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h are based on relaxing nonnegativityof a polynomial by requiring the existen
e of a sum of squares de
omposition. The hierar
hy ofLasserre is known to 
onverge in �(G) steps as it re�nes the hierar
hy of Lov�asz and S
hrijver,and de Klerk and Pase
hnik 
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hy also �nds the stability numberafter �(G) steps. We prove this 
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1. Introdu
tionSemide�nite programming plays an essential role for 
onstru
ting good relax-ations for hard 
ombinatorial optimization problems, in parti
ular, for the max-imum stable set problem whi
h will be 
onsidered in the present paper (see, e.g.,[11℄ for a detailed a

ount). Lov�asz [12℄ introdu
ed the theta number #(G) asan upper bound for the stability number �(G) of a graph G = (V;E). The thetanumber 
an be formulated via the semide�nite program:#(G) := max Tr(JX) s.t. Tr(X) = 1; Xij = 0 (ij 2 E); X � 0; (1)and thus 
omputed eÆ
iently (to any arbitrary pre
ision) using, e.g., interiorpoint methods (
f. [2,25℄). It is also known that #(G) 
oin
ides with �(G) whenG is a perfe
t graph (see [6℄). Lov�asz and S
hrijver [13℄ 
onstru
t a hierar
hyof semide�nite relaxations for the stable set polytope of G by a sequen
e oflift-and-proje
t operations; their pro
edure is �nite and it �nds the stable setpolytope in at most �(G) steps.Two other hierar
hies of semide�nite bounds for the stability number havebeen proposed by Lasserre [7,8℄ and by de Klerk and Pase
hnik [5℄. They usethe following notions about sums of squares of polynomials. Given a polynomialf 2 R [x1 ; :::; xn℄, one says that f is a sum of squares of polynomials if it 
an beN. Gvozdenovi�
, M. Laurent: Centrum voor Wiskunde en Informati
a, Kruislaan 413, 1098 SJAmsterdam, The Netherlands



2 Neboj�sa Gvozdenovi�
, Monique Laurentwritten as f = g21 + g22 + :::+ g2m, where g1,..., gm 2 R [x1 ; :::; xn℄. Obviously, f isnonnegative on Rn if it 
an be written as a sum of squares of polynomials. Thehierar
hies of Lasserre and of de Klerk and Pase
hnik are based on the followingparadigm: While testing nonnegativity of a polynomial is a hard problem, one
an test eÆ
iently whether a polynomial 
an be written as a sum of squares ofpolynomials via semide�nite programming. As was already proved by Hilbert in1888 not every nonnegative multivariate polynomial 
an be written as a sum ofsquares (see Rezni
k [19℄ for a ni
e survey on this topi
). However, some repre-sentation theorems have been proved ensuring the existen
e of 
ertain sums ofsquares de
ompositions under some assumption, like positivity of the polynomialon a 
ompa
t basi
 
losed semi-algebrai
 set (see, e.g., [24℄ for an exposition ofsu
h results). An early su
h result is due to P�olya [18℄ who showed that, if p(x)is a homogeneous polynomial whi
h is positive on Rn+ nf0g, then (Pni=1 xi)rp(x)has only nonnegative 
oeÆ
ients (and thus (Pni=1 x2i )rp(x21; : : : ; x2n) is a sum ofsquares) for some suÆ
iently large integer r.The starting point for Lasserre's 
onstru
tion is that the stability number�(G) of a graph G = (V;E) 
an be expressed as the smallest s
alar t for whi
hthe polynomial t�Pi2V xi is nonnegative on the set fx 2 RV j xixj = 0 (ij 2E); x2i = xi (i 2 V )g. Requiring the weaker 
ondition that the polynomialt �Pi2V xi 
an be written as a sum of squares modulo the ideal generated byxixj (ij 2 E) and x2i � xi (i 2 V ) with given degree bounds, yields a hierar
hyof semide�nite upper bounds for �(G). The dual approa
h (in terms of momentmatri
es) yields the hierar
hy of Lasserre [7,8℄ of semide�nite relaxations for thestable set polytope. This hierar
hy re�nes the hierar
hy of Lov�asz and S
hrijver(see [9℄) and thus it also �nds the stable set polytope in �(G) steps.By a result of Motzkin and Straus [15℄, one may alternatively express �(G) asthe smallest s
alar t for whi
h the matrix M := t(I+AG)�J (with entries t�1on the diagonal and at positions 
orresponding to edges and �1 elsewhere) is
opositive, meaning that the polynomial pM (x) :=Pi;j2V x2ix2jMij is nonnega-tive on Rn . Following Parrilo [16℄, de Klerk and Pase
hnik [5℄ propose to relax thenonnegativity 
ondition on pM (x) and to require instead that (Pi2V x2i )rpM (x)be a sum of squares for some integer r � 0. In this way they de�ne a hierar-
hy of bounds #(r)(G) (for r � 0). The 
onvergen
e of these bounds to �(G)is guaranteed by the above mentioned result of P�olya. The �rst bound in thehierar
hy 
oin
ides with the strengthening #0(G) of the theta number introdu
edby M
Elie
e, Rodemi
h and Rumsey [14℄ and S
hrijver [21℄ (see (8) below). Itis however not 
lear how the next bounds relate to the bounds provided by the
onstru
tion of Lasserre. It is 
onje
tured in [5℄ that the stability number isfound after �(G) steps. In this paper we study this 
onje
ture and develop aproof te
hnique whi
h enables us to show that the 
onje
ture holds for graphswith stability number at most 8. Moreover, we show that the hierar
hy of boundsof Lasserre (enhan
ed by adding some nonnegativity 
onstraint) re�nes the hi-erar
hy of bounds of de Klerk and Pase
hnik, answering another open questionof [5℄.The paper is organized as follows. In Se
tion 2, we �rst re
all some de�nitionsand results related to the hierar
hies of bounds of Lasserre and of de Klerk and



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 3Pase
hnik. Next we introdu
e a dual formulation for the latter bounds, as well asa weighted analogue and new semide�nite relaxations of the stable set polytope.We 
omplete the se
tion with our main results. The proofs are delayed till Se
tion3, where we prove the 
onje
ture for graphs with stability number at most 8,till Se
tion 4, where we prove a partial result for the weighted analogue of the
onje
ture, and till Se
tion 5, where we prove the relation between the hierar
hiesof Lasserre and of de Klerk and Pase
hnik. Se
tion 6 
ontains some variationsand new interpretations of the bounds #(r)(G). Finally some variations of themain 
onje
ture about the 
onvergen
e to the stability number in �(G) stepsare given.Some notation. Throughout, G = (V;E) denotes a graph with node setV = f1; : : : ; ng. For a node i 2 V , N(i) denotes the set of nodes adja
ent toi and we set i? := i [ N(i). Similarly for S � V , N(S) denotes the set ofnodes adja
ent to some node in S and we set S? := S [ N(S). For two nodesu; v 2 V , write u ' v if u = v or uv 2 E, and u 6' v otherwise. Let �(G)denote the stability number of G, i.e., the largest 
ardinality of a stable setin G. The matrix AG denotes the adja
en
y matrix of G, i.e., AG is the 0=1matrix indexed by V whose (i; j)-th entry is 1 when ij 2 E. All matri
es areassumed to be symmetri
 and I, J , e, ei (i = 1; : : : ; n) denote, respe
tively, theidentity matrix, the all-ones matrix, the all-ones ve
tor, and the standard unitve
tors of suitable sizes. A matrix M is 
opositive if xTMx � 0 for all x 2 Rn+and Cn denotes the 
opositive 
one, 
onsisting of the n� n 
opositive matri
es.For a symmetri
 matrix M , we write M � 0 if all entries are nonnegative, andM � 0 if M is positive semide�nite. The tra
e of M is denoted by Tr(M), whilediag(M) denotes the ve
tor 
ontaining the diagonal entries ofM . Given a ve
torv 2 Rn , we let Diag(v) denote the diagonal matrix whose diagonal entries arethe 
omponents of v. Next, 1v denotes the ve
tor with entries 1vi (i = 1; :::; n). Fora sequen
e � 2 Zn+ , we set j�j :=Pni=1 �i, �! := �1! � � ��n!, S(�) := fi j �i 6= 0g,and Sodd(�) := fi j �i is oddg. One says that � is even when Sodd(�) = ;. Wealso set I(n; r) := f� 2 Zn+ j j�j = rg and Pr(V ) := fS � V j jSj � rg. Forx 2 Rn and � 2 I(n; r) we write x� := �ni=1x�ii . A polynomial p 2 R [x1 ; : : : ; xn℄of the form p(x) = P�2I(n;r) p�x� is said to be homogeneous of degree r, andwe let p = (p�) 2 R I(n;r) denote the ve
tor 
ontaining its 
oeÆ
ients. For a
one of symmetri
 matri
es K � Rn�n , K� denote the dual 
one de�ned byK� = fM 2 Rn�n jTr(MN) � 0; 8N 2 Kg. It is well known that the 
oneof positive semide�nite matri
es is self-dual (i.e., 
oin
ides with its dual 
one),while the dual 
one of the 
opositive 
one Cn is the 
one of 
ompletely positivematri
es, a matrix M being 
ompletely positive if M � 0 and M � 0.
2. Semide�nite bounds for the stability number2.1. The semide�nite bounds of LasserreGiven an integer r � 1 and a ve
tor x = (xI)I2P2r(V ), 
onsider the matrix:Mr(x) := (xI[J )I;J2Pr(V )
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, Monique Laurentknown as the moment matrix of x of order r. By setting:las(r)(G) := maxPi2V xi s.t. Mr(x) � 0; xI � 0 (I � V; jIj = r + 1);x; = 1; xij = 0 (ij 2 E) (2)one obtains a hierar
hy of semide�nite bounds for the stability number, knownas Lasserre's hierar
hy [8,9℄. Indeed, if S is a stable set, the ve
tor x 2 RP2r (V )with xI = 1 if I � S and xI = 0 otherwise, is feasible for (2) with obje
tive valuejSj, showing �(G) � las(r)(G). For any �xed r, the parameter las(r)(G) 
an be
omputed in polynomial time (to an arbitrary pre
ision) sin
e the semide�niteprogram (2) involves matri
es of size O(nr) with O(n2r) variables.We note that las(1)(G) = #0(G) (see (8) below for the de�nition of #0(G)).Equality �(G) = las(r)(G) holds for r � �(G). This result remains valid if weremove the nonnegativity 
onstraint xI � 0 (jIj = r + 1) in (2) ([9℄). However,with this nonnegativity 
ondition, we will be able to 
ompare the hierar
hies ofLasserre and of de Klerk and Pase
hnik (see Theorem 4 below1). Note that the
onditions xI � 0 for jIj � r are implied by Mr(x) � 0.
2.2. The semide�nite bounds of de Klerk and Pase
hnikThe starting point in [5℄ is the following formulation for �(G) found by Motzkinand Straus [15℄:1�(G) = min xT (I +AG)x subje
t to x � 0; nXi=1 xi = 1: (3)
In other words, �(G) = min t subje
t to t(I +AG)� J 2 Cn: (4)Therefore, upper bounds for �(G) 
an be obtained by repla
ing the 
opositive
one Cn in program (4) by a smaller sub
one of it. Following [5,16℄, given aninteger r � 0, K(r)n denotes the 
one of n�nmatri
esM for whi
h the polynomial

