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Given polynomialsiy, ..., Ay, € Rlz] = Rz, ..., 2]

e Compute all commonreal roots (assuming finitely many), i.e.
compute theeal variety Vx (/) of the ideall := (hy,..., hy)

e Find a basis of theeal radical ideal /T

VWw(l) =4{veR"| f(v)=0Vfel}
VAl ={f € R|z] | 3m € N s; € R|z] f2m+zjs?€]}

I(Ve(D)):={f eRlz]| flv)=0Vv e Vg(])}
Real Nullstellensatz: v/ 1=1(Vx (1))
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A small example

Let I = ((22 + 22)2) C Rlzy, 22]

VR([) — {(070)}
Real radical ideal: Z(V& (1)) = (x1, x2)

V@([) = {(ajl,zl:iflfl) ‘ Tr1 € (C}
Radical ideal: Z(V(I)) = (22 + 22)

Hilbert Nullstellensatz:

I(VeI) =VI:={feRz]|ImeN [ e}
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1. A semidefinite characterizationof +//
[as the kernel of some positive semidefimement matrik

2. Assuming|Vk ()| < oo, an algorithm for finding:

e a generating sebprder or Grobner basi9 of v//
e thereal variety V()

Remarks about the method:

e real algebraicin nature: no complex roots computed

e Works if Vg (1) Is finite (even ifV(7) IS not)

e No preliminary Grobner basis dfis needed

e numerical based on semidefinite programming (SDP)
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1. The moment-matrix method fork (/)

2. Adapt the moment-matrix method fok (/) [drop PSD]

3. Relate to the ‘prolongation-projection’ algorithm of
Zhi and Reid forV/c (1)

4. Adapt the prolongation-projection algorithm &g (1)
[add PSD]

5. Extensions?
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Problem: Given an ideal C R|z| with |V ()| < oo
e Compute thédcomplex) variety V(1)
e Find a basis of theadical ideal v/

V(1) can be computed e.g. with:
e Homotopy methods[Sommese, Verschelde, Wampler, ...]

e Elimination methods: Find polynomials in/ in ‘triangular
form’ f1 € Rlzy], fo € Rlxy,x2], ..., fn € Rlxy, ..., 2z, (VIa A
Grobner basis for a lexicographic monomial ordering
[Buchberger,...])
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e Linear algebra methods: Find the multiplication matrices
In R|x|/I and compute their eigenvalues
~~ Theeigenvalue methofbtetter, Moller, Stickelberger,...]

Theorem [Seidenberg 1974]/1 = (I U {q1,....q,}), where
q; 1S the square-free part pf, the monic generator afn R|x;].

Linear algebra in the finite dimensional space|z|//
~~ Need a linear basis @ |x| /I

Basic fact;| dimR[z]/I < oo <= |Vc(I)| < o0
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oeleth=2%—qag_ 1291 — ... —a1x —ag andl = (h)
e B={1,z,...,2% '} is alinear basis oR[z]/I

e The matrix of the multiplication (byz) operatof in R/I is:

r ... z@1 4
1 {0 ... 0 a )

T 1 al

Mg = : . ;
..Td_l \ 1 ad._lj

det(M, — tI) = (—1)%h(¢)

Hence: The eigenvalues af/, are theroots of .
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mys: Rlz]/I — Rlz]/I

] —  [fp] IS the‘multiplication by f

Inear operator ik |z] /I and let)/; be the matrix ofn, in a
baseB of R[z] /1.

1. Theeigenvaluesof M, are{f(v) | v € Vc(I)}.

2. Theeigenvectorsof M give the points € V¢ (1):

M7= f(v)6 YveVel) |wherec, == (b(v))ies

3. WhenB is a monomial basis dk|x| /T with 1 € B, a
(border) basisof I can be read directly from the
multiplication matrices\/,.,, ..., M, .
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e Typically, B is the set ostandard monomialsandd is a
Grobner basisfor a given monomial ordering (e.g. via
Buchberger’s algorithm)

e More generally: Assumg8 = {b; = 1,bs,...,by} IS @ Set Of
monomials withborder 08 := (z1BU...Ux,B) \ B.
Write any border monomial

ibj = /)R g\
~ ~—
eSpanB) el

Then G := {4\ | ;b; € OB} is a (border) basis af and

carries thesame informationas the multiplication matrices
My, ..., My,
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To remember:

To find V(1) and a basis of/7 ...

