ K* denote the dual cone defined by
K* = {M € R¥™™|Tr(MN) > 0,VN € K}. It is well known that the cone
of positive semidefinite matrices is self-dual (i.e., coincides with its dual cone),
while the dual cone of the copositive cone C,, is the cone of completely positive
matrices, a matrix M being completely positive if M > 0 and M > 0.

2. Semidefinite bounds for the stability number
2.1. The semidefinite bounds of Lasserre
Given an integer 7 > 1 and a vector = (1) ep,, (v), consider the matrix:

M, (z) == (100)1,5eP,. (V)
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known as the moment matrix of x of order r. By setting;:

las(G) :=max Y,y x; st. M (z) =0, 2y >0 (I CV,|[I|=r+1), )

xg =1, $Z]:0(lj€E)
one obtains a hierarchy of semidefinite bounds for the stability number, known
as Lasserre’s hierarchy [8,9]. Indeed, if S is a stable set, the vector x € RP2r (V)
with zy = 1if I C S and z; = 0 otherwise, is feasible for (2) with objective value
|S|, showing a(G) < las(™ (G). For any fixed r, the parameter las("™(G) can be
computed in polynomial time (to an arbitrary precision) since the semidefinite
program (2) involves matrices of size O(n") with O(n?") variables.

We note that las™)(G) = ¥'(G) (see (8) below for the definition of ¥'(G)).
Equality o(G) = las™(G) holds for 7 > «(G). This result remains valid if we
remove the nonnegativity constraint zy > 0 (|I| = r + 1) in (2) ([9]). However,
with this nonnegativity condition, we will be able to compare the hierarchies of
Lasserre and of de Klerk and Pasechnik (see Theorem 4 below!). Note that the
conditions xy > 0 for |I| < r are implied by M,.(z) > 0.

2.2. The semidefinite bounds of de Klerk and Pasechnik

The starting point in [5] is the following formulation for a(G) found by Motzkin
and Straus [15]:

1 n
NG =min 27 (I + Ag)z subject to z > 0, Zx, =1 (3)
a
i=1
In other words,
a(G) =min t subject to t(I + Ag) — J € Cy,. (4)

Therefore, upper bounds for a(G) can be obtained by replacing the copositive
cone C,, in program (4) by a smaller subcone of it. Following [5,16], given an

integer r > 0, IC&T) denotes the cone of n xn matrices M for which the polynomial
n T n
MOES (Z ) > Miaial (5)
i=1 i,j=1
can be written as a sum of squares of polynomials. Parrilo [16] shows that

KO ={P+N|P>0,N >0} (6)

1 Theorem 4 asserts that las(") (G) < 9"~ (G) (see (7) for the definition of ¥(")(@)). If
we omit the condition z; > 0 (|I| = r 4+ 1) in (2), for r = 1 we would have las(V) (@) =
9(G) > 9'(GQ) = 99 (Q). However there exist graphs with 9(G) > 9'(Q) (see, e.g., [22, vol. B,
p. 1173]), which shows that the statement of Theorem 4 is wrong without the nonnegativity
condition.
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A characterization of K can be found in [1,16] (see also Lemma 14 and the
comment thereafter). Obviously, IC,(f) - IC,(fH) C ... CC,. The result of Pdlya
mentioned in the Introduction shows that the interior of the cone C,, is contained
in U, K, Setting

9 (G) := min ¢ subject to t(I+ Ag) —J e K\, (7)

one obtains a hierarchy of upper bounds for a(G). The first bound 9(°)(G) is
equal to

¥(G) =max Tr(JX) st.Tr(X)=1, X;;=0(ij€E), X =0, X >0 (8)

(see [5]). Thus, 9O (G) < 9(G), since program (8) without the nonnegativity
condition is the formulation (1) of the theta number.

The problem of finding a sum of squares decomposition for a polynomial of
degree 2d can be formulated as a semidefinite program involving matrices of
size O(n?) and O(n??) variables (see, e.g., [16]). Therefore, for fixed r, program
(7) can be reformulated as a semidefinite program of polynomial size and thus
9" (@) can be computed in polynomial time (to any precision).

Let us observe that, for the matrix M := (I + Ag) — J, the polynomial
pg\?(m) has a negative coefficient for any r > 0 when o = a(G) > 2. To see it,
recall from [1, p. 169, Thm. 2.2] that

,, r! .
pSVI) (z) = Z —'chQB, where cg := T M3 — T diag(M). (9)
BeI(n,r+2)

If S(B) is a stable set, then cg = o), B; (i —1)—(r+1)(r+2). Write r+2 = ga+s
with ¢,s € Z;,0<s < a;thencg <0for 8= (¢+1,...,9+1,9,...,4,0,...0)
with s entries equal to ¢ + 1, o — s entries equal to ¢, and S(8) being a stable
set.

On the other hand the matrix M := a(1 4+ €)(I + Ag) — J with a = «(G)

a—1

and € = belongs to the cone IC%T) for r > a2 since all the coefficients of

P ot
the polynomial ps\?(m) are nonnegative [5]. Indeed, by (9), for 8 € I(n,r + 2),
the coefficient cs is equal to

BTMB — BTdiag(M) > (r+2)*mina” Mz — (r+2)(a(1 +¢) — 1)
=(r+2)2%—(r+2)(a(l+e)—1)>0

for » > a? by the choice of . (We used here the fact that min,ec 2TMz = ¢
which is a direct consequence of (3).) Therefore,

a(@) <I9(G) < a(G)(1+¢€) < a(G) + 1,
which gives the following result of de Klerk and Pasechnik [5]:

a(G) = [97(@)] for r > a(G)%
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It is also shown in [5] that

I (G) <1+ max 9O (G\it). (10)

Therefore, 91 (G) = a(G) when a(G) < 2. More generally, de Klerk and Pasech-
nik [5] conjecture:

Conjecture 1. 9" (G) = a(G) for r > a(G) — 1.

2.8. Dual formulation

Using conic duality, the bound 9¥(")(G) from (7) can be reformulated as
9" (G) = max Tr(JX) subject to Tr((I + Ag)X) =1, X € (KI")*.  (11)

As the programs (7) and (11) are strictly feasible, there is no duality gap and
the optima in (7) and (11) are indeed attained ([5]). For » = 0, it follows from

(6) that (IC%O))* is the cone of completely positive (i.e., positive semidefinite and
nonnegative) matrices. For » > 1, one can give an explicit description of the dual

cone (IC%T))*. As a first step we introduce a class of matrices defined in (12).

Definition 1. Let y = (ys5)scr(n,2r+4) be given.

(i) Define the matriz®> N, 2(y) indexzed by I(n,r + 2), whose (3, 3')-th entry is
equal to ygip, for 8,8 € I(n,r +2).