p(r)M (x) :=  nXi=1 x2i!r0� nXi;j=1Mijx2ix2j1A (5)

an be written as a sum of squares of polynomials. Parrilo [16℄ shows thatK(0)n = fP +N j P � 0; N � 0g: (6)1 Theorem 4 asserts that las(r)(G) � #(r�1)(G) (see (7) for the de�nition of #(r)(G)). Ifwe omit the 
ondition xI � 0 (jIj = r + 1) in (2), for r = 1 we would have las(1)(G) =#(G) � #0(G) = #(0)(G). However there exist graphs with #(G) > #0(G) (see, e.g., [22, vol. B,p. 1173℄), whi
h shows that the statement of Theorem 4 is wrong without the nonnegativity
ondition.
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hara
terization of K(1)n 
an be found in [1,16℄ (see also Lemma 14 and the
omment thereafter). Obviously, K(r)n � K(r+1)n � : : : � Cn. The result of P�olyamentioned in the Introdu
tion shows that the interior of the 
one Cn is 
ontainedin Sr�0K(r)n : Setting#(r)(G) := min t subje
t to t(I + AG)� J 2 K(r)n ; (7)one obtains a hierar
hy of upper bounds for �(G). The �rst bound #(0)(G) isequal to#0(G) = max Tr(JX) s.t. Tr(X) = 1; Xij = 0 (ij 2 E); X � 0; X � 0 (8)(see [5℄). Thus, #(0)(G) � #(G), sin
e program (8) without the nonnegativity
ondition is the formulation (1) of the theta number.The problem of �nding a sum of squares de
omposition for a polynomial ofdegree 2d 
an be formulated as a semide�nite program involving matri
es ofsize O(nd) and O(n2d) variables (see, e.g., [16℄). Therefore, for �xed r, program(7) 
an be reformulated as a semide�nite program of polynomial size and thus#(r)(G) 
an be 
omputed in polynomial time (to any pre
ision).Let us observe that, for the matrix M := �(I + AG) � J , the polynomialp(r)M (x) has a negative 
oeÆ
ient for any r � 0 when � = �(G) � 2. To see it,re
all from [1, p. 169, Thm. 2.2℄ thatp(r)M (x) = X�2I(n;r+2) r!�!
�x2� ; where 
� := �TM� � �Tdiag(M): (9)
If S(�) is a stable set, then 
� = �Pi �i(�i�1)�(r+1)(r+2). Write r+2 = q�+swith q; s 2 Z+ , 0 � s < �; then 
� < 0 for � = (q+ 1; : : : ; q + 1; q; : : : ; q; 0; : : : 0)with s entries equal to q + 1, � � s entries equal to q, and S(�) being a stableset.On the other hand the matrix M := �(1 + �)(I + AG) � J with � = �(G)and � = ��1�2��+1 , belongs to the 
one K(r)n for r � �2 sin
e all the 
oeÆ
ients ofthe polynomial p(r)M (x) are nonnegative [5℄. Indeed, by (9), for � 2 I(n; r + 2),the 
oeÆ
ient 
� is equal to�TM� � �Tdiag(M) � (r + 2)2minx2� xTMx� (r + 2)(�(1 + �)� 1)= (r + 2)2�� (r + 2)(�(1 + �)� 1) � 0for r � �2 by the 
hoi
e of �. (We used here the fa
t that minx2� xTMx = �whi
h is a dire
t 
onsequen
e of (3).) Therefore,�(G) � #(r)(G) � �(G)(1 + �) < �(G) + 1;whi
h gives the following result of de Klerk and Pase
hnik [5℄:�(G) = b#(r)(G)
 for r � �(G)2:



6 Neboj�sa Gvozdenovi�
, Monique LaurentIt is also shown in [5℄ that#(1)(G) � 1 + maxi2V #(0)(Gni?): (10)Therefore, #(1)(G) = �(G) when �(G) � 2. More generally, de Klerk and Pase
h-nik [5℄ 
onje
ture:Conje
ture 1. #(r)(G) = �(G) for r � �(G)� 1.
2.3. Dual formulationUsing 
oni
 duality, the bound #(r)(G) from (7) 
an be reformulated as#(r)(G) = max Tr(JX) subje
t to Tr((I +AG)X) = 1; X 2 (K(r)n )�: (11)As the programs (7) and (11) are stri
tly feasible, there is no duality gap andthe optima in (7) and (11) are indeed attained ([5℄). For r = 0, it follows from(6) that (K(0)n )� is the 
one of 
ompletely positive (i.e., positive semide�nite andnonnegative) matri
es. For r � 1, one 
an give an expli
it des
ription of the dual
one (K(r)n )�. As a �rst step we introdu
e a 
lass of matri
es de�ned in (12).De�nition 1. Let y = (yÆ)Æ2I(n;2r+4) be given.(i) De�ne the matrix2 Nr+2(y) indexed by I(n; r + 2), whose (�; �0)-th entry isequal to y�+�0 , for �; �0 2 I(n; r + 2).(ii) For 
 2 I(n; r), N
(y) denotes the prin
ipal submatrix of Nr+2(y) indexedby 
+2e1; : : : ; 
+2en; that is, N
(y) is the n�n matrix with (i; j)-th entryy2
+2ei+2ej , for i; j = 1; : : : ; n.(iii) De�ne the n� n matrix C(y) := X
2I(n;r) r!
!N
(y): (12)
De�nition 2. De�ne the 
oneC(r)n := fZ 2 Rn�n j Z = C(y) for some y 2 R I(n;2r+4) with Nr+2(y) � 0g:Noti
e that the matrix C(y) in (12) involves only entries of y indexed by evensequen
es. Therefore in the de�nition of the 
one C(r)n one 
an assume w.l.o.g.that yÆ = 0 whenever Æ has an odd 
omponent.Proposition 1. The 
ones K(r)n and C(r)n are dual of ea
h other; that is,C(r)n = (K(r)n )� and K(r)n = (C(r)n )�.2 Su
h a matrix is known as a moment matrix; for details see, e.g., Lasserre [7℄.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 7The proof relies on a known duality relationship between the 
one of sums ofsquares of polynomials and the 
one of positive semide�nite moment matri
es.Nevertheless, the expli
it des
ription of C(r)n , the dual of K(r)n , is new to thebest of our knowledge. Given u = (u�) 2 R I(n;r+2) , 
onsider the polynomialp(x) := (P� u�x�)2; then the following identity holds:yT p = uTNr+2(y)u for any y 2 R I(n;2r+4) : (13)Indeed, yT p =PÆ yÆpÆ =PÆ yÆ(P�;�jÆ=�+� u�u�) =P�;� u�u�y�+� ; whi
h isequal to uTNr+2(y)u: De�ne the two 
ones:�2r+4 := fp = (p�) 2 R I(n;2r+4) jX� p�x� is a sum of squares of polynomialsg;
N2r+4 := fy 2 R I(n;2r+4) j Nr+2(y) � 0g:Lemma 1. The two 
ones N2r+4 and �2r+4 are dual of ea
h other; that is,N2r+4 = (�2r+4)� and �2r+4 = (N2r+4)�.Proof. The equality N2r+4 = (�2r+4)� follows as a dire
t appli
ation of (13)and it implies the equality �2r+4 = (N2r+4)� sin
e �2r+4 is a 
losed 
one (see[20, p. 37, Prop. 3.6℄). utProof. (of Proposition 1). Let C(y) 2 C(r)n , let M be a symmetri
 n� n matrixand let p(r)M be the asso
iated polynomial via (5). Using (9), one 
an verify thatTr(M C(y)) = yT p(r)M for any y 2 R I(n;2r+4) : (14)Indeed, Tr(M C(y)) = nXi;j=1MijC(y)ij = nXi;j=1Mij X
2I(n;r) r!
!y2
+2ei+2ej