... it suffices to have bnear basis B of R[z]/+v/I and the
multiplication matrices in R[z]/v/T !
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For f € R|x]

Hermite bil form: Hy: Rlz]/Ix Rlz]/T — R
ermite bilinear form: (g,h) — Tr(Mygp)

Theorem: For f =1
rank(Hp) = |V ()|, SignHy) = |Ve(1)], Ker (Hy) = V1

o rank(Hy) = [{v € Ve(I) | f(v) # 0}

o Sign(Hy)
= H{ve V()| f(v) >0} = v e V()| f(v) <O}
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v e Vr(I) ~ L, € Rlx|* [set of linear functionals o |x|]
L, is theevaluation atwv, defined byL,(p) := p(v) Vp € R|z]
Properties of L,,:

e [, vanishes o Ly(hjz®) =0 Vj Vo

e L, is positive on squares Ly,(p*) >0 Vp € R[]

Themoment matrix M (L,) = (L,(z%2")),. 5 is positive semidefinite

Note: KerM (L,) = I(v)
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Fort € Nand[L € R|x|;, consider the ‘truncated’ conditions:
(LC) L vanishes orH;, where

H; = {h;z% with degree at most} C I N R|z];

(PSD) L Is positive on the squares of degree at nipse.

M4/2(L) = 0

ICt = {L c R[:C]? ‘ L(p) = 0 Vp € H;, MU/QJ (L) - O}

Obviously, IC; © cong L, | v € Vg(I)}
Theorem: 3t > s> D 74(Ky) =condms(Ly) | v e Vr(I)}
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Lemma: The following are equivalent fok € K;:
(1) L lies In the relative interior ok; (L IS generig
(2) rank M 4 /5| (L) IS maximum

(3) KerM|,/o((L) Is minimum, I.e.

KerMLt/2J (L) C KerMLt/QJ (L/) VL/ S /Ct

=: N; generic kernel

Lemma:| N: C N1 C...C VI

Proof: ./\/;5 C KerMLt/Qj (Lv) C [(2}) Vv € V]R([)
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Theorem 1: v/ = (\;) for ¢ large enough.

ldea of proof: Show that, for large enough); contains a
given basigg,..., g1} of VI

e Real Nullstellensatz;?™ + 5, 52 = 5

m

j=1 wih;

o \;is “real ideal like": ¢?™ + 3. 52 € Ny = g1 € My

Question: How to recognize when/; generates,// ?

Next: An answer in the casér (/)| < oo

Computing real radical ideals and real roots of polynomigiagions with semidefinite programming — p.16



Theorem 2: Let L be agenericelement of;, D := maxdeg(h;).
Assume one of the following twiatness conditionsholds:

(F1) rank M, (L) = rankM,_1 (L) for someD < s < |t/2]
(Fd)rankM(L) = rankM,_4(L) forsomed = [ D/2| < s < |t/2].

Then: e V1 = (KerM, (L))
e Any column baseB of M,_1(L) is a base oR[z]/v/]
e The multiplication matrices can be constructed frofp(y)
o T, (IC;) = con€mas(Ly) | v e Vr(I)}
= CONE (V%) |4<2s | v € VR(I)}-
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Lemma: Let L € R[z]*.
e KerM (L) Is an ideal.
o If M(L) > 0,thenKerM (L) is real radical.

Flat Extension theorem|[Curto-Fialkow 1996]
Let L € Rz]5..