(ii) For v € I(n,r), N7(y) denotes the principal submatriz of Ny12(y) indexed
by v+ 2e1,...,7+2ey,; that is, NV (y) is the n X n matriz with (i, j)-th entry

y2'y+26i+26’j; fOT‘ 25.] = ]-7 sy N
(#1) Define the n X n matriz

Definition 2. Define the cone
C = {ZeRV™ | Z=C(y) for somey e R+ with N, 5(y) = 0}.

Notice that the matrix C(y) in (12) involves only entries of y indexed by even

sequences. Therefore in the definition of the cone C,(f) one can assume w.l.o.g.
that ys = 0 whenever § has an odd component.

Proposition 1. The cones IC&T) and Cr(f) are dual of each other; that is,
e = (K and £ = (7).

2 Such a matrix is known as a moment matrix; for details see, e.g., Lasserre [7].
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The proof relies on a known duality relationship between the cone of sums of
squares of polynomials and the cone of positive semidefinite moment matrices.

Nevertheless, the explicit description of C{”, the dual of K, is new to the
best of our knowledge. Given u = (u,) € Rf (mr+2) " consider the polynomial
p(z) := (3=, uax®)?; then the following identity holds:

yTp = uT N, 2(y)u for any y € RI(2r+4), (13)

Indeed, y7p = X5 4525 = X5 U5(T plors s Uatts) = Lo s UatlpYass which is
equal to uT N, 2(y)u. Define the two cones:

Yoria :={p= (pa) € RI(m2r+4) | Zpax“ is a sum of squares of polynomials},

«

Napya = {y € RIC2HD | N o(y) = 0}

Lemma 1. The two cones Nopyq and Xo.14 are dual of each other; that is,
N2r+4 = (227‘+4)* and Z‘27'+4 = (N2r+4)*-

Proof. The equality Noj14 = (Xa,44)* follows as a direct application of (13)
and it implies the equality Xo,14 = (Napi4)* since X1 4 is a closed cone (see
[20, p. 37, Prop. 3.6]). O

Proof. (of Proposition 1). Let C(y) € ¢, let M be a symmetric n x n matrix
and let pg\? be the associated polynomial via (5). Using (9), one can verify that

Tr(M C(y)) = yTpg\? for any y € RI(™2r+4), (14)
Indeed,
- = r!
Ir(M C(y) = Y MyCly)ij= > Mi; > Y2y+2ei+2¢;
i.g=1 0=l yel(nr)

! !
- 2|2 (ﬁ—Tzew)!M“y”+ 2 (ﬂ—r Mighas

e —ej)!

BeI(n,r+2) \ilB:i>2 i#j]B:,8;>1
’I"! i\Oi — 1 'f'! iP5
= Z Z %Miiﬁyz@ + Z @Mi]’yl@
BEI(n,r+2) i \ ’ i#j ’
7! . -
= Y Gives (8T MB — BT diag(M)) = yTp{).
BEI(n,r+2) )

Using (14) and the equality (N2y44)* = Xor1+4, one can immediately conclude

that IC%T) = (C,(f))*. The cone C,(f) is closed since it consists of linear combinations
of positive semidefinite matrices and the positive semidefinite cone is closed.
Hence C{”) = (ICSLT))*. O
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Let us note for further reference the following identities which follow using

(9) and (14):

(r+2)!
3

Tr(J Cy) = Y, Y28, (15)

BEI(n,r+2)

Tr(Cy) = . B,yw (Z,B ,81>. (16)

BEI(n,r+2)

2.4. Semidefinite relaxations of the stable set polytope

Let Psiqp(G) denote the stable set polytope of G, defined as the convex hull of
the incidence vectors of the stable sets in G. For an integer r > 0, define the set

P)(G) := {z € R* | z = diag(X) for some X € " satisfying
Tr(AcX) =0, X —zzT =0}

and define the parameter:

ﬁ(r)( = max Zm (17)

zeP(")(G) “

Lemma 2. Py (G) C PU)(G) and o(G) < 97)(G) < 9)(G) for any integer
r > 0.

Proof. Given a stable set S with incidence vector = := x°, define the vector
y € RICW2r+4) with ys = ﬁ if § is even and S(§) C S, and ys = 0 otherwise.
Then, |S|"N;4+2(y) is a 0/1 block diagonal matrix, whose blocks are indexed by
the sets Oy := {a € I(n, r+2)\5( ) C S, Spqa(a) = I} for I C S, and the set
O :={a € I(n,r+2)|S(a) ¢ S}. Each Or x Oy block is the all-ones matrix,
and the O x O block is zero. Hence N,;2(y) *= 0. For v € I(n,r),

S VA\S
S J 0 T
TN (4)) — _
if S(y) € S, and N7(y) = 0 otherwise. Hence C(y) = > cr(nyr) 5 IN7(y) =
Z"/Gl(n o \Sl|rm‘"T = zzT. Setting X := C(y) = zzT, we have TT'(AgX) =0,

and z = diag(X), which shows that z € P("(G). This shows the inclusion
Psmb(G) §~P(”)(G) which in turn implies the inequality a(G) < 9 (G). The
inequality ¥(")(G) < 9(")(G) follows from Lemma 3 below. O
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The sets P(")(G) provide a hierarchy of semidefinite relaxations for Pstas(G).
It is known that Pyp(G) = P©)(G) when G is a perfect graph (see [6]). A nat-
ural question to ask is whether the analogue of Conjecture 1 may hold, asserting
that Pyas(G) = P()(G) for r > a(G) — 1. We are able to give a positive answer
only in the case r = 1; see Corollary 2 below.

For this, given positive node weights w € RK, we have to compare the

weighted stability number a,,(G) = Il;nax(c) wTz and the weighted parame-
TEPstab
ter: '
I(G) = Tz 18
w (G) P (18)

Busygin [3] shows the following extension to the weighted case of the Motzkin-
Straus theorem.

Theorem 1. [8] Given w; >0 (i € V), set Wmin = min;ey w;. Then,

e iy (i () )«

In other words, the matrix o, (G) (Diag(%) + ﬁAG) — J is copositive or,
equivalently, the matrix o, (G) (Diag(w) + Ag.w) — ww” is copositive, where
Ag . is the matrix whose ij-th entry is % if ij € E and 0 otherwise. Set

(wmaX)2 )

Wmin

Wmax := maxw;, Wg 1= (19)
i€V

The matrix a,, (G) (Diag(w) + WeAg) —ww? is also copositive, since the entries
of Ag . are at most W¢. This leads us to define the following weighted analogue
of the parameter 9(")(.):

9(G) ;= min ¢ subject to t(Diag(w) + WgAg) — ww’ e K. (20)

This definition reduces to the original definition (7) when all weights are equal
to 1.

Lemma 3. The parameters (18) and (20) satisfy: 1%@((}’) < 191(5)(6’).