= X�2I(n;r+2)
0� Xij�i�2 r!(� � 2ei)!Miiy2� + Xi6=jj�i;�j�1 r!(� � ei � ej)!Mijy2�1A

= X�2I(n;r+2)
0�Xi r!�i(�i � 1)�! Miiy2� +Xi6=j r!�i�j�! Mijy2�1A= X�2I(n;r+2) r!�!y2� ��TM� � �Tdiag(M)� = yT p(r)M :

Using (14) and the equality (N2r+4)� = �2r+4, one 
an immediately 
on
ludethatK(r)n = (C(r)n )�. The 
one C(r)n is 
losed sin
e it 
onsists of linear 
ombinationsof positive semide�nite matri
es and the positive semide�nite 
one is 
losed.Hen
e C(r)n = (K(r)n )�. ut
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, Monique LaurentLet us note for further referen
e the following identities whi
h follow using(9) and (14):
Tr(J C(y)) = X�2I(n;r+2) (r + 2)!�! y2� ; (15)

Tr(C(y)) = X�2I(n;r+2) r!�!y2�  nXi=1 �2i � �i! : (16)
2.4. Semide�nite relaxations of the stable set polytopeLet Pstab(G) denote the stable set polytope of G, de�ned as the 
onvex hull ofthe in
iden
e ve
tors of the stable sets in G. For an integer r � 0, de�ne the setP (r)(G) := fx 2 Rn j x = diag(X) for some X 2 C(r)n satisfyingTr(AGX) = 0; X � xxT � 0gand de�ne the parameter: ~#(r)(G) := maxx2P (r)(G)Xi2V xi: (17)
Lemma 2. Pstab(G) � P (r)(G) and �(G) � ~#(r)(G) � #(r)(G) for any integerr � 0.Proof. Given a stable set S with in
iden
e ve
tor x := �S , de�ne the ve
tory 2 R I(n;2r+4) with yÆ = 1jSjr if Æ is even and S(Æ) � S, and yÆ = 0 otherwise.Then, jSjrNr+2(y) is a 0/1 blo
k diagonal matrix, whose blo
ks are indexed bythe sets OI := f� 2 I(n; r + 2) jS(�) � S; Sodd(�) = Ig for I � S, and the setO := f� 2 I(n; r + 2)jS(�) * Sg. Ea
h OI � OI blo
k is the all-ones matrix,and the O �O blo
k is zero. Hen
e Nr+2(y) � 0. For 
 2 I(n; r),

jSjrN
(y) = �S V nSS J 0V nS 0 0 � = xxT
if S(
) � S, and N
(y) = 0 otherwise. Hen
e C(y) = P
2I(n;r) r!
!N
(y) =P
2I(n;r) r!
! 1jSjr xxT = xxT . Setting X := C(y) = xxT , we have Tr(AGX) = 0,and x = diag(X), whi
h shows that x 2 P (r)(G). This shows the in
lusionPstab(G) � P (r)(G) whi
h in turn implies the inequality �(G) � ~#(r)(G). Theinequality ~#(r)(G) � #(r)(G) follows from Lemma 3 below. ut



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 9The sets P (r)(G) provide a hierar
hy of semide�nite relaxations for Pstab(G).It is known that Pstab(G) = P (0)(G) when G is a perfe
t graph (see [6℄). A nat-ural question to ask is whether the analogue of Conje
ture 1 may hold, assertingthat Pstab(G) = P (r)(G) for r � �(G)� 1. We are able to give a positive answeronly in the 
ase r = 1; see Corollary 2 below.For this, given positive node weights w 2 RV+ , we have to 
ompare theweighted stability number �w(G) := maxx2Pstab(G)wTx and the weighted parame-ter: ~#(r)w (G) := maxx2P (r)(G)wTx: (18)
Busygin [3℄ shows the following extension to the weighted 
ase of the Motzkin-Straus theorem.Theorem 1. [3℄ Given wi > 0 (i 2 V ), set wmin := mini2V wi. Then,wmin�w(G) = minx2� xT �Diag �wminw �+AG�x:
In other words, the matrix �w(G)�Diag( 1w ) + 1wminAG�� J is 
opositive or,equivalently, the matrix �w(G) (Diag(w) +AG;w) � wwT is 
opositive, whereAG;w is the matrix whose ij-th entry is wiwjwmin if ij 2 E and 0 otherwise. Set

wmax := maxi2V wi; WG := (wmax)2wmin : (19)The matrix �w(G) (Diag(w) +WGAG)�wwT is also 
opositive, sin
e the entriesof AG;w are at most WG. This leads us to de�ne the following weighted analogueof the parameter #(r)(:):#(r)w (G) := min t subje
t to t(Diag(w) +WGAG)� wwT 2 K(r)n : (20)This de�nition redu
es to the original de�nition (7) when all weights are equalto 1.Lemma 3. The parameters (18) and (20) satisfy: ~#(r)w (G) � #(r)w (G):Proof. Assume M := t(Diag(w) +WGAG) � wwT 2 K(r)n and let x = diag(X)where X 2 C(r)n , Tr(AGX) = 0, X � xxT � 0. Then, 0 � Tr(MX) = twTx �wTXw, yielding twTx � wTXw � (wTx)2 and thus t � wTx. This gives thedesired inequality. utLemma 4. For r = 0, ~#(0)w (G) = #(0)w (G): Therefore, #(0)w (G) = �w(G) when Gis a perfe
t graph.



