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Abstract. In this note we prove a generalization of the flat extension
theorem of Curto and Fialkow (Memoirs of the American Mathematical
Society, vol. 119. American Mathematical Society, Providence, 1996) for
truncated moment matrices. It applies to moment matrices indexed by
an arbitrary set of monomials and its border, assuming that this set is
connected to 1. When formulated in a basis-free setting, this gives an
equivalent result for truncated Hankel operators.
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1. Introduction. Throughout this note, K denotes a field, K[x] = K[x1, . . . , xn]
is the ring of multivariate polynomials in n variables x = (x1, . . . , xn) with
coefficients in K, Mn = {xα := xα1

1 · · ·xαn
n | α ∈ N

n} is the set of monomials
in the variables x, and Mn,t (resp., K[x]t) is the set of monomials (resp., of
polynomials) of degree at most t. The dual basis ofMn in the dual space K[x]∗

is denoted as Dn = {dβ | β ∈ N
n}.

The natural action of K[x] on K[x]∗ is denoted by

(p,Λ) ∈ K[x]×K[x]∗ �→ p · Λ ∈ K[x]∗

where (p · Λ)(q) := Λ(pq) for q ∈ K[x].

1.1. The moment problem. In this section, we consider K = R. The moment
problem (see, e.g. [1,7]) deals with the characterization of the sequences of
moments of measures. Given a probability measure µ on R

n, its moment of
order a = xα ∈Mn is the quantity

∫
xαµ(dx). The moment problem concerns

the characterization of the sequences y = (ya)a∈Mn
that are the sequences of

moments of some nonnegative Borel measure µ, in which case one says that
µ is a representing measure for y. Let Λ ∈ R[x]∗ denote the linear form on
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R[x] associated to the sequence y, defined by Λ(p) =
∑

a paya for any polyno-
mial p =

∑
a∈Mn

paa ∈ R[x]. Then, y has a representing measure µ precisely
when Λ is given by Λ(p) =

∫
p(x)µ(dx) for all p ∈ R[x]. A well known nec-

essary condition for the existence of a representing measure is the positivity
of Λ, i.e. Λ(p2) ≥ 0 for all p ∈ R[x], which is equivalent to requiring that
the (infinite) matrix M(y) := (yab)a,b∈Mn

be positive semidefinite. As is well
known, this necessary condition is also sufficient in the univariate case (n = 1)
(Hamburger’s theorem [8]). However, it is not sufficient in the multivariate
case, since for any n ≥ 2 there exist nonnegative polynomials on R

n that
are not sums of squares of polynomials (cf., e.g. [17] for details). However,
positivity is sufficient for the existence of a representing measure under some
additional assumptions. This is the case, for instance, when the sequence y is
(exponentially) bounded [2,3]. The next result of Curto and Fialkow [4] shows
that this is also the case when the matrix M(y) has finite rank (cf. also [15,16]
for a short proof).

Theorem 1.1. [4] If M(y) is positive semidefinite and the rank of M(y) is
finite, then y has a (unique) representing measure (which is finitely atomic
with rank M(y) atoms).

In the univariate case n = 1, a matrix of the form M(y) is a Hankel matrix.
In the multivariate case, M(y) is known as a generalized Hankel matrix (see
[19]) or moment matrix (see [16]). One can also define truncated moment matri-
ces: A matrix M indexed by a subset C ⊆ Mn is said to be a moment matrix
if Ma,b = Ma′,b′ for all a, b, a′, b′ ∈ C with ab = a′b′. Thus its entries are given
by a sequence y = (yc)c∈C·C , where C · C := {ab | a, b ∈ C}, and we can write
M = MC(y). When C = Mn,t, we also write M = Mt(y), where the entries
of y are indexed by Mn,2t. Such matrices arise naturally in the context of
the truncated moment problem, which asks for the existence of a representing
measure for a truncated sequence indexed by a subset of monomials. A solu-
tion to the truncated moment problem would in fact imply a solution to the
moment problem. Indeed, Stochel [20] shows that a sequence y = (ya)a∈Mn

has a representing measure if and only if the truncated sequence (ya)a∈Mn,t

has a representing measure for all t ∈ N.