Proof. Assume M := t(Diag(w) + WgAg) — ww? € K and let = = diag(X)
where X € Cr(f), Tr(AgX) =0, X —za” = 0. Then, 0 < Tr(MX) = twTz —
wT Xw, yielding twTz > wT Xw > (wTz)? and thus ¢t > wTz. This gives the
desired inequality. a

Lemma 4. For r = 0, 94 (G) = 19,(1?)(6'). Therefore, 191(1?)(6') = ay(G) when G
is a perfect graph.
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Proof. Tt remains to show the inequality: 9\, (G) < 1 )(G). For this, we first
observe that

99(G) < ¢(G) := min ¢ subject to tDiag(w) + yAe —ww” € K.  (21)

Our argument is similar to the one used by de Klerk and Pasechnik [5] in the

unweighted case. Assume M := tDiag(w) + yAg — ww? € K. Then, M =
P+ N, where P = 0, N > 0, diag(N) = 0. Hence, ¢(Diag(w) + WgAg) —ww? =
M+ (tWe — y)Ag = P+ N + (tWg — y)Ag. It suffices now to verify that
N':= N + (tWg — y)Ag > 0. For this pick an edge, say 12 € E. As P = 0, we
have Pi1 + Pz > 2P1a, yielding ¢(wy + wa) — 2(y — Ni2) > (w1 — we)?. Finally,

2Njy = 2N1s + Qt% — 2y > t(wy + wy) — 2(y — N12) > 0 proves (21).
Next, using conic duality, we obtain that

#(G) = max w Xw subject to Tr(Diag(w)X) =1, Tr(AgX) =0, X € C".
Set u := (y/w;)! ;. Rescaling X by Y = Diag(u)XDiag(u), we find that
#(G@) = max uTYu subject to Tr(Y) =1, Tr(AgY)=0, Y e cV.

(As C7(10) consists of the nonnegative positive semidefinite matrices, it is closed

under the above rescaling.) We can now conclude that ¢(G) < 7Y )(G); this is
the same proof as for Theorem 67.11 in [22] (which gives the result with the cone

C,(LO) being replaced by the cone of positive semidefinite matrices). a

2.5. The main results

In this paper we prove the following results.
Theorem 2. For a graph G and a positive integer r < min(a(G) — 1, 6),

(@) < 9O(G\SH), 22
( )*Hsgwf&?ﬁf\s‘:r (G\S™) (22)

Moreover, (22) holds forr =7 =a(G) — 1.
Corollary 1. Conjecture 1 holds for a(G) < 8; that is,

HHD (@) = (@) if (G) <8
Theorem 3. For a graph G with positive node weights w € RV,

I 0(@) < max (w; + IO (G\it)). (23)

Corollary 2. Py, (G) = PM(Q) if G\i'* is perfect for all i € V; this holds in
particular if a(G) = 2.
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Theorem 4. For r > 1, the parameters from (2),(11) and (17) satisfy:
las™(G) < 9"~D(@) < 9D(@). (24)

Corollary 1 follows directly from Theorem 2. Analogously, Corollary 2 follows
from Theorem 3 together with Lemma 4. The proofs for Theorems 2, 3, 4 are
given in Sections 3, 4, 5, respectively.

Our proof technique for Theorem 2 does not apply to the case when a(G) > 9.
It is much more complicated than the proof of convergence in a(G) steps for
the Lovasz-Schrijver and the Lasserre semidefinite hierarchies. One of the main
difficulties (as pointed out later in the proof) comes from the fact that, for
r > 1, the cone nglT) is not invariant under some simple matrix operations,
like extending a matrix by adding a zero row and column to it, or rescaling
it by positive multipliers (which obviously preserve copositivity and positive
semidefiniteness). For instance, when G is a circuit of length 5, the matrix M :=
2(I + Ag) — J belongs to ICE(;I), but adding a zero row and column yields a

matrix that does not belong to ICél). We thank E. de Klerk for communicating
this example to us.

As Theorem 4 shows, the bound las")(G) is at least as good as 9"~V (Q).
There exist in fact graphs for which strict inequality: las® (G) < 9™ (G) holds.
For this, given integers 2 < d < n, consider the graph G(n,d) with node set
P(V) (V] = n) where I,J € P(V) are connected by an edge if |[[AJ| €
{1,...,d — 1}. Then a(G(n,d)) is the maximum cardinality of a binary code
of word length n with minimum distance d. Delsarte [4] introduced a linear pro-
gramming bound which coincides with the parameter ¥’ (G(n, d)) ([21]). Schrijver
[23] introduced a stronger semidefinite bound which roughly® lies between the
bounds las™") (G (n,d)) and las® (G(n,d)) ([10]). While G(n, d) has 2" vertices,
Schrijver’s bound can be computed via a semidefinite program of size O(n?)
(using a block diagonalization of the underlying Terwilliger algebra). It turns
out that the same algebraic property holds for the bound ¥™)(G(n,d)); thus
we could compute this bound as well as Schrijver’s bound for the parameters
(n,d) = (17,4),(17,6),(17,8), and we found:

las®(G(17,4)) < 3276 < 3607 < 9D (G(17,4))
las®(G(17,6)) < 352 < 395 < ¥V (G(17,6))
las® (G(17,8)) < 41 < 42 < 9D (G(17,8)).

3. Proof of Theorem 2
Let G = (V,E) be a graph with stability number «(G), V = {1,...,n} and
1 <r < a(G)—1 an integer. Set

t:=r+ max 9 O(G\SH).
SCVstable,|S|=r

3 Indeed, the formulation of Schrijver’s bound has an additional constraint, namely, Tijk <

x4 for all 4,j,k € V, which does not appear in the definition of the bound las(r)(G) used in
the present paper.
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Then, t > r+ 1. As t —r > 90 (G\S+), we deduce that
(t—=r)I+Agss) —J € K:Slls” for any stable set S in G of size r.  (25)
In order to prove Theorem 2, we have to show that, for 1 < r < min(a(G)—1,6),
M :=t(I+ Ag) —J e KW, (26)

We need some notation. Let B be an m X n matrix. We say that B is a
g X s block matriz if the set {1,...,m} indexing its rows can be partitioned into
Q1U...UQ, and the set {1,...,n} indexing its columns can be partitioned into
S1U...US; in such a way that, for any h € {1,...,q}, A’ € {1,..., s}, the entries
B;j for i € Qp,j € Sy are all equal to the same value, say byp/. In other words,

B is obtained from the matrix B := (bpp) nefr,...qy by suitably duplicating rows
h'e{1,..., s}
and columns. We call B the skeleton of the block matrix B. Obviously, B > 0 if

and only if B > 0 (assuming m = n, ¢ = s); moreover, B € K if and only if
Be IC((IT) (see Lemma 15 below).

Finally, for z € R™, set v(z) := (z2)"_,.

The following observation plays a central role in the proof.

Lemma 5. Let X (i) (i € V) be symmetric matrices satisfying the condition:
X(@) e+ X ()i + X(k)ij >0 foralli,jkeV, (27)

then the polynomial Y-,y x3v(x)T X (i)v(z) = Y, ikeV x?m?m%X(z)ﬂc is a sum
of squares.