If rankM(L) = rankMs_1(L), then

there exists fat extension. € R[z]* of L,

~

l.e., satisfyingrank M (L) = rank M (L).

ldea of proof: We know how to construct the extension using

the polynomials inKerM,(L)).
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Finite Rank Moment Matrix theorem [Curto-Fialkow 1996]
Let L € Rlz]*. If M(L) = 0and rankM (L) =r < oo,

thenL has &finite r-atomic representing measuiee.
L=>:_1\L,,where\; >0 and

{vi,..., 0.} = V(KerM (L)) C R™.

Proof: e I := KerM (L) Is a real radical ideal
o / Is O-dimensional, adim R[z|/] = r
o V(I)={v1,...,v} CR"

Then, L = "', L(p?)L,,, Wherep; are interpolation polyno-

mials atv;.
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AssumerankM (L) = rankM_1(L).
Show(KerM, (L)) = V1.

e By the Flat Extension theorems, (L) has aflat extension
L € R[z]*, i.e.rankM (L) = rankM,(L).

~

o KerM (L) = (KerM(L)).

~ ~

e AsM(L) >0, KerM(L) Is areal radical ideal.

We have: I C (KerMy(L)) C V1
(LC) L generic
(

This implies: (KerM, (L)) = VI
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Remains to showiry(K;) = cong L, | v € Vr(I)}.

Let L € K;.
e (F1) holds: rankM(L) = rankM,_1 (L) =: 1" (< r).

e Thusm (L) has a flat extension.

e By the Finite Rank Moment Matrix theorem,has a finite
r’-atomic measure:

~

L = Zf:l \iL,,, where); > 0 and
{vi,..., 00} =V (KerMg(L)) C Vr(I).

Thus, mos(L) € cong L, | v € Vg(1)}.
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Input:  hy,...,hy € Rz
Output: B base ofR[z]/v/1
The multiplication matrices/,., in R[z]/ VI

Algorithm: Fort > D
Step 1: Compute a generic elemente K.
Step 2: Check if(F1) or (Fd) holds.

If yes return a column basi§ of M,_;(L) andM,,, = Mg' P,
e \z:= principal submatrix of\/;_; (L) indexed byB
e P;:= submatrix ofM,(L) with rows in B3 and columns inx; 5.

If no, go to Step 1 witht — ¢ + 1.

Theorem: The algorithm terminates.
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(F1)

o Fort > ty, KerM), 9 (L) contains a Grobner base
{g1,...,qg1} of VI for a total degree ordering.

o 5:={by,...,by}: setof standard monomials
~ base ofR[z]/V/1.

Set: s := 1 + maxyep deg(b) and assume > tq, |t/2] > s.

N L
For|af < s, writez® =) Abi+ Y wg
i=1 I=1

~— SN——
deg<s—1  deg<|a|<s<[t/2]

Thus: 2% — Zi\il A;b; € KerMLt/2J (L)
Thatis: rankM(L) = rankMs_1(L).
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Considerl = (22 + x3).

Thus,[Ve(I)| = oo, Ve(I) = {(0,0)}, VI = (z1,22).

Any L € K, satisfies:
(LC) L(x% + x3) = 0.

1 T1 T9
1 L(l) L(:El) L(:EQ)
(PSD)Ml(L) = I L(CE%) L(a:lxg) ~ 0
T L(x3)

Thus, L(z%) = L(235) = 0 ~ L(x1) = L(x2) = L(z122) = 0

Hence,KerM; (L) Is spanned by, zo for genericL € K,.
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How to find a genericL € K; ?
Solve the SDP programuing i, 1 with an interior-point
algorithm using the ‘extended self-dual embedding prgpert

Then the central path converges to a solution in the relative
Interior of the optimum face, i.e., togenericpoint L € K;.

How to compute ranks of matrices ?

We use SVD decomposition, but this is a sensitive numerical
ISsue ...
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e Try to extract roots as soon as a sedf independent
columns is found for whichank Mg (L) = rankMp+ (L),

whereBT™ = BUx{1BU...Ux,B.

e |f the multiplication matrices commute, one can extract
V(J), whereJ is a 0-dimensional ideal with C J C v/1.

o If Bis connected to lthenJ = /T
(and commutativity Is for free).