1.2. The flat extension theorem of Curto and Fialkow. Curto and Fialkow
studied intensively the truncated moment problem (cf., e.g. [4–6] and further
references therein). In particular, they observed that the notion of flat exten-
sion of matrices plays a central role in this problem. Given matrices MC and
MB indexed, respectively, by C and B ⊆ C, MC is said to be a flat extension
of MB if MB coincides with the principal submatrix of MC indexed by B and
rank MC = rank MB. Curto and Fialkow [4] show the following result for
truncated moment matrices.

Theorem 1.2. (The flat extension theorem [4]) For a sequence y = (ya)a∈Mn,2t
,

if Mt(y) is a flat extension of Mt−1(y), then there exists a (unique) sequence
ỹ = (ỹa)a∈Mn

for which M(ỹ) is a flat extension of Mt(y).
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The flat extension theorem combined with Theorem 1.1 directly implies
the following sufficient condition for existence of a representing measure.

Corollary 1.3. For a sequence y = (ya)a∈Mn,2t
, if Mt(y) is positive semidefinite

and Mt(y) is a flat extension of Mt−1(y), then y has a representing measure.

Curto and Fialkow [5] show moreover that the flat extension condition is in
some sense necessary and sufficient for the existence of a representing measure.
More precisely, they show that a sequence y = (ya)a∈Mn,2t

has a representing
measure if and only if it can be extended to a sequence y′ = (y′

a)a∈Mn,2t+2k+2

(for some k ≥ 0) for which Mt+k+1(y′) is a flat extension of Mt+k(y′).
The proof of Theorem 1.2 relies on a “truncated ideal like” property of

the kernel of flat moment matrices (see (2.2) below). This permits to set up a
linear system of equations in order to construct the flat extension Mt+1(ỹ) of
Mt(y) (and then iteratively the infinite flat extension M(ỹ)). This system is
largely overdetermined and the proof of existence of a solution involves techni-
cal details. See also [16] for an exposition of this proof. We propose in this note
a simple alternative proof, which applies more generally to truncated moment
matrices indexed by (suitable) general monomial sets (see Theorem 1.4).

1.3. A generalized flat extension theorem. We need some definitions to state
our extension of Theorem 1.2. For C ⊆ Mn,

C+ := C ∪
n⋃

i=1

xiC = {m,x1m, . . . , xnm | m ∈ C} and ∂C := C+ \ C

are called, respectively, the closure and the border of C. The set C ⊆ Mn is
said to be connected to 1 if 1 ∈ C and every monomial m ∈ C \ {1} can be
written as m = xi1 · · ·xik

with xi1 , xi1xi2 , . . . , xi1 · · ·xik
∈ C. For instance, C is

connected to 1 if C is closed under taking divisors. For example, {1, x2, x1x2}
is connected to 1 but {1, x1x2} is not. We now state our main result.

Theorem 1.4. Consider a sequence y = (ya)a∈C+·C+ , where C ⊆ Mn is finite
and connected to 1. If MC+(y) is a flat extension of MC(y), then there exists a
(unique) sequence ỹ = (ỹa)a∈Mn

for which M(ỹ) is a flat extension of MC+(y).

The proof is delayed till Section 2. Note that Theorem 1.2 follows directly
from Theorem 1.4 applied to the case C =Mn,t−1. Thus our result can be seen
as a sparse version of Theorem 1.2, which applies to a more general monomial
set C, not necessarily the full set of monomials up to a given degree. We now
give an example showing that the assumption that C is connected to 1 cannot
be omitted.

Example. For n = 1, consider the set C = {1, x3}, which is not connected to
1, with ∂C = {x, x4}. Consider the sequence y ∈ R

C+·C+
defined by y1 = yx =

yx2 = 1, yx3 = yx4 = yx5 = a and yx6 = yx7 = yx8 = b, where a, b are scalars
with b �= a2. Then, rank MC+(y) = rank MC(y) = 2. If there is an extension
M(ỹ) of MC+(y), then its principal submatrix indexed by C+ ∪ {x2} has the
form:
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MC+∪{x2}(ỹ) =

⎛

⎜
⎜
⎜
⎜
⎝

1 x3 x x4 x2

1 1 a 1 a 1
x3 a b a b a
x 1 a 1 a a
x4 a b a b b
x2 1 a a b a

⎞

⎟
⎟
⎟
⎟
⎠

However, if it is a flat extension of MC+(ỹ), then the first and third columns
coincide (giving a = 1), as well as the second and fourth columns (giving
a = b). Thus, 1 = a = b, contradicting our choice b �= a2. Hence no flat
extension exists.