Proof. The polynomial 3, ;-\, z7z32 X (i) 5 is equal to

S meys w2ated (X ()i + X (0 + X (i)
+ E (i,llj);ij mfﬁﬂX(l)]J + 2X(j)ij] + Ziev :L'?X(Z)“,

which is a sum of squares, since all coefficients are nonnegative by (27). a

Our strategy will be to construct matrices X ({i1,...,ix}, ) (i € V) satisfying
(27) when {i1, ..., ix } is a stable set of size k < r. We will use them to recursively
decompose M into M — X (i1) — X (i1,42) — ... — X (i1,...,i) in such way that
at the last level £k = r we obtain matrices in IC%O). It turns out that this last
property holds for r < 7, but not for r = 8. This is why we are able to prove the
conjecture only for graphs with stability number at most 8.
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3.1. Defining sets of matrices satisfying the linear condition (27)

Let S be a stable set of cardinality k£, 0 < k < r. We define a set of matrices
X(S,i) (for i € V) indexed by V that satisfy the condition (27). Set mg := 1
and my, := % for k=1,...,r. (Recall that t > r+1 > k.)

For i € S+, X(S,1) is the symmetric matrix whose entry at position (u,v) is
defined as follows:

0 if uorve St
my times { t—k—1 ifu,v € V\ St andu~v
-1 if u,v € V\ S+ and u % v.

For i ¢ S+, X(S,1) is the symmetric matrix whose entry at position (u,v) is
defined as follows:

0 if u,v e St
-l ify e Stveit\ St
ifue St veV\(Stuit)
if u,v €it\ St and u~v
my times ¢ —(t—k) ifu,v €it\ St and u v
t—%&  ifueit\St veV\(Stuit)andu~v
ifueit\ St veV\(Stuit)andu£v
k if u,v € V\ (StUit)and u~v
if u,v € V\ (St Uit) and u % v.

If S = {i1,...,i}, we also denote X(S,1) as X (i1,...,%k,4). When S = ), we
set X (0,i) =: X(¢). Given an ordering (S) = (iy,...,i) of the elements of S,
define the matrix

M((S)) == M — X (i) — X (i1,2) — - .. — X(in,-- -, ik)- (28)

Lemma 6. Given a stable set S of size 0 < k < r, the matrices X(S,i) i € V)
satisfy (27).

Proof. We prove X (S,1)x + X (S, j)xi + X(S,k);; > 0 for all possible combina-
tions of ¢,j and k. Indeed, omitting the scalar factor my, we find:

For i,j,k € S*: 0+ 040 = 0;

— Fori,jeSt k¢ S 04+0+0=0;

For i€ S+, jk¢ S+, jok: (t—k— 1)+ (—tE=1y 4 (—t=k=1y —q;
—Forie St jk¢ St jrk —1+1+1=0;

Fori,j,k¢ St,i~j~k~i:0+0+0=0;

Fori,jk¢ St i jokoti (t—5)+(—t+k)+(t—5%) =t
Fori,jk¢ St ki~ jthk: 5+5—k=0

For i,5,k ¢ S*, i j%k2i0+0+0=0.
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3.2. The role of the matrices X (S,7) and M((S)) in the proof

Our objective is to prove that the matrix M from (26) belongs to the cone K,

i.e., that the polynomial pSVI)( ) = o(z)"v(z)T Mv(z) is a sum of squares, setting

o(z) == Y1, z2. Recall that v(z) = (2?)"_;. The basic idea is to decompose
piv (¢) as

z)" ! Z z2v(x)T X (i)v(z) + o(z)" Z z2v(z)TM((3))v(z). (29)

The first sum is a sum of squares by Lemmas 5 and 6. Each matrix M ((¢)) can
be written as

it Vit

(@) =a-x60 =0 (257 g -g) @

- (8 (t— 1)1 +0AG\,-L) - J> + <(t ) %JJ> S

When r = 1, (30),(31) together with assumption (25) imply that M — X (i) €
K and thus p'} )( ) is a sum of squares; therefore, (10) holds. Assume now
r > 2. The last matrix in (31) is positive semideﬁnite. Suppose our assumption
would be that (t — 1)(I — Ag\;1) —J € IC(T i ll’ then it would be tempting

to conclude from (30) and (31) that M((¢)) € K= (which would then im-
ply that M € IC%T) and thus conclude the proof). This would be correct if
we would work with cones of matrices which are closed under adding a zero
row and column, but this is not the case for the cones KX(") and thus this
argument does not work. To go around this difficulty, we proceed as follows.
If a vertex i is adjacent to all other vertices (i.e., it = V), then M((i)) =
(t —1)J = 0 and thus o(z)" ‘zv(z)TM((i))v(x) is a sum of squares. Oth-
erwise, we further decompose this quantity as o(z)" lz2v(z)T M ((i))v(z) =
o(z)~ ZZJ v z7zFv(z)T M ((7))v(z), which is then equal to

)" 2290 ()T X (i, j)o(z ) ZZI )T M ((i, §))v(z)

(recall the definition of M((i,7)) from (28)). In the next step we further de-
compose the quantity o(z)"~?z7zv(z)" M((4,j))v(z) in a similar manner if
L Ujt #V, etc. Generally, we have the following ‘inclusion-exclusion’ formula,
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for the matrix o(x)"M:

o(z)"M = Za(x)’"_h Z a -xp X(iy,. .., ip)

h=1 i1 €V, ig@if,ip_1 if U U,
inev

+Y oz > a? ol M((i1y ..., in))
h=2

i1 EV, ia&it ..., ih_lgillu...uiﬁ_z

L
h—1

+ Z x221m22,.M((711;,711-))

i€V, in@if, . ip 1 gif U Uik

—

ip€ifU...Ui

irgiU. Uik

(32)
Therefore, in order to show that M € IC%T), it suffices to show that
M((i1, ... ik irs1)) € K for S := {iy,...,ix} stable, (33)
irp1 €8, 1<k<r-—1,
and
M((iy,...,ir)) € KO for {i,...,i,} stable. (34)
For this we need to study the structure of the matrices M ((S5)).
3.3. The structure of the matrices M((S))
Given an ordered stable set (S) = (41,2, ...,1x) with kK = 1,...,r, consider the

matrix M ((S)) from (28) and write
S+ V\ St

_st(als) D)
M@= 5 (pior B1S) ) 59

Lemma 7. The matriz M ((S)) from (85) has the following properties.

(i) Cx(S) is a k x k block matriz whose rows and columns are indexed by the
partition of St into it U (i3 \ i) U... U (i \ {i1,...,ik—1}"). Let Cy be
the skeleton of Cx(S) (Cy is a k X k matriz) and set dy, := Cre € R¥. Then,

k

eTC'ke = Z dk(h) = (mk - ].)(t — k)2
h=1

(i1) The matriz Dy (S) is a k x 1 block matriz, with the same partition as above
for the set St indexing its rows. Given h € {1,...,k}, all entries in the
(h,1)-block take the same value, which is equal to fdt’“T(Z).