10 Neboj�sa Gvozdenovi�
, Monique LaurentProof. It remains to show the inequality: #(0)w (G) � ~#(0)w (G): For this, we �rstobserve that#(0)w (G) � �(G) := min t subje
t to tDiag(w) + yAG � wwT 2 K(0)n : (21)Our argument is similar to the one used by de Klerk and Pase
hnik [5℄ in theunweighted 
ase. Assume M := tDiag(w) + yAG � wwT 2 K(0)n . Then, M =P +N , where P � 0, N � 0, diag(N) = 0. Hen
e, t(Diag(w)+WGAG)�wwT =M + (tWG � y)AG = P + N + (tWG � y)AG. It suÆ
es now to verify thatN 0 := N + (tWG � y)AG � 0. For this pi
k an edge, say 12 2 E. As P � 0, wehave P11 + P22 � 2P12, yielding t(w1 + w2)� 2(y �N12) � (w1 � w2)2. Finally,2N 012 = 2N12 + 2tw2maxwmin � 2y � t(w1 + w2)� 2(y �N12) � 0 proves (21).Next, using 
oni
 duality, we obtain that�(G) = max wTXw subje
t to Tr(Diag(w)X) = 1; T r(AGX) = 0; X 2 C(0)n :Set u := (pwi)ni=1. Res
aling X by Y = Diag(u)XDiag(u), we �nd that�(G) = max uTY u subje
t to Tr(Y ) = 1; T r(AGY ) = 0; Y 2 C(0)n :(As C(0)n 
onsists of the nonnegative positive semide�nite matri
es, it is 
losedunder the above res
aling.) We 
an now 
on
lude that �(G) � ~#(0)w (G); this isthe same proof as for Theorem 67.11 in [22℄ (whi
h gives the result with the 
oneC(0)n being repla
ed by the 
one of positive semide�nite matri
es). ut
2.5. The main resultsIn this paper we prove the following results.Theorem 2. For a graph G and a positive integer r � min(�(G)� 1; 6),#(r)(G) � r + maxS�V stable; jSj=r #(0)(GnS?); (22)Moreover, (22) holds for r = 7 = �(G)� 1.Corollary 1. Conje
ture 1 holds for �(G) � 8; that is,#(�(G)�1)(G) = �(G) if �(G) � 8:Theorem 3. For a graph G with positive node weights w 2 RV ,#(1)w (G) � maxi2V (wi + #(0)w (Gni?)): (23)Corollary 2. Pstab(G) = P (1)(G) if Gni? is perfe
t for all i 2 V ; this holds inparti
ular if �(G) = 2.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 11Theorem 4. For r � 1, the parameters from (2),(11) and (17) satisfy:las(r)(G) � ~#(r�1)(G) � #(r�1)(G): (24)Corollary 1 follows dire
tly from Theorem 2. Analogously, Corollary 2 followsfrom Theorem 3 together with Lemma 4. The proofs for Theorems 2, 3, 4 aregiven in Se
tions 3, 4, 5, respe
tively.Our proof te
hnique for Theorem 2 does not apply to the 
ase when �(G) � 9.It is mu
h more 
ompli
ated than the proof of 
onvergen
e in �(G) steps forthe Lov�asz-S
hrijver and the Lasserre semide�nite hierar
hies. One of the maindiÆ
ulties (as pointed out later in the proof) 
omes from the fa
t that, forr � 1, the 
one K(r)n is not invariant under some simple matrix operations,like extending a matrix by adding a zero row and 
olumn to it, or res
alingit by positive multipliers (whi
h obviously preserve 
opositivity and positivesemide�niteness). For instan
e, when G is a 
ir
uit of length 5, the matrix M :=2(I + AG) � J belongs to K(1)5 , but adding a zero row and 
olumn yields amatrix that does not belong to K(1)6 . We thank E. de Klerk for 
ommuni
atingthis example to us.As Theorem 4 shows, the bound las(r)(G) is at least as good as ~#(r�1)(G).There exist in fa
t graphs for whi
h stri
t inequality: las(2)(G) < ~#(1)(G) holds.For this, given integers 2 � d � n, 
onsider the graph G(n; d) with node setP(V ) (jV j = n) where I; J 2 P(V ) are 
onne
ted by an edge if jI�J j 2f1; : : : ; d � 1g. Then �(G(n; d)) is the maximum 
ardinality of a binary 
odeof word length n with minimum distan
e d. Delsarte [4℄ introdu
ed a linear pro-gramming bound whi
h 
oin
ides with the parameter #0(G(n; d)) ([21℄). S
hrijver[23℄ introdu
ed a stronger semide�nite bound whi
h roughly3 lies between thebounds las(1)(G(n; d)) and las(2)(G(n; d)) ([10℄). While G(n; d) has 2n verti
es,S
hrijver's bound 
an be 
omputed via a semide�nite program of size O(n3)(using a blo
k diagonalization of the underlying Terwilliger algebra). It turnsout that the same algebrai
 property holds for the bound #(1)(G(n; d)); thuswe 
ould 
ompute this bound as well as S
hrijver's bound for the parameters(n; d) = (17; 4); (17; 6); (17; 8), and we found:las(2)(G(17; 4)) � 3276 < 3607 � #(1)(G(17; 4))las(2)(G(17; 6)) � 352 < 395 � #(1)(G(17; 6))las(2)(G(17; 8)) � 41 < 42 � #(1)(G(17; 8)):
3. Proof of Theorem 2Let G = (V;E) be a graph with stability number �(G), V = f1; : : : ; ng and1 � r � �(G)� 1 an integer. Sett := r + maxS�V stable;jSj=r#(0)(GnS?):3 Indeed, the formulation of S
hrijver's bound has an additional 
onstraint, namely, xijk �xij for all i; j; k 2 V , whi
h does not appear in the de�nition of the bound las(r)(G) used inthe present paper.



12 Neboj�sa Gvozdenovi�
, Monique LaurentThen, t � r + 1. As t� r � #(0)(GnS?), we dedu
e that(t� r)(I +AGnS?)� J 2 K(0)n�jS?j for any stable set S in G of size r: (25)In order to prove Theorem 2, we have to show that, for 1 � r � min(�(G)�1; 6),M := t(I +AG)� J 2 K(r)n : (26)We need some notation. Let B be an m � n matrix. We say that B is aq� s blo
k matrix if the set f1; : : : ;mg indexing its rows 
an be partitioned intoQ1[ : : :[Qq and the set f1; : : : ; ng indexing its 
olumns 
an be partitioned intoS1[: : :[Ss in su
h a way that, for any h 2 f1; : : : ; qg, h0 2 f1; : : : ; sg, the entriesBij for i 2 Qh; j 2 Sh0 are all equal to the same value, say ~bhh0 . In other words,B is obtained from the matrix ~B := (~bhh0) h2f1;:::;qgh02f1;:::;sg by suitably dupli
ating rowsand 
olumns. We 
all ~B the skeleton of the blo
k matrix B. Obviously, B � 0 ifand only if ~B � 0 (assuming m = n, q = s); moreover, B 2 K(r)n if and only if~B 2 K(r)q (see Lemma 15 below).Finally, for x 2 Rn , set v(x) := (x2i )ni=1.The following observation plays a 
entral role in the proof.Lemma 5. Let X(i) (i 2 V ) be symmetri
 matri
es satisfying the 
ondition:X(i)jk +X(j)ik +X(k)ij � 0 for all i; j; k 2 V; (27)then the polynomial Pi2V x2i v(x)TX(i)v(x) = Pi;j;k2V x2ix2jx2kX(i)jk is a sumof squares.Proof. The polynomial Pi;j;k2V x2ix2jx2kX(i)jk is equal toP (i;j;k)2V 3i6=j 6=k 6=i x2ix2jx2k[X(i)jk +X(i)jk +X(i)jk℄+P (i;j)2V 2i6=j x2ix4j [X(i)jj + 2X(j)ij ℄ +Pi2V x6iX(i)ii;
whi
h is a sum of squares, sin
e all 
oeÆ
ients are nonnegative by (27). utOur strategy will be to 
onstru
t matri
es X(fi1; :::; ikg; i) (i 2 V ) satisfying(27) when fi1; :::; ikg is a stable set of size k � r. We will use them to re
ursivelyde
ompose M into M �X(i1)�X(i1; i2)� : : :�X(i1; : : : ; ik) in su
h way thatat the last level k = r we obtain matri
es in K(0)n . It turns out that this lastproperty holds for r � 7, but not for r = 8. This is why we are able to prove the
onje
ture only for graphs with stability number at most 8.



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 133.1. De�ning sets of matri
es satisfying the linear 
ondition (27)Let S be a stable set of 
ardinality k, 0 � k � r. We de�ne a set of matri
esX(S; i) (for i 2 V ) indexed by V that satisfy the 
ondition (27). Set m0 := 1and mk := tk(t�1)���(t�k) for k = 1; : : : ; r. (Re
all that t � r + 1 > k.)For i 2 S?, X(S; i) is the symmetri
 matrix whose entry at position (u; v) isde�ned as follows:
mk times 8<:0 if u or v 2 S?t� k � 1 if u; v 2 V n S? and u ' v�1 if u; v 2 V n S? and u 6' v:For i 62 S?, X(S; i) is the symmetri
 matrix whose entry at position (u; v) isde�ned as follows:

mk times
8>>>>>>>>>>>><>>>>>>>>>>>>:

0 if u; v 2 S?� t�k�12 if u 2 S?; v 2 i? n S?12 if u 2 S?; v 2 V n (S? [ i?)0 if u; v 2 i? n S? and u ' v�(t� k) if u; v 2 i? n S? and u 6' vt� k2 if u 2 i? n S?; v 2 V n (S? [ i?) and u ' vk2 if u 2 i? n S?; v 2 V n (S? [ i?) and u 6' v�k if u; v 2 V n (S? [ i?) and u ' v0 if u; v 2 V n (S? [ i?) and u 6' v:If S = fi1; : : : ; ikg, we also denote X(S; i) as X(i1; : : : ; ik; i). When S = ;, weset X(;; i) =: X(i). Given an ordering (S) = (i1; : : : ; ik) of the elements of S,de�ne the matrixM((S)) := M �X(i1)�X(i1; i2)� : : :�X(i1; : : : ; ik): (28)Lemma 6. Given a stable set S of size 0 � k � r, the matri
es X(S; i) (i 2 V )satisfy (27).Proof. We prove X(S; i)jk +X(S; j)ki +X(S; k)ij � 0 for all possible 
ombina-tions of i; j and k. Indeed, omitting the s
alar fa
tor mk, we �nd:{ For i; j; k 2 S?: 0 + 0 + 0 = 0;{ For i; j 2 S?, k =2 S?: 0 + 0 + 0 = 0;{ For i 2 S?, j; k =2 S?, j ' k: (t� k � 1) + (� t�k�12 ) + (� t�k�12 ) = 0;{ For i 2 S?, j; k =2 S?, j 6' k: �1 + 12 + 12 = 0;{ For i; j; k =2 S?, i ' j ' k ' i: 0 + 0 + 0 = 0;{ For i; j; k =2 S?, i ' j ' k 6' i: (t� k2 ) + (�t+ k) + (t� k2 ) = t;{ For i; j; k =2 S?, k 6' i ' j 6' k: k2 + k2 � k = 0;{ For i; j; k =2 S?, i 6' j 6' k 6' i: 0 + 0 + 0 = 0. ut