Generalized flat extension theorenjLa-Mourrain 09]
If rankMp(L) = rankMp+ (L), whereB Is connected to 1,
thenZ has a flat extension f&|z]*.
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Omit the PSD conditioand work with thdinear space:
Ky =H;i ={L € Rlz)s * | L(hjz®) =0 if deg(h;z®) <t}

Thesamealgorithm applies: Fot > D

e PickgenericL € K; [l.e. rank M (L) max. Vs < |t/2]]
[choosel € K; randomly]

e Check if the flatness conditigir1) or (Fd) holds.

e If yes, find a basis oR|x|/J whereJ := (KerM,(L))
satisfies/ C J C /I and thus/c(.J) = Ve (1).

e If Not, iterate witht + 1.

Note: Equality J = I whenR|z|/I Is a Gorenstein algebra.

Computing real radical ideals and real roots of polynomigiagions with semidefinite programming — p.27



The inclusion/ C (KerM,(L)) C +/I may be strict for any
genericL.

Example: ForI = (22,23, z122), Ve (I) = {0}, VI = (21, 22),
dimR[z]/I = 3, dimR[z]/v/I = 1, while
dim R|z]/(KerM,(y)) = 2 for any generigy and anys > 1!

Recall: The algebrad := R|z]/I Iis Gorensteinf there exists a
non-degenerate bilinear form ohsatisfying(f, gh) = (fg, h)
Vi ,g,h € A, le.Ifthere existd. € K, with [ = KerM (L)

Hence: 3L € K; s.t.rankM,(L) = rankM_1(L) and
I = (KerMg(L)) iff Ais Gorenstelin.

Computing real radical ideals and real roots of polynomigiagions with semidefinite programming — p.28



Example 1: the moment-matrix algorithm for real/complex roots

I = (CB% — 2x1x3 + 5, xlx% + xox3 + 1, 3:1:% —8z1z3), D =3,d=2

Ranks of M, (y) for genericy € K, IC; :

t=2 3 4 5 6 7 8 9
s=0 1 1 1 1 1 1 1 1
s=1 4 4 4 4 4 4 4 no PSD ~~ 8 complexroots
s =2 8 8 8 8 8
s = 11 10 9
s=4 12 10
t=2 3 4 5 6
s = 1 1 1 1
5§ = 4 4 4 2 2 with PSD ~-» 2 realroots
s =2 8 8 2
s=3 10

Computing real radical ideals and real roots of polynomiplaions with semidefinite programming — p.29



8 complexroots /2 realroots:

vl = —1.101, —2.878, —2.821 ]

v2 = 0.07665 + 2.2431,0.461 + 0.4972,0.0764 + 0.008342 ]

v3 = 0.07665 — 2.2437,0.461 — 0.4977,0.0764 — 0.008347 ]

Vg = —0.081502 — 0.93107%, 2.350 + 0.04317, —0.274 + 2.199% ]
V5 = —0.081502 4 0.931072, 2.350 — 0.0431z, —0.274 — 2.1993 ]
Ve = 0.0725 + 2.2372, —0.466 — 0.4642,0.0724 + 0.00210¢ ]

vr = | 0.0725 — 2.2377, —0.466 + 0.4642,0.0724 — 0.002102 ]

vg = | 0.966, —2.813,3.072 ]
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I = (5az? — 6a3‘:1’a:2 + azlazg + 2x123, —2x?x2 + 2x%x§ + 2x013, x% + a:% — 0.265625)

D =9,d=5,Ver(I)| = (I)] =20
order rank sequence of extract. ordes | accuracy | comm. error
t | M) (0<s < [t/2))
10 148162534 — — —
12 13915222632 — — —
14 1381012162024 3 0.12786 | 0.00019754
16 1488812162024 4 4.6789e-5| 4.7073e-5