(i4i) For u,v € V\ S, the (u,v)-th entry of Ex(S) is equal to tmy,_1 —1 ifu~v
and to —1 if u 2 v.
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Proof. The block structure of the matrices Cy and Dy is determined by the
construction of the matrix M ((S)) in (28) and the shape of the matrices X (.)
defined in Section 3.1. We show the lemma by induction on k& > 1. For k£ = 1,
the matrix M ((S)) = M — X (¢1) has the shape given in (30) and the desired
properties hold. Assume (i),(ii),(iii) hold for a stable set S of size k > 1. Let
i € V'\ St. We show that (i),(ii),(iii) hold for the stable set S U {i}. Let D} (S)
(resp., D{(S)) be the submatrices of Dy (S) whose columns are indexed by it \ S
(resp., V' \ (S Uit)) and with the same row indices as Dy(S). Then Cj1(S, 1)
and Dy41(S,4) have the following block structure:

o Ci(S) Di(8) + =57 my
Cr41(8,1) = <D;C(S) +kt kaT k(tmkq : 1)Jk > 0

where J denotes the all-ones matrix of the appropriate size. By the induction

assumption, the entries in the h-th row of D (S) and D}/(S) are equal to — d"(z)

(for h=1,...,k), and eTdy = eI Cre = (my, — 1)(t — k)%
We first show that Cy1(S, %) satisfies (i). Indeed,

eTCk_,_le:eTC'ke—}—Q( £ d’“ + my, k= 1) +tmp_1 —1
= (mgp —1)(t — k)2 — 2(my, — 1) (¢t — k) +mp(t—k—-1k+mg(t—k)—1
=mpt—k—Dt—(t—k—1)2=(mpy1 — 1)t —k—1)%
We now show that Dy1(S,4) satisfies (ii). Setting dig+1 := Cryie, for h =
1,...,k, we have:

dk(h) t—k—1 dk(h) mp
- _ —(t—k—1 M)
dk_;,_l(h) dk(h) PR + 5 mg (t k ) PR + 5
This yields: —‘i’f“ 1(}? = d’“(z) — 75, which is indeed equal to the entries of
Dy41(S,4) in its h th row. The entries of Dyy1(S,%) in its (k 4+ 1)-th row are
equal to —1 — mp % 5, thus equal to % since

di+1(k+1) = 22:1 ( dt’“(},;) + gmk) +tmp_1 —1
= Oke Ltk lyy by 1= (k1) (14 B

We finally show that Fj1(S,17) satisfies (iii). Indeed, its (u,v)-th entry re-
mains the same as in E(5), i.e., equal to —1, if u 2 v and, for u ~ v, it is equal
totmg_1 — 1+ kmy = (t — k)my, — 1+ kmy, = tmy, — 1. O

Corollary 3. Let S be a stable set of size k=1,...,r. Then,

G((9)) = < D %) J> = 0= C4(S) = 0, (38)
M) =G+ m (4 sy _g) 69

M((S,7)) = G((S)) ifi € S*. (40)
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Proof. By Lemma 7, Cy(S), Dy (S) are block matrices; hence G((S)) = 0 if and

e Ck — 25 Cre
only if its skeleton G := <ﬁeTOk 1

G = 0 < C}, = 0 since the last column of G is a linear combination of the first
k columns; thus (38) holds. Relations (39), (40) follow using the definitions. O

> is positive semidefinite. Now,

Therefore, (33), (34) hold (and thus M € IC%T)) if we can show that Ci(S) > 0
for any stable set S of size k < r. As C(5) is a block matrix, it suffices to show
that its skeleton CY} is positive semidefinite. Moreover, it suffices to show that
C; » 0 since, in view of (36), the matrices C}, (1 < k < r) are in fact the leading
principal submatrices of C,.

3.4. The matriz C,. is positive semidefinite for r < min(a(G) — 1, 6)

Recall that the entries of . depend on the parameter ¢; thus one may alterna-
tively write C,. as C,.(t). Our task is now to show that C,.(t) = 0 forallt > r+1
and r < min(a(G) — 1,6). We achieve this by proving that

detCr(t) >0fort >r+1, k=1,...,r. (41)

The proof of (41) relies on establishing a recurrence relationship among the
determinants of Cj(t). We need the following lemma.

Lemma 8. Assume Cy1 is nonsingular for k > 1. Then,

2 det Cj,
(t — k)2 det Cpy1”

e (Cir) te= (42)

. L Ck x -1 . A Yy
Proof. Write Cr41 := <$T a> , (Cryr) ti= (yT b Then,

(a) ACy+yz" =T; (b) Cry+br =0; (c) Az+ay =0; (d) z7y+ab=1. (43)

(
By Lemma 7 and (36), a = tmy_1 — 1 = (t — k)my — 1 and = = pre — 2 Cre,
k—1

setting pp, 1= my, . Moreover, " Cre = (my — 1)(t — k)?, implying

T — ko — (t— B) e — 1), % ba=pp (42 (44)
= RPk k A = Pk ik .

Taking the inner product of relation (c) with the all-ones vector and using (43)(a)
and (44), we find:

0=e"Az + ae”y = e" A(pre — 75 Cre) + ae’y
T
= preT Ae — A" (I — yaT)e + ae’y = pre’ Ae — % +eTy(25 +a)
= pr(e" Ae + 2¢"y) + L (pre"y — 1);

that is,

T T k 1 T
Ae+2 =—|(—- . 4
e det2ely = _—p " ey (45)
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Using relations (43)(d),(b) and (44), we find:

1=2a"y+ab= (pre — 25 Cre)’y + ab
= preTy + ez + ab = prey + bpr (725 + 2);

that is,

1 k
Ty=——b(—+2). 46
y= o (46)

Relations (45) and (46) imply that e (Cri1)7te = el Ae + 2Ty + b = b&.

det Cj,

By the cofactor rule, b = 3+ P

, and the lemma, follows. O

Corollary 4. Let k > 2 and assume that Cy(t) is nonsingular. Then,

det Chan(t) = 212 det Oy (t) — — PR det Gy (1) (47)
T R F (t—k+1)2 ot
after setting py, = my, t=E=1
__1
Proof. Setting P := (I t—ke>, we find that PTCy P = ( CkT pke>’ after
0 1 pre’ [
setting u := mk%. Set u := (Cy) ‘e and let vy,...,v541 denote the

columns of PTCkHP. Then, vgy1 — pk(Zle u;v;) has all zero entries except
the last (k+ 1)-th entry equal to u — pi(zle ;) = mk% —piel (Cr) e
Therefore, we can conclude that

2t

det Cy11 = det PTCy 1 P = <t f’z: - pieT(Ck)_le> det C. (48)
Relation (47) now follows directly from Lemma 8 and (48). O
Lemma 9. Consider the rational functions fi(t) =t —1, fa(t) := %
and, forh=2,...,k,

2tpn i,
t) = t) — ————=fno1(t
frs1(t) tfhfh( ) G —h+ l)2fh 1(t),
and the polynomials g1 (t) := 1, g2(t) := 3t — 2 and, for h=2,...,k,
gnt1(t) = en(t = h)gn(t) — t(t = h = 1)gn-1(t),
t—h—1

with ep, = 1 if h is even and €p, = 4 otherwise. As before, pp := mp—>—.