14 Neboj�sa Gvozdenovi�
, Monique Laurent3.2. The role of the matri
es X(S; i) and M((S)) in the proof
Our obje
tive is to prove that the matrix M from (26) belongs to the 
one K(r)n ,i.e., that the polynomial p(r)M (x) = �(x)rv(x)TMv(x) is a sum of squares, setting�(x) := Pni=1 x2i . Re
all that v(x) = (x2i )ni=1. The basi
 idea is to de
omposep(r)M (x) as

�(x)r�1 nXi=1 x2i v(x)TX(i)v(x) + �(x)r�1 nXi=1 x2i v(x)TM((i))v(x): (29)
The �rst sum is a sum of squares by Lemmas 5 and 6. Ea
h matrix M((i)) 
anbe written as

M((i)) =M �X(i) = � i? V n i?i? (t� 1)J �JV n i? �J t(I +AGni?)� J � (30)
= tt� 1 �0 00 (t� 1)(I +AGni?)� J�+ �(t� 1)J �J�J 1t�1J� : (31)When r = 1, (30),(31) together with assumption (25) imply that M � X(i) 2K(0)n and thus p(1)M (x) is a sum of squares; therefore, (10) holds. Assume nowr � 2. The last matrix in (31) is positive semide�nite. Suppose our assumptionwould be that (t � 1)(I � AGni?) � J 2 K(r�1)n�ji?j, then it would be temptingto 
on
lude from (30) and (31) that M((i)) 2 K(r�1)n (whi
h would then im-ply that M 2 K(r)n and thus 
on
lude the proof). This would be 
orre
t ifwe would work with 
ones of matri
es whi
h are 
losed under adding a zerorow and 
olumn, but this is not the 
ase for the 
ones K(r) and thus thisargument does not work. To go around this diÆ
ulty, we pro
eed as follows.If a vertex i is adja
ent to all other verti
es (i.e., i? = V ), then M((i)) =(t � 1)J � 0 and thus �(x)r�1x2i v(x)TM((i))v(x) is a sum of squares. Oth-erwise, we further de
ompose this quantity as �(x)r�1x2i v(x)TM((i))v(x) =�(x)r�2Pnj=1 x2ix2jv(x)TM((i))v(x), whi
h is then equal to

�(x)r�2 nXj=1 x2ix2jv(x)TX(i; j)v(x) + �(x)r�2 nXj=1 x2ix2jv(x)TM((i; j))v(x)
(re
all the de�nition of M((i; j)) from (28)). In the next step we further de-
ompose the quantity �(x)r�2x2ix2jv(x)TM((i; j))v(x) in a similar manner ifi? [ j? 6= V , et
. Generally, we have the following `in
lusion-ex
lusion' formula



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 15for the matrix �(x)rM :�(x)rM = rXh=1�(x)r�h Xi12V; i2 62i?1 ;:::;ih�1 62i?1 [:::[i?h�2ih2V x2i1 � � �x2ihX(i1; : : : ; ih)
+ rXh=2�(x)r�h Xi12V; i2 62i?1 ;:::;ih�1 62i?1 [:::[i?h�2ih2i?1 [:::[i?h�1 x2i1 � � �x2ihM((i1; : : : ; ih))

+ Xi12V; i2 62i?1 ;:::;ir�1 62i?1 [:::[i?r�2ir 62i?1 [:::[i?r�1 x2i1 � � �x2irM((i1; : : : ; ir)):
(32)Therefore, in order to show that M 2 K(r)n , it suÆ
es to show thatM((i1; : : : ; ik; ik+1)) 2 K(0)n for S := fi1; : : : ; ikg stable,ik+1 2 S?; 1 � k � r � 1; (33)and M((i1; : : : ; ir)) 2 K(0)n for fi1; : : : ; irg stable. (34)For this we need to study the stru
ture of the matri
es M((S)).

3.3. The stru
ture of the matri
es M((S))Given an ordered stable set (S) = (i1; i2; :::; ik) with k = 1; : : : ; r, 
onsider thematrix M((S)) from (28) and write
M((S)) := � S? V n S?S? Ck(S) Dk(S)V n S? Dk(S)T Ek(S) �: (35)Lemma 7. The matrix M((S)) from (35) has the following properties.(i) Ck(S) is a k � k blo
k matrix whose rows and 
olumns are indexed by thepartition of S? into i?1 [ (i?2 n i?1 ) [ : : : [ (i?k n fi1; : : : ; ik�1g?): Let Ck bethe skeleton of Ck(S) (Ck is a k � k matrix) and set dk := Cke 2 R k . Then,eTCke = kXh=1 dk(h) = (mk � 1)(t� k)2:(ii) The matrix Dk(S) is a k � 1 blo
k matrix, with the same partition as abovefor the set S? indexing its rows. Given h 2 f1; : : : ; kg, all entries in the(h; 1)-blo
k take the same value, whi
h is equal to �dk(h)t�k .(iii) For u; v 2 V nS?, the (u; v)-th entry of Ek(S) is equal to tmk�1� 1 if u ' vand to �1 if u 6' v:



16 Neboj�sa Gvozdenovi�
, Monique LaurentProof. The blo
k stru
ture of the matri
es Ck and Dk is determined by the
onstru
tion of the matrix M((S)) in (28) and the shape of the matri
es X(:)de�ned in Se
tion 3.1. We show the lemma by indu
tion on k � 1. For k = 1,the matrix M((S)) = M � X(i1) has the shape given in (30) and the desiredproperties hold. Assume (i),(ii),(iii) hold for a stable set S of size k � 1. Leti 2 V n S?. We show that (i),(ii),(iii) hold for the stable set S [ fig. Let D0k(S)(resp., D00k(S)) be the submatri
es of Dk(S) whose 
olumns are indexed by i?nS(resp., V n (S [ i?)) and with the same row indi
es as Dk(S). Then Ck+1(S; i)and Dk+1(S; i) have the following blo
k stru
ture:Ck+1(S; i) = � Ck(S) D0k(S) + t�k�12 mkJD0k(S)T + t�k�12 mkJT (tmk�1 � 1)J � (36)
Dk+1(S; i) = �D00k(S)� 12mkJ(�1�mk k2 )J � ; (37)where J denotes the all-ones matrix of the appropriate size. By the indu
tionassumption, the entries in the h-th row of D0k(S) and D00k(S) are equal to �dk(h)t�k(for h = 1; : : : ; k), and eT dk = eTCke = (mk � 1)(t� k)2.We �rst show that Ck+1(S; i) satis�es (i). Indeed,eTCk+1e = eTCke+ 2�� eT dkt�k +mk t�k�12 �+ tmk�1 � 1= (mk � 1)(t� k)2 � 2(mk � 1)(t� k) +mk(t� k � 1)k +mk(t� k)� 1= mk(t� k � 1)t� (t� k � 1)2 = (mk+1 � 1)(t� k � 1)2:We now show that Dk+1(S; i) satis�es (ii). Setting dk+1 := Ck+1e, for h =1; : : : ; k, we have:dk+1(h) = dk(h)� dk(h)t� k + t� k � 12 mk = (t� k � 1)�dk(h)t� k + mk2 � :This yields: �dk+1(h)t�k�1 = �dk(h)t�k � mk2 , whi
h is indeed equal to the entries ofDk+1(S; i) in its h-th row. The entries of Dk+1(S; i) in its (k + 1)-th row areequal to �1�mk k2 , thus equal to �dk+1(k+1)t�k�1 sin
edk+1(k + 1) =Pkh=1 ��dk(h)t�k + k(t�k�1)2 mk�+ tmk�1 � 1= � eTCket�k + k t�k�12 mk + tmk�1 � 1 = (t� k � 1) �1 + kmk2 � :We �nally show that Ek+1(S; i) satis�es (iii). Indeed, its (u; v)-th entry re-mains the same as in Ek(S), i.e., equal to �1, if u 6' v and, for u ' v, it is equalto tmk�1 � 1 + kmk = (t� k)mk � 1 + kmk = tmk � 1. utCorollary 3. Let S be a stable set of size k = 1; : : : ; r. Then,G((S)) := � Ck(S) Dk(S)Dk(S)T (mk � 1)J� � 0() Ck(S) � 0; (38)

M((S)) = G((S)) +mk �0 00 (t� k)(I +AGnS?)� J� ; (39)M((S; i)) = G((S)) if i 2 S?: (40)