1.4. Basis-free reformulation. Here we reformulate our result in a basis-free
setting. Moment matrices correspond indeed to choosing the monomial basis
Mn in the polynomial ring K[x] and its dual basis Dn in the dual space K[x]∗.
Given Λ ∈ K[x]∗, the operator

HΛ : K[x] → K[x]∗

p �→ p · Λ
is known as a Hankel operator. Its matrix with respect to the bases Mn and
Dn is precisely the moment matrix (Λ(xα+β))α,β∈Mn

= M(y) of the sequence
y = (Λ(a))a∈Mn

. The kernel of HΛ,

ker HΛ = {p ∈ K[x] | Λ(pq) = 0 ∀q ∈ K[x]} ,

is an ideal in K[x]. Moreover, when K = R and Λ is positive, i.e. when Λ(p2) ≥ 0
for all p ∈ R[x], ker HΛ is a real radical ideal [15]. Theorem 1.1 means that
Λ ∈ R[x]∗ is positive with rank HΛ <∞ if and only if there exists a nonnega-
tive finite atomic measure µ for which Λ(p) =

∫
p(x)µ(dx) for all p ∈ R[x].

Truncated Hankel operators can be analogously defined. Given C ⊆ Mn

and Λ ∈ (Span(C+ · C+))∗, the corresponding Hankel operator is

HC+

Λ : Span(C+)→ Span(C+)∗

p �→ p · Λ
and its restriction to Span(C) is HC

Λ : Span(C) → Span(C)∗. We have the
following mappings:

Span(C)
ker HC

Λ

σ1←− Span(C)
ker HC+

Λ ∩ Span(C)
σ2−→ Span(C+)

ker HC+

Λ

(1.1)

where σ1 is onto and σ2 is one-to-one, so that

dim
Span(C)
ker HC

Λ

≤ dim
Span(C)

ker HC+

Λ ∩ Span(C) ≤ dim
Span(C+)
ker HC+

Λ

. (1.2)

Thus, rank HC+

Λ = rank HC
Λ (in which case we also say that HC+

Λ is a flat
extension of HC

Λ) if and only if equality holds throughout in (1.2), i.e. both σ1

and σ2 in (1.1) are isomorphisms or, equivalently, if

Span(C+) = Span(C) + ker HC+

Λ and ker HC
Λ = ker HC+

Λ ∩ Span(C).
Theorem 1.4 can be reformulated as follows.
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Theorem 1.5. Let Λ ∈ (Span(C+ · C+))∗, where C ⊆ Mn is finite and con-
nected to 1, and assume that rank HC+

Λ = rank HC
Λ. Then there exists (a

unique) Λ̃ ∈ R[x]∗ for which HΛ̃ is a flat extension of HC+

Λ , i.e. Λ̃ coincides
with Λ on Span(C+ · C+) and rank HΛ̃ = rank HC+

Λ .

1.5. Border bases and commuting multiplication operators. We recall here a
result of [18] about border bases of polynomial ideals that we exploit to prove
our flat extension theorem. Let B := {b1, . . . , bN} be a finite set of distinct
monomials. Assume that, for each border monomial xibj ∈ ∂B, we are given a
polynomial of the form

g(ij) := xibj −
N∑

h=1

a
(ij)
h bh where a

(ij)
h ∈ K.