. (") —h
(i) For h =2,...,k+1, fa(t) = T3] (t_tl)h(t—2)’(lt*1--?(t—h+1)2gh(t)'

(ii) For 1 < k <6, gi(t) > 0 for all t > k. Moreover, g7(8) > 0.
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Proof. The proof for (i) is by induction on k. For (ii), setting G (¢) := gi(t + k),
one has to show that Gy (t) > 0 for ¢ > 0, k < 6. This follows from the fact that
Ga(t) = 4 +3t, G3(t) = T+ Tt + 22, G4(t) = 64 + 68t + 30t2 + 53, G5(t) =
167 + 165¢ + 84t% + 25¢% + 3t*, Gg(t) = 1776 + 1296t + 540t% + 248t3 + 70t* + 7¢°.
Moreover, g7(8) = 1024. O

We can now conclude the proof of Theorem 2. Let ¢ > r + 1. Consider
first the case when 1 < r < min(a(G) — 1,6). We show that (41) holds using
Corollary 4 and Lemma 9. First note that det Cj(t) = f(¢) for h = 1,2 (direct
verification). Let k € {1,...,r}. If K = 1,2, then det Cy(t) > 0. Assume k& > 3
and Cr_1(t) = 0. By Corollary 4, det Cy(t),...,det Ci(t) are related via (47);
that is, det Cp(t) = fn(t) for h =1,...,k. We now deduce from Lemma 9 that
det Ck(t) > 0. This shows that C,(¢) > 0 for ¢ > r + 1, which concludes the
proof of the first part of Theorem 2.

Consider now the case when r = 7 = a(G) — 1. We have to show that the
matrix M = t(I + Ag) — J from (26) with ¢ := a(G) = 8 belongs to K. As
before we are left with the task of proving that det C4(t),...,det C7(¢) > 0 for
t = 8, which follows from the assertions g;(8),...,g6(8),g7(8) > 0 in Lemma 9.
This concludes the proof of Theorem 2.

Note that the same argument cannot be used for proving Conjecture 1 in the
case a(G) =9, since ¢1(9), ..., 96(9) > 0 while g7(9) < 0 which implies that the
matrix C7(9) is not positive semidefinite.

4. Proof of Theorem 3

The proof is along the same lines as in the preceding section. Set

— 190 (L
t: max w; + Yy (G\i™).

For i € V, define w¥ := (w;);cy\;, the vector of node weights restricted to the
graph G\it. The matrix P; := (t — w;)(Diag(w®) + WaAgit) — w® (w)T
belongs to the cone KI(S)\FI (since Wg\;+ < Wg). Define a := (1/w;)jev and,
for i € V, let al¥ be the restriction of a to G\it. Moreover, set Bg\iv =
WgDiag(a(i))AG\iLDiag(a(i)) and M; := Diag(a®)P;Diag(a(?). Then,

M; = (t — w;)(Diag(a®) + Bey;1) — J € K1

Our goal is to show that P := t(Diag(w) + WgAg) — wwT € KV equivalently,
setting M := Diag(a)PDiag(a), we have to show that

the polynomial p(z) := (Z a;iz?)v(z)T Mo(z) is a SOS.
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We follow the same strategy as in the proof of Theorem 2: We introduce a set of
symmetric matrices X (7) (i € V) satisfying (27). Namely, given ¢ € V, all entries
of X (7) are equal to 0, except
X(l)” = —%aj(ai — aj)t, X(Z)JJ = a,-(aj — a,-)t fOI‘j € N(Z),
X (i)jk = —asa;aWgt for j,k € N(i), j #k,
X(i)jk = aiajakWGt for j € N(Z), ke V\i']‘, j~Ek.
Then, X (¢)jx + X (j)ir + X (k);; > 0 since it takes the values:
— Fori=j=Fk:0;
For i = j ~ k: 2(—1ay(a; — ax)t) + ar(a; — ay)t = 0;
For i = j # k: 2:04+0=0;
— For i ~ j ~ k ~ i: 0+04+0=0;
For ¢ > j 2% k ~i: —a;ajarWet + a;ajaWet + aaja,Wat = a;a;a,Wat;
— For i % j ~ k % i: 0+0+0=0;
For i 2 j # k % i: 0+04-0=0.

One can decompose the polynomial p(z) as

Z 22v(z)T (a:M — X (i))v(z) + Z 22v(z)T X (i)v(x).

The second summation is a SOS by Lemma 5. To conclude the proof, it suffices
to show that the matrix a;M — X (i) belongs to K. For this, note that the
matrix A := w;(a;M — X (4)) = M — w; X (i) can be decomposed as

 ((tai—1)T —J NO\ (0 0
A‘( —7 =) o) T o te

ta; ta;

where N > 0, which shows that A € IC&O) and concludes the proof of Theorem
3. (When all weights are equal to 1, N = 0 and we find the decomposition from
(30), (31).) Indeed, one can verify that

Ajj:tai—l fOI‘jEZ'L

A =tWgaa; — 1+ %(ai —aj)t for j € N(3)
Ajk:tWGajak—l fOI‘j#kGN(@)
Ajp=-1 forjeit, ke V\it
Ajj:tajfl fOI‘jEV\iJ'

A =tWgajar — 1 forj;ék:EV\iL, j~k
Aj = -1 for j,k € V\it, j#k.

The principal submatrix of A indexed by V'\ it is thus equal to —1—J+ % M;.

ta;—1 ta;—1
v Ggajar — 1 > ta; — 1 si G > % = Y% Ripally, we have
Moreover, tWeajar — 1 > ta; — 1 since W > 2t i ,
J 7
a?+2a$—aiaj _ w?+2w?—wiwj.

tWgaa; — 1+ %(ai —aj)t > ta; — 1 since Wg >

2, - )
2a3a; 2w;

2 2

w; 2w —w;w; .

2;,, . Swjgwmaxg ”Ganda lfwiij,then
Fi

< wi(witw;) S (wmax)2 _ WG- 0

ij - 211)j Wmin

indeed, if w; < wj, then

2 2
w; +2wj —w;w;
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5. Proof of Theorem 4

Obviously, las)) = 9(O)(G). In view of Lemma 2, we have to show that las(") <
9(=1)(@G) for any positive integer r. For this, let 2 € RP>»(V) be feasible for (2),
ie,zg =121 >0 (|I| =r+1), z;; =0 (ij € E), and M,(z) = 0. Then, z; =0
for any I € P,.(V) containing an edge. We may assume that >, z; > 0. For
p=1,...,r+1, define

—1)!
ép = Z (p 5' ) ZS(B).