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 17Proof. By Lemma 7, Ck(S), Dk(S) are blo
k matri
es; hen
e G((S)) � 0 if andonly if its skeleton G := � Ck � 1t�kCke� 1t�keTCk mk � 1 � is positive semide�nite. Now,G � 0() Ck � 0 sin
e the last 
olumn of G is a linear 
ombination of the �rstk 
olumns; thus (38) holds. Relations (39), (40) follow using the de�nitions. utTherefore, (33), (34) hold (and thusM 2 K(r)n ) if we 
an show that Ck(S) � 0for any stable set S of size k � r. As Ck(S) is a blo
k matrix, it suÆ
es to showthat its skeleton Ck is positive semide�nite. Moreover, it suÆ
es to show thatCr � 0 sin
e, in view of (36), the matri
es Ck (1 � k � r) are in fa
t the leadingprin
ipal submatri
es of Cr.
3.4. The matrix Cr is positive semide�nite for r � min(�(G)� 1; 6)Re
all that the entries of Cr depend on the parameter t; thus one may alterna-tively write Cr as Cr(t). Our task is now to show that Cr(t) � 0 for all t � r+1and r � min(�(G)� 1; 6). We a
hieve this by proving thatdetCk(t) > 0 for t � r + 1; k = 1; : : : ; r: (41)The proof of (41) relies on establishing a re
urren
e relationship among thedeterminants of Ck(t). We need the following lemma.Lemma 8. Assume Ck+1 is nonsingular for k � 1. Then,eT (Ck+1)�1e = t2(t� k)2 detCkdetCk+1 : (42)
Proof. Write Ck+1 := �Ck xxT a� ; (Ck+1)�1 := �A yyT b� : Then,(a) ACk+yxT = I; (b) Cky+bx = 0; (
) Ax+ay = 0; (d) xT y+ab = 1: (43)By Lemma 7 and (36), a = tmk�1 � 1 = (t� k)mk � 1 and x = �ke� 1t�kCke,setting �k := mk t�k�12 . Moreover, eTCke = (mk � 1)(t� k)2, implyingeTx = k�k � (t� k)(mk � 1); eTxt� k + a = �k � kt� k + 2� : (44)Taking the inner produ
t of relation (
) with the all-ones ve
tor and using (43)(a)and (44), we �nd:0 = eTAx+ aeT y = eTA(�ke� 1t�kCke) + aeT y= �keTAe� 1t�keT (I � yxT )e+ aeT y = �keTAe� kt�k + eT y(xT et�k + a)= �k(eTAe+ 2eT y) + kt�k (�keT y � 1);that is, eTAe+ 2eT y = kt� k � 1�k � eT y� : (45)



18 Neboj�sa Gvozdenovi�
, Monique LaurentUsing relations (43)(d),(b) and (44), we �nd:1 = xT y + ab = (�ke� 1t�kCke)T y + ab= �keT y + bt�keTx+ ab = �keT y + b�k( kt�k + 2);that is, eT y = 1�k � b� kt� k + 2� : (46)Relations (45) and (46) imply that eT (Ck+1)�1e = eTAe+ 2eT y + b = b t2(t�k)2 :By the 
ofa
tor rule, b = detCkdetCk+1 , and the lemma follows. utCorollary 4. Let k � 2 and assume that Ck(t) is nonsingular. Then,detCk+1(t) = 2t�kt� k detCk(t)� t2�2k(t� k + 1)2 detCk�1(t); (47)after setting �k := mk t�k�12 .Proof. Setting P := �I � 1t�ke0 1 �, we �nd that PTCk+1P = � Ck �ke�keT � �, aftersetting � := mk t(t�k�1)t�k . Set u := (Ck)�1e and let v1; : : : ; vk+1 denote the
olumns of PTCk+1P . Then, vk+1 � �k(Pki=1 uivi) has all zero entries ex
eptthe last (k+1)-th entry equal to �� �2k(Pki=1 ui) = mk t(t�k�1)t�k � �2keT (Ck)�1e.Therefore, we 
an 
on
lude thatdetCk+1 = detPTCk+1P = � 2t�kt� k � �2keT (Ck)�1e� detCk: (48)Relation (47) now follows dire
tly from Lemma 8 and (48). utLemma 9. Consider the rational fun
tions f1(t) = t � 1, f2(t) := t2(t�2)(3t�2)4(t�1)2and, for h = 2; : : : ; k,fh+1(t) = 2t�ht� hfh(t)� t2�2h(t� h+ 1)2 fh�1(t);and the polynomials g1(t) := 1, g2(t) := 3t� 2 and, for h = 2; : : : ; k,gh+1(t) = �h(t� h)gh(t)� t(t� h� 1)gh�1(t);with �h = 1 if h is even and �h = 4 otherwise. As before, �h := mh t�h�12 .(i) For h = 2; : : : ; k + 1, fh(t) = t(h+12 )�1(t�h)4bh=2
(t�1)h(t�2)h�1���(t�h+1)2 gh(t):(ii) For 1 � k � 6, gk(t) > 0 for all t � k. Moreover, g7(8) > 0.
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tion on k. For (ii), setting Gk(t) := gk(t+k),one has to show that Gk(t) > 0 for t � 0, k � 6. This follows from the fa
t thatG2(t) = 4 + 3t, G3(t) = 7 + 7t + 2t2, G4(t) = 64 + 68t + 30t2 + 5t3, G5(t) =167+165t+84t2+25t3+3t4, G6(t) = 1776+1296t+540t2+248t3+70t4+7t5.Moreover, g7(8) = 1024. utWe 
an now 
on
lude the proof of Theorem 2. Let t � r + 1. Consider�rst the 
ase when 1 � r � min(�(G) � 1; 6). We show that (41) holds usingCorollary 4 and Lemma 9. First note that detCh(t) = fh(t) for h = 1; 2 (dire
tveri�
ation). Let k 2 f1; : : : ; rg. If k = 1; 2, then detCk(t) > 0. Assume k � 3and Ck�1(t) � 0. By Corollary 4, detC1(t); : : : ; detCk(t) are related via (47);that is, detCh(t) = fh(t) for h = 1; : : : ; k. We now dedu
e from Lemma 9 thatdetCk(t) > 0. This shows that Cr(t) � 0 for t � r + 1, whi
h 
on
ludes theproof of the �rst part of Theorem 2.Consider now the 
ase when r = 7 = �(G) � 1. We have to show that thematrix M = t(I + AG) � J from (26) with t := �(G) = 8 belongs to K(7)n . Asbefore we are left with the task of proving that detC1(t); : : : ; detC7(t) > 0 fort = 8, whi
h follows from the assertions g1(8); : : : ; g6(8); g7(8) > 0 in Lemma 9.This 
on
ludes the proof of Theorem 2.Note that the same argument 
annot be used for proving Conje
ture 1 in the
ase �(G) = 9, sin
e g1(9); : : : ; g6(9) > 0 while g7(9) < 0 whi
h implies that thematrix C7(9) is not positive semide�nite.
4. Proof of Theorem 3The proof is along the same lines as in the pre
eding se
tion. Sett := maxi2V wi + #(0)w (Gni?):
For i 2 V , de�ne w(i) := (wj)j2V ni? , the ve
tor of node weights restri
ted to thegraph Gni?. The matrix Pi := (t � wi)(Diag(w(i)) +WGAGni?) � w(i)(w(i))Tbelongs to the 
one K(0)jV ni?j (sin
e WGni? � WG). De�ne a := (1=wj)j2V and,for i 2 V , let a(i) be the restri
tion of a to Gni?. Moreover, set BGni? :=WGDiag(a(i))AGni?Diag(a(i)) and Mi := Diag(a(i))PiDiag(a(i)). Then,Mi = (t� wi)(Diag(a(i)) +BGni?)� J 2 K(0)jV ni?j:Our goal is to show that P := t(Diag(w) +WGAG)�wwT 2 K(1)n ; equivalently,setting M := Diag(a)PDiag(a), we have to show thatthe polynomial p(x) := (Xi aix2i )v(x)TMv(x) is a SOS.