Linear basisB = {1, z1, 2, 3, 7, 122, 173, T2x3 } ~> border basig7 of size10

( = (—0.515, —0.000153, —0.0124) =z = (—0.502,0.119,0.0124)
_ xz3 = (0.502,0.119,0.0124) x4 = (0.515, —0.000185, —0.0125)
Real solutions
x5 = (0.262,0.444, —0.0132) xg = (—2.07e-50.515, —1.27e-6)
\ = (—0.262,0.444, —0.0132) xg = (—1.05e-5 —0.515, —7.56e-7)
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Theorem: If (F1)holds, I.e.

rank Mg(L) = rankM,_1(L) forgenericL € Ky, D < s < |t/2]

then| dimmos(Ky) =dimmos—1(Kt) = dim mos(Kpy1)

Theorem (based on [Zhi-Reid 2004])1f for someD < s <t
(D) dimmg(Ky) = dimmg_1(K;) = dim g (Kyqq)

then one can construct the multiplication matrice®pf| /1
and extract/c (7).

Hence: The stopping criterioD) is satisfied earlier thaft1).
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Example 1: I = (2 — 2z123 + 5, 125 + 2923 + 1, 325 — 8x123)

t=2 3 4 5 6 7 8 9
Complex roots
s=20 1 1 1 1 1
s = 4 4 4 4 4 4 4 4
s =2 8 8 8 8 8
rank M3 (L)=rankMs (L)
s=3 11 10 9
for L € Ko
s=4 12 10
t=3 5 6 7 8 9
s=1 4 4 4 4 4
s =2 8 8 8 8 8 8 8 dim 73 (Kg)
s = 11 10 9 8 8 8 8 = dim w2 (Kg)
s=4 12 10 9 8 8 =dim 73 (K7)
s=25 12 10 9
s=26 12 10
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¢ In thecomplexcase (D) compares the dimensions of
ms(Hi), ms—1(Hi), andms((H;)5).

Notation: Hf =H: U1 He U ... UxyHe=Hip1
e In thereal casedim(K;) = dim(G;"), where

Gri=He U{fx® | f € N, deg(x®) < [t/2]}

Theorem: If forsomeD < s <t
(D+) dim WS(Q#) = dim ws_l(gtl) = dim WS((Q;L)L)

then one can construct the multiplication matriceRof|/.J,
where/ C J C v/, and extract/z (/) = Ve(J) NR™.
Moreover,J = /I if dim7,(Gi") = |Ve(I)].
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Theorem: The flatness criterio(F1):
rank Mg (L) = rankM,_1(L) for genericL € K;

IS equivalentto the strong version of thi@+) criterion:

(D++) dim WQS(Q#) = dim Ws_l(g#) = dim WQS((Q;_)J_)

Thus: the stopping criterioiD+) Is satisfied earlier thaf1).

But: the algorithm still needs to be improved ... as it handles
large matrices (indexed by the full set of degteeonomials)
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Example 1: I = (2 — 2z123 + 5, 125 + 2923 + 1, 325 — 8x123)

t=3 4 5 6 Real roots
s=0 1 1 1
s = 4 4 2 2
s =2 8 8 2 rank Mo (L)=rankM; (L)
s=3 10 for L € Kg

Gs Ga | G« Gf | G5 G | Go G
s=11| 4 4 2 2 2 2 dim 72 (G&")
s=2| 8 8 2 2 2 2 =dim 71 (G5)
s=3 |11 10 | 10 2 2| 2 2 =dimm2((G5)*)
s=14 12 10 | 3 3 | 2 2
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e Inspect ‘sparse’ sets of monomials instead of full degré® se

e Use a better stopping criterion - e.g. use the sparse flatness
condition.

e Adapt other known efficient algorithms for complex roots to
real roots by incorporating SDP conditions.

For instance, combine with Grobner/border bases methods:
add polynomials of/I (coming from kernels) on the fly...

e Extension to the positive dimensional case ?
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