BeI(n,p-1)

Then, ¢ = 1,4, > b = > i ,x; > 0for p > 2. For p = 1,...,7r, define
Y = (Ys)scr(n,2p+2) as follows: ys = 0 if Spqa(d) # 0, ys := i:vs((;) otherwise
(then [S(d)| <p+1<r+1).

Lemma 10. N,1;(y) = 0.

Proof. For I C V, set O := {8 € I(n,p+ 1) | Soqa(B) = I} and N; :=
(yp+p')p,pco,- Then, N,11(y) is a block diagonal matrix with the matrices Ny
(I C V) as diagonal blocks. As £, N; = (zs(s)us(s’))s,8'c0r, N1 = 0since it is ob-
tained from a principal submatrix of M,.(x) by duplicating certain rows/columns
(unless |I| = r + 1 in which case Ny is the 1 x 1 matrix with entry z;; > 0,
implying again Ny > 0). O

Therefore, the matrix Z(p) := C(y) = Z'yel(n,pfl) (p;!l)!NV(y) belongs to

the cone C ™). Moreover, Z(p)ij = 01if ij € E. Define the matrix

Z(p) = : 2(0) : (49)

Lemma 11. Z(p) > 0.

Proof. The matrix:

TS(y) Y2y+der -+ Y2vy+de,
= (p—1)! | Y2y+des
6pZ(p) = 0 : .
vy€I(n,p—1) v ' (y27+26j+25k )j,k:l
Y2~y+4e,,
TS(y)  TS(y+er) - - TS(v+en)

_ Z (p—1)! | TS(y+er)
= R : §
y€EI(n,p—1) v : (xs('Y"l‘ej"rek))j,k:l
xS('Y""en)

is positive semidefinite, since the matrices in the above summation are principal
submatrices of M, (z). O
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Lemma 12. Tr(JZ(p)) = % and Tr(Z(p)) = ZZI‘

Proof. As Z(p) =C(y) € ¢V, one can use (15) and (16). Namely,

+1)! 1 +1)! 0
Tr(JZ(p)) = (p+1! = Y (p+1) 25 = 22,
(n

|
B! 4y
Moreover,

vz - Y Py 6 -6

Bel(n,p+1)
1 = (p—1)!
=% Z Z il Bi(B: — Dz s(p)-
i=1 gel(n,p+1)
We can restrict the inner summation to 8 with 8; > 2. Then, § := 8 — e; has
the same support as 8 and

- 1 ! 1 (p— 1) ¢
Z Z ‘5 iTs@) = o Z 5 |0l@ses) = %ﬂ‘
: p

i=1 §€I(n,p) P ser(n,p)

Proof. By Lemma 11, Z(p) > 0, implying Z(p) — diag(Z(p))diag(Z(p))T
0. Therefore, eT(Z(p) — diag(Z(p))diag(Z(p))T)e > 0, yielding Tr(JZ(p))
(Tr(Z(p)))?. The result now follows using Lemma 12.

alviy

28 1 12

From Lemmas 12 and 13, we deduce that >, Z(r)i = 5 > 2
o x;. The vector z := diag(Z(r)) is feasible for the program (17) defining
the parameter 9"~V (G). Hence, 9"V (@) > Sz =Tr(Z(r) > >, .

This shows that 9" ~1(G) > las™(Q).

6. Concluding remarks
6.1. Some variations of the bound 9" (Q)

Given a polynomial ¢ € R[zy,...,z,], define the even polynomial §(z) :=
q(x?,...,22); a polynomial being even when each variable occurs with an even
degree in any nonzero term. One can express the condition that ¢ be a SOS

directly in terms of the polynomial q.

Proposition 2. ([26]) Given a homogeneous polynomial q of degree d, the as-
sociated even polynomial G(z) := q(x3,...,22) is a SOS if and only if the poly-
nomial ¢ admits a decomposition:

q(z) = > or(z) [ [ = (50)
IC{1,...,n} iel

|1|1<d, |I|=d (mod 2)

where o is a form of degree d — |I| which is SOS.
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The condition (50) can obviously be reformulated as

q(z) = > oz’ (51)

Bez™ |B|<d,|B|=d mod 2

where o3 is a form of degree d — || which is SOS. As the polynomial pg\? from

(5) is an even polynomial, we can apply the above criterion for characterizing
whether an n X n matrix M belongs to the cone IC%T). Namely, M € ICSLT) if and

only if
<Z am) eT Mz = Z opz? (52)
i=1 BELT,|B|<r+2,|f|=r+2 mod 2
where o3 is a form of degree r + 2 — |3| which is SOS.
Pefia, Vera and Zuluaga [17] consider the set Qg) consisting of the matrices
M for which such a decomposition (52) exists involving only the two highest
order terms with |3| = r 4+ 2, r. Therefore, ng) is a subcone of the cone IC,(f)
with equality ng) = IC%T) for r = 0,1, and the bound:

V") (G) := min t such that t(I + Ag) —J € Q") (53)

satisfies:
a(@) < 97(G) < v(@).

For r < (@) — 1, Peiia, Vera and Zuluaga [17] show that

(r) (0) L
VIO ST sy s i OV (59
for r = 1,2,3, and for r = 4,5 if a(G) < 6, which implies v(")(G) = a(G) if
a(@G) < 6, thus proving Conjecture 1 for graphs with a(G) < 6.

For r < a(G) — 1, our proof of Theorem 2 shows in fact that relation (54)
holds for » < 6, and for r = 7 if a(G) = 8. Indeed, the decomposition (32)
shows that the matrix M from (26) belongs to the cone QSLT). This implies
v(@@)-D(@) = o(G) if a(G) < 8.

It is known (see [5]) that, for the circuit Cs on 5 nodes, a(Cs) = 2 =
9N (Cs) < 9O (C5). Pena, Vera and Zuluaga [17] construct graphs Gg, G11,
G14 with, respectively, 5,8,11,14 nodes, that satisfy: «(G,) = 93)(G,) for
n =28§,11,14, Oz(Gg) =3< V(l)(Gg), OZ(GH) =4< I/(z)(GH), and a(G14) =5<
v3) (G14). Therefore, the inclusion QSLT) C IC%T) is strict for r = 2.

Let us mention a consequence of the strict inclusion Qg) C IC,(f) for the
description of the cone K?. The following sufficient condition for membership

in ICSLT) has already been implicitly mentioned earlier in the paper (e.g., in Section
3.2).

Lemma 14. Let M be a symmetric n X n matriz and r > 1 an integer. If there
exist matrices X (1),...,X (n) satisfying (27) and for which M — X (i) € Ky
(fori=1,...,n), then M € K.
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Proof. Directly from the decomposition (29). O

Forr =1, ICS) = Q%l) and the implication of Lemma 14 holds as an equivalence,
which gives the characterization of the cone ICS) from [1,16]. For r = 2 however,
the reverse implication does not hold since QSLQ) is a strict subset of IC%Q).