20 Neboj�sa Gvozdenovi�
, Monique LaurentWe follow the same strategy as in the proof of Theorem 2: We introdu
e a set ofsymmetri
 matri
es X(i) (i 2 V ) satisfying (27). Namely, given i 2 V , all entriesof X(i) are equal to 0, ex
eptX(i)ij = � 12aj(ai � aj)t; X(i)jj = ai(aj � ai)t for j 2 N(i);X(i)jk = �aiajakWGt for j; k 2 N(i); j 6' k;X(i)jk = aiajakWGt for j 2 N(i); k 2 V n i?; j ' k:Then, X(i)jk +X(j)ik +X(k)ij � 0 sin
e it takes the values:{ For i = j = k: 0;{ For i = j ' k: 2(� 12ak(ai � ak)t) + ak(ai � ak)t = 0;{ For i = j 6' k: 2�0+0=0;{ For i ' j ' k ' i: 0+0+0=0;{ For i ' j 6' k ' i: �aiajakWGt+ aiajakWGt+ aiajakWGt = aiajakWGt;{ For i 6' j ' k 6' i: 0+0+0=0;{ For i 6' j 6' k 6' i: 0+0+0=0.One 
an de
ompose the polynomial p(x) asXi x2i v(x)T (aiM �X(i))v(x) +Xi x2i v(x)TX(i)v(x):The se
ond summation is a SOS by Lemma 5. To 
on
lude the proof, it suÆ
esto show that the matrix aiM � X(i) belongs to K(0)n . For this, note that thematrix A := wi(aiM �X(i)) =M � wiX(i) 
an be de
omposed asA = �(tai � 1)J �J�J 1tai�1J�+ �N 00 0�+ �0 00 taitai�1Mi�where N � 0, whi
h shows that A 2 K(0)n and 
on
ludes the proof of Theorem3. (When all weights are equal to 1, N = 0 and we �nd the de
omposition from(30), (31).) Indeed, one 
an verify thatAjj = tai � 1 for j 2 i?Aij = tWGaiaj � 1 + aj2ai (ai � aj)t for j 2 N(i)Ajk = tWGajak � 1 for j 6= k 2 N(i)Ajk = �1 for j 2 i?; k 2 V n i?Ajj = taj � 1 for j 2 V n i?Ajk = tWGajak � 1 for j 6= k 2 V n i?; j ' kAjk = �1 for j; k 2 V n i?; j 6' k:The prin
ipal submatrix of A indexed by V ni? is thus equal to 1tai�1J+ taitai�1Mi.Moreover, tWGajak � 1 � tai � 1 sin
e WG � aiajak = wjwkwi : Finally, we havetWGaiaj � 1 + aj2ai (ai � aj)t � tai � 1 sin
e WG � a2j+2a2i�aiaj2a2iaj = w2i+2w2j�wiwj2wj ;indeed, if wi � wj , then w2i+2w2j�wiwj2wj � wj � wmax �WG and, if wi � wj , thenw2i+2w2j�wiwj2wj � wi(wi+wj)2wj � (wmax)2wmin =WG: ut



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 215. Proof of Theorem 4Obviously, las(1) = #(0)(G). In view of Lemma 2, we have to show that las(r) �~#(r�1)(G) for any positive integer r. For this, let x 2 RP2r (V ) be feasible for (2),i.e., x; = 1, xI � 0 (jIj = r+1), xij = 0 (ij 2 E), and Mr(x) � 0. Then, xI = 0for any I 2 P2r(V ) 
ontaining an edge. We may assume that Pni=1 xi > 0. Forp = 1; : : : ; r + 1, de�ne `p := X�2I(n;p�1) (p� 1)!�! xS(�):Then, `1 = 1, `p � `2 = Pni=1 xi > 0 for p � 2. For p = 1; : : : ; r, de�ney = (yÆ)Æ2I(n;2p+2) as follows: yÆ = 0 if Sodd(Æ) 6= ;, yÆ := 1̀pxS(Æ) otherwise(then jS(Æ)j � p+ 1 � r + 1).Lemma 10. Np+1(y) � 0.Proof. For I � V , set OI := f� 2 I(n; p + 1) j Sodd(�) = Ig and NI :=(y�+�0)�;�02OI . Then, Np+1(y) is a blo
k diagonal matrix with the matri
es NI(I � V ) as diagonal blo
ks. As `pNI = (xS(�)[S(�0))�;�02OI ,NI � 0 sin
e it is ob-tained from a prin
ipal submatrix ofMr(x) by dupli
ating 
ertain rows/
olumns(unless jIj = r + 1 in whi
h 
ase NI is the 1 � 1 matrix with entry xjIj � 0,implying again NI � 0). utTherefore, the matrix Z(p) := C(y) = P
2I(n;p�1) (p�1)!
! N
(y) belongs tothe 
one C(p�1)n . Moreover, Z(p)ij = 0 if ij 2 E. De�ne the matrix
~Z(p) := 0BBB� 1 Z(p)11 : : : Z(p)nnZ(p)11... Z(p)Z(p)nn

1CCCA : (49)
Lemma 11. ~Z(p) � 0:Proof. The matrix:

`p ~Z(p) = X
2I(n;p�1) (p� 1)!
!
0BBB� xS(
) y2
+4e1 : : : y2
+4eny2
+4e1... (y2
+2ej+2ek)nj;k=1y2
+4en

1CCCA
= X
2I(n;p�1) (p� 1)!
!

0BBB� xS(
) xS(
+e1) : : : xS(
+en)xS(
+e1)... (xS(
+ej+ek))nj;k=1xS(
+en)
1CCCA

is positive semide�nite, sin
e the matri
es in the above summation are prin
ipalsubmatri
es of Mr(x). ut



22 Neboj�sa Gvozdenovi�
, Monique LaurentLemma 12. Tr(JZ(p)) = `p+2`p and Tr(Z(p)) = `p+1`p :Proof. As Z(p) = C(y) 2 C(p�1)n , one 
an use (15) and (16). Namely,Tr(JZ(p)) = X�2I(n;p+1) (p+ 1)!�! y2� = 1̀p X�2I(n;p+1) (p+ 1)!�! xS(�) = `p+2`p :Moreover, Tr(Z(p)) = X�2I(n;p+1) (p� 1)!�! y2� nXi=1(�2i � �i)
= 1̀p nXi=1 X�2I(n;p+1) (p� 1)!�! �i(�i � 1)xS(�):We 
an restri
t the inner summation to � with �i � 2. Then, Æ := � � ei hasthe same support as � andTr(Z(p)) = 1̀p nXi=1 XÆ2I(n;p) (p� 1)!Æ! ÆixS(Æ) = 1̀p XÆ2I(n;p) (p� 1)!Æ! jÆjxS(Æ) = `p+1`p :utLemma 13. `p+2`p+1 � `p+1`p :Proof. By Lemma 11, ~Z(p) � 0, implying Z(p) � diag(Z(p))diag(Z(p))T �0. Therefore, eT (Z(p) � diag(Z(p))diag(Z(p))T )e � 0, yielding Tr(JZ(p)) �(Tr(Z(p)))2. The result now follows using Lemma 12. utFrom Lemmas 12 and 13, we dedu
e that Pni=1 Z(r)ii = `r+1`r � `2`1 =Pni=1 xi: The ve
tor z := diag(Z(r)) is feasible for the program (17) de�ningthe parameter ~#(r�1)(G). Hen
e, ~#(r�1)(G) � Pni=1 zi = Tr(Z(r)) � Pni=1 xi.This shows that ~#(r�1)(G) � las(r)(G).

6. Con
luding remarks6.1. Some variations of the bound #(r)(G)Given a polynomial q 2 R [x1 ; : : : ; xn℄, de�ne the even polynomial ~q(x) :=q(x21; : : : ; x2n); a polynomial being even when ea
h variable o