In order to prove relation (22) for any r and thus Conjecture 1, one should
probably obtain a decomposition (52) for the polynomial (3°, z;)"zT Mz involv-
ing also terms with |3| < r (while our proof in this paper involves only terms
with |8] =7, 7+ 2).

Note finally that one can formulate the following sharpening of the bound
9 (G):

Q(T)(G) = Htl.lel%Q t subject to tI + sAg — J € ]CSLT) (55)

whose dual formulation reads:
max Tr(JX) subject to Tr(X) =1, Tr(AcX) =0, X € C{") = (K{")* (56)

and is obtained by splitting the constraint Tr((I + Ag)X) =1 into Tr(X) =1
and Tr(AgX) = 0. The bounds 9" (G) (from (17)), ¥ (G) (from (55)) and
9 (@) (from (7), (11)) satisfy:

I7(@) < 87(GQ) <9(@).

The second inequality is obvious. For the first one take a matrix X that cor-

fsg(;gds to x feasible for (17). Then % is feasible for (56) and TTTT(EI;()) =

= > > " @ since X —za’ = 0.

i=1 Ti
For r = 0, the three bounds coincide ([5], see also Lemma 4). It is not clear
whether they coincide for r > 1.

6.2. Some variations of Conjecture 1
The next lemma shows that a block matrix belongs to the cone () if and only
if its skeleton does. Combined with arguments in our proof of Theorem 2, it will

enable us to derive Proposition 3 below.

Lemma 15. Consider the matrices:

Abb
M:(ﬁi), M =|b"cc
bl ce

with respective sizes n and n + 1. Then, M € K = M e ICS;Zl.
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Proof. Assume that M € K. Then, the polynomial (337, y;)"y” My (in the

variables y1,...,y,) has a decomposition of the form (52). In view of the shape
of the matrix M’, the polynomial (E:jll z;)"2T M'z (in the variables x1, . . ., Ty,

Ty+1) can be written as (i, i)y’ My, after setting y; = x; for i < n —1
and y,, = T, + T, 1. Therefore, (E?jll z;)"2T M’z also admits a decomposition

of the form (52), which shows that M’ € ICT(;)_I. The reverse implication is easy
(simply set the additional variable to zero). O

Proposition 3. For a graph G = (V, E) and an integer r > 1, we have:

90(G) < max 9T7V(G\N(i)- (57)

Proof. Set t := max;cy 9" (G\N(i)). Then, for any i € V, the matrix
i Vit

i t—1 el
U+ Ag\wy) = = V\it < —e t(I+Ag\iL)J>

belongs to the cone K\((/Kjlv)(i)r Lemma 15 implies that the matrix

it Vit

N (t—1)J -7
M—X(Z)—V\iJ_< .y t(I‘i—AG\ii)‘])

from (30) belongs to K5 In view of (29), this implies that M € K. |

We can now formulate some strengthenings of Conjecture 1.

Conjecture 2. For any r > 1,

9(@) <7+ 9O (G\SH). (58)

max
SCV, S stable, |S|=r

Conjecture 3. For any r > 1,

9(G) <1+ max Ir=D(G\it). (59)

Conjecture 4. If i is an isolated node in G, i.e., N(i) = (), then for any r > 0,
I(G) <9 (G\i) + 1. (60)
Lemma 16. Conjecture 4 = Conjecture 3 => Conjecture 2 =—> Conjecture 1.

Proof. The implication: Conj. 4 = Conj. 3 follows using Proposition 3, and the
implications: Conj. 3 = Conj. 2 = Conj. 1 are obvious.
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Hence the whole question boils down to showing that the parameter ﬂ(r)(.)
behaves well on a graph with an isolated node. Note that the condition (60) is a
natural requirement which holds, e.g., for the parameter a(.) in place of 9(")(.), or
for the parameter las(")(.) (easy to check). A reason why the parameter las(")(.)
is much easier to handle than the new bound ¥(")(.) might lie in the fact that
the formulation of the Lasserre bound incorporates in an explicit way the 0/1
condition, while the formulation of ¥(")(.) does not.

Theorem 2 claims that Conjecture 2 holds for r < min(6, (G)—1). Forr =1
Conjectures 2 and 3 are identical and hold; recall (10) which was first proved
by de Klerk and Pasechnik [5]. Conjecture 4 is true for » = 0. Indeed set ¢ :=
1+9O(G\i). Then (t—1)(I+Ag\;)—J € Kgoll and M :=t(I+ Ag)—J can be
decomposed as in (30),(31) (with i+ = {i} as i is isolated). The first matrix in this
decomposition (31) belongs to Kt (since adding a zero row/column to a matrix
in ICS)El yields a matrix in ICgLO)), the second matrix is positive semidefinite,

which shows M € K and thus 9O(G) < t. Conjecture 4 appears to fail
for r = 1. Indeed, J. Pefia, J Vera, and L. Zuluaga (personal communication)
verified numerically that ¢(")(G) > 11 while 9(V)(G\i) = 10, where G is the
graph obtained by adding 9 isolated nodes to the circuit Cs and i is one of the
isolated nodes.

6.3. Another interpretation of the bound 9" (G)

We finally observe that the dual formulation (11) for ¥(")(G) can be interpreted
as the Shor relaxation of a polynomial optimization program giving yet another
formulation of a(G). For a graph G = (V, E) and an integer r > 0, consider the
program:

42 r
max (Z x?) subject to (Z xf) v(x)T (I + Ag)v(z) = 1. (61)

eV eV
Lemma 17. For any integer r > 0, a(G) is equal to the optimum value of (61).

Proof. Let p denote the maximum value of (61). Given a stable set S C V,
r4+1

the vector z := tx° where t := \S|_2<:FZ>, is feasible for (61) with objective

value |S|, which shows a(G) < p. Conversely, if = is feasible for (61), then

v(z)T ((G)(I+Ag)—J)v(x) > 0, since the matrix a(G)(I+Ag)—J is copositive.

This implies that 4 < a(G). O

Following Lasserre [7], one can define a hierarchy of relaxations for the poly-
nomial optimization problem (61). As the degree of the polynomials involved in
(61) is 27 + 4, the Shor relaxation of the problem (i.e., the relaxation of lowest
order in the hierarchy; see [7] for details) reads:

max D gel(nr+2) %y%f
subject to N,42(y) =0 (62)

Do Ber(nr+2) ;T!!(ﬂT(I + Ag)B — BTe)yss = 1.
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(Recall the definition of the matrix N,;2(y) from Definition 1.) In view of (9)
and (15), the objective function reads: Tr(J C(y)) and the constraint reads:
Tr((I+ Ag) C(y)) = 1. Therefore, the program (62) is identical to the program
(11) giving the dual formulation of 9(")(G).
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