urs with an evendegree in any nonzero term. One 
an express the 
ondition that ~q be a SOSdire
tly in terms of the polynomial q.Proposition 2. ([26℄) Given a homogeneous polynomial q of degree d, the as-so
iated even polynomial ~q(x) := q(x21; : : : ; x2n) is a SOS if and only if the poly-nomial q admits a de
omposition:q(x) = XI�f1;:::;ngjIj�d; jIj�d (mod 2) �I(x)Yi2I xi (50)
where �I is a form of degree d� jIj whi
h is SOS.
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ondition (50) 
an obviously be reformulated asq(x) = X�2Zn+;j�j�d;j�j�d mod 2��x� (51)
where �� is a form of degree d� j�j whi
h is SOS. As the polynomial p(r)M from(5) is an even polynomial, we 
an apply the above 
riterion for 
hara
terizingwhether an n� n matrix M belongs to the 
one K(r)n . Namely, M 2 K(r)n if andonly if  nXi=1 xi!r xTMx = X�2Zn+;j�j�r+2;j�j�r+2 mod 2��x� (52)where �� is a form of degree r + 2� j�j whi
h is SOS.Pe~na, Vera and Zuluaga [17℄ 
onsider the set Q(r)n 
onsisting of the matri
esM for whi
h su
h a de
omposition (52) exists involving only the two highestorder terms with j�j = r + 2, r. Therefore, Q(r)n is a sub
one of the 
one K(r)nwith equality Q(r)n = K(r)n for r = 0; 1, and the bound:�(r)(G) := min t su
h that t(I +AG)� J 2 Q(r)n (53)satis�es: �(G) � #(r)(G) � �(r)(G):For r � �(G)� 1, Pe~na, Vera and Zuluaga [17℄ show that�(r)(G) � r + maxS�V; S stable; jSj=r �(0)(GnS?) (54)for r = 1; 2; 3, and for r = 4; 5 if �(G) � 6, whi
h implies �(r)(G) = �(G) if�(G) � 6, thus proving Conje
ture 1 for graphs with �(G) � 6.For r � �(G) � 1, our proof of Theorem 2 shows in fa
t that relation (54)holds for r � 6, and for r = 7 if �(G) = 8. Indeed, the de
omposition (32)shows that the matrix M from (26) belongs to the 
one Q(r)n . This implies�(�(G)�1)(G) = �(G) if �(G) � 8.It is known (see [5℄) that, for the 
ir
uit C5 on 5 nodes, �(C5) = 2 =#(1)(C5) < #(0)(C5). Pe~na, Vera and Zuluaga [17℄ 
onstru
t graphs G8, G11,G14 with, respe
tively, 5,8,11,14 nodes, that satisfy: �(Gn) = #(2)(Gn) forn = 8; 11; 14, �(G8) = 3 < �(1)(G8), �(G11) = 4 < �(2)(G11), and �(G14) = 5 <�(3)(G14). Therefore, the in
lusion Q(r)n � K(r)n is stri
t for r = 2.Let us mention a 
onsequen
e of the stri
t in
lusion Q(2)n � K(2)n for thedes
ription of the 
one K(2)n . The following suÆ
ient 
ondition for membershipin K(r)n has already been impli
itly mentioned earlier in the paper (e.g., in Se
tion3.2).Lemma 14. Let M be a symmetri
 n� n matrix and r � 1 an integer. If thereexist matri
es X(1); : : : ; X(n) satisfying (27) and for whi
h M �X(i) 2 K(r�1)n(for i = 1; : : : ; n), then M 2 K(r)n .
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, Monique LaurentProof. Dire
tly from the de
omposition (29). utFor r = 1, K(1)n = Q(1)n and the impli
ation of Lemma 14 holds as an equivalen
e,whi
h gives the 
hara
terization of the 
one K(1)n from [1,16℄. For r = 2 however,the reverse impli
ation does not hold sin
e Q(2)n is a stri
t subset of K(2)n .In order to prove relation (22) for any r and thus Conje
ture 1, one shouldprobably obtain a de
omposition (52) for the polynomial (Pi xi)rxTMx involv-ing also terms with j�j < r (while our proof in this paper involves only termswith j�j = r; r + 2).Note �nally that one 
an formulate the following sharpening of the bound#(r)(G): #(r)(G) := mins;t2R t subje
t to tI + sAG � J 2 K(r)n (55)whose dual formulation reads:max Tr(JX) subje
t to Tr(X) = 1; T r(AGX) = 0; X 2 C(r)n = (K(r)n )� (56)and is obtained by splitting the 
onstraint Tr((I + AG)X) = 1 into Tr(X) = 1and Tr(AGX) = 0. The bounds ~#(r)(G) (from (17)), #(r)(G) (from (55)) and#(r)(G) (from (7), (11)) satisfy:~#(r)(G) � #(r)(G) � #(r)(G):The se
ond inequality is obvious. For the �rst one take a matrix X that 
or-responds to x feasible for (17). Then XTr(X) is feasible for (56) and Tr(JX)Tr(X) =Tr(JX)Pni=1 xi �Pni=1 xi sin
e X � xxT � 0.For r = 0, the three bounds 
oin
ide ([5℄, see also Lemma 4). It is not 
learwhether they 
oin
ide for r � 1.
6.2. Some variations of Conje
ture 1The next lemma shows that a blo
k matrix belongs to the 
one K(r) if and onlyif its skeleton does. Combined with arguments in our proof of Theorem 2, it willenable us to derive Proposition 3 below.Lemma 15. Consider the matri
es:

M = �A bbT 
� ; M 0 = 0�A b bbT 
 
bT 
 

1A

with respe
tive sizes n and n+ 1. Then, M 2 K(r)n () M 0 2 K(r)n+1:



Semide�nite Bounds for the Stability Number of a Graph via SOS of Polynomials 25Proof. Assume that M 2 K(r)n . Then, the polynomial (Pni=1 yi)ryTMy (in thevariables y1; : : : ; yn) has a de
omposition of the form (52). In view of the shapeof the matrixM 0, the polynomial (Pn+1i=1 xi)rxTM 0x (in the variables x1; : : : ; xn,xn+1) 
an be written as (Pni=1 yi)ryTMy, after setting yi = xi for i � n � 1and yn = xn+ xn+1. Therefore, (Pn+1i=1 xi)rxTM 0x also admits a de
ompositionof the form (52), whi
h shows that M 0 2 K(r)n+1. The reverse impli
ation is easy(simply set the additional variable to zero). utProposition 3. For a graph G = (V;E) and an integer r � 1, we have:#(r)(G) � maxi2V #(r�1)(GnN(i)): (57)Proof. Set t := maxi2V #(r�1)(GnN(i)). Then, for any i 2 V , the matrix
t(I +AGnN(i))� J = � i V n i?i t� 1 �eTV n i? �e t(I +AGni?)� J �belongs to the 
one K(r�1)jV nN(i)j. Lemma 15 implies that the matrix

M �X(i) = � i? V n i?i? (t� 1)J �JV n i? �J t(I + AGni?)� J �from (30) belongs to K(r�1)n . In view of (29), this implies that M 2 K(r)n . utWe 
an now formulate some strengthenings of Conje
ture 1.Conje
ture 2. For any r � 1,#(r)(G) � r + maxS�V; S stable; jSj=r #(0)(GnS?): (58)
Conje
ture 3. For any r � 1,#(r)(G) � 1 + maxi2V #(r�1)(Gni?): (59)
Conje
ture 4. If i is an isolated node in G, i.e., N(i) = ;, then for any r � 0,#(r)(G) � #(r)(Gni) + 1: (60)Lemma 16. Conje
ture 4 =) Conje
ture 3 =) Conje
ture 2 =) Conje
ture 1.Proof. The impli
ation: Conj. 4 =) Conj. 3 follows using Proposition 3, and theimpli
ations: Conj. 3 =) Conj. 2 =) Conj. 1 are obvious.
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, Monique LaurentHen
e the whole question boils down to showing that the parameter #(r)(:)behaves well on a graph with an isolated node. Note that the 
ondition (60) is anatural requirement whi
h holds, e.g., for the parameter �(:) in pla
e of #(r)(:), orfor the parameter las(r)(:) (easy to 
he
k). A reason why the parameter las(r)(:)is mu
h easier to handle than the new bound #(r)(:) might lie in the fa
t thatthe formulation of the Lasserre bound in
orporates in an expli
it way the 0/1
ondition, while the formulation of #(r)(:) does not.Theorem 2 
laims that Conje
ture 2 holds for r � min(6; �(G)�1). For r = 1Conje
tures 2 and 3 are identi
al and hold; re
all (10) whi
h was �rst provedby de Klerk and Pase
hnik [5℄. Conje
ture 4 is true for r = 0. Indeed set t :=1+#(0)(Gni). Then (t�1)(I+AGni)�J 2 K(0)n�1 and M := t(I+AG)�J 
an bede
omposed as in (30),(31) (with i? = fig as i is isolated). The �rst matrix in thisde
omposition (31) belongs to K(0)n (sin
e adding a zero row/
olumn to a matrixin K(0)n�1 yields a matrix in K(0)n ), the se
ond matrix is positive semide�nite,whi
h shows M 2 K(0)n and thus #(0)(G) � t. Conje
ture 4 appears to failfor r = 1. Indeed, J. Pe~na, J Vera, and L. Zuluaga (personal 
ommuni
ation)veri�ed numeri
ally that #(1)(G) > 11 while #(1)(Gni) = 10, where G is thegraph obtained by adding 9 isolated nodes to the 
ir
uit C5 and i is one of theisolated nodes.
6.3. Another interpretation of the bound #(r)(G)We �nally observe that the dual formulation (11) for #(r)(G) 
an be interpretedas the Shor relaxation of a polynomial optimization program giving yet anotherformulation of �(G). For a graph G = (V;E) and an integer r � 0, 
onsider theprogram:max  Xi2V x2i!r+2 subje
t to  Xi2V x2i!r v(x)T (I +AG)v(x) = 1: (61)Lemma 17. For any integer r � 0, �(G) is equal to the optimum value of (61).Proof. Let � denote the maximum value of (61). Given a stable set S � V ,the ve
tor x := t�S where t := jSj� r+12(r+2) , is feasible for (61) with obje
tivevalue jSj, whi
h shows �(G) � �. Conversely, if x is feasible for (61), thenv(x)T (�(G)(I+AG)�J)v(x) � 0, sin
e the matrix �(G)(I+AG)�J is 
opositive.This implies that � � �(G). utFollowing Lasserre [7℄, one 
an de�ne a hierar
hy of relaxations for the poly-nomial optimization problem (61). As the degree of the polynomials involved in(61) is 2r + 4, the Shor relaxation of the problem (i.e., the relaxation of lowestorder in the hierar
hy; see [7℄ for details) reads:max P�2I(n;r+2) (r+2)!�! y2�subje
t to Nr+2(y) � 0P�2I(n;r+2) r!�! (�T (I +AG)� � �T e)y2� = 1: (62)
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all the de�nition of the matrix Nr+2(y) from De�nition 1.) In view of (9)and (15), the obje
tive fun
tion reads: Tr(J C(y)) and the 
onstraint reads:Tr((I +AG) C(y)) = 1. Therefore, the program (62) is identi
al to the program(11) giving the dual formulation of #(r)(G).
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