The set

F :=
{

g(ij) | i = 1, . . . , n, j = 1, . . . , N with xibj ∈ ∂B
}

(1.3)

is known as a border prebasis [10] or a rewriting family for B [18]. When the
set B contains the constant monomial 1, one can easily verify that B is a gen-
erating set for the quotient space K[x]/(F ), where (F ) is the ideal generated
by the set F . When B is connected to 1, Theorem 1.6 below characterizes the
case when B is a basis of K[x]/(F ), in which case F is said to be a border basis
of the ideal (F ). For this, for each i = 1, . . . , n, consider the linear operator:

χi : Span(B) → Span(B)

bj �→ χi(bj) =
{

xibj if xibj ∈ B,
∑N

h=1 a
(ij)
h bh if xibj ∈ ∂B

(1.4)

extended to Span(B) by linearity. When B is a basis of K[x]/(F ), χi corre-
sponds to the “multiplication operator by xi” from K[x]/(F ) to K[x]/(F ) and
thus the operators χ1, . . . , χn commute pairwise. The next result of [18] shows
that the converse implication holds when B is connected to 1; this was also
proved later in [10] when B is closed under taking divisors.

Theorem 1.6. [18] Let B ⊆Mn be a finite set of monomials which is connected
to 1, let F be a rewriting family for B as in (1.3), and let χ1, . . . , χn be defined
as in (1.4). The set B is a basis of the quotient space K[x]/(F ) if and only if
the operators χ1, . . . , χn commute pairwise.

The proof of our generalized flat extension theorem is an adaptation of this
result to kernels of Hankel operators, where we omit the assumption that B is
connected to 1.

1.6. Contents of the paper. Section 2 contains the proof of our generalized flat
extension theorem and we mention some applications in Sect. 3. In particular,
we observe that Theorem 1.2 is an ‘easy’ instance of our flat extension theorem
(since one can prove existence of a basis connected to 1). We also point out
the relevance of the flat extension theorem to polynomial optimization and to
the problem of computing real roots to systems of polynomial equations.
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2. Proof of the flat extension theorem. We give here the proof of Theorem 1.5
(equivalently, of Theorem 1.4). We will often use the following simple obser-
vations, which follow directly from the assumption that rank HC+

Λ = rank HC
Λ:

For all p ∈ Span(C+),

p ∈ ker HC+

Λ
def.⇐⇒ Λ(ap) = 0 ∀a ∈ C+ ⇐⇒ Λ(ap) = 0 ∀a ∈ C, (2.1)

p ∈ ker HC+

Λ and xip ∈ Span(C+) =⇒ xip ∈ ker HC+

Λ . (2.2)

Our objective is to construct a linear form Λ̃ ∈ K[x]∗ whose Hankel operator
HΛ̃ is a flat extension of HC+

Λ .
Let B ⊆ C for which rank HC+

Λ = rank HB
Λ = |B|. Note that we can

assume that 1 ∈ B. Indeed, if no such B exists containing 1, then Λ(p) = 0
∀p ∈ Span(C+) and one can easily verify that this implies that Λ is identically
zero, in which case the theorem trivially holds.

From the assumption: rank HC+

Λ = rank HB
Λ = |B|, we have the direct sum

decomposition: Span(C+) = Span(B)⊕ ker HC+

Λ , and thus

∀p ∈ Span(C+) ∃! π(p) ∈ Span(B) such that

f(p) := p− π(p) ∈ ker HC+

Λ . (2.3)

Then the set

F := {f(m) = m− π(m) | m ∈ ∂B}
is a rewriting family for B and, for i = 1, . . . , n, the linear operator χi in (1.4)
maps p ∈ Span(B) to χi(p) = π(xip) ∈ Span(B). We show that χ1, . . . , χn

commute pairwise. Set K := ker HC+

Λ .

Lemma 2.1. χi ◦ χj = χj ◦ χi.

Proof. Let m ∈ B. Write π(xim) :=
∑

b∈B λi
bb (λi

b ∈ R). We have:

χj ◦ χi(m) = χj

(
∑

b∈B
λi

bb

)

=
∑

b∈B
λi

bχj(b) =
∑

b∈B
λi

b(xjb− f(xjb))

= xj

(
∑

b∈B
λi

bb

)

−
∑

b∈B
λi

bf(xjb)

= xj(xim− f(xim))−
∑

b∈B
λi

bf(xjb).

Therefore,

p := χj ◦ χi(m)− χi ◦ χj(m) = xif(xjm)− xjf(xim)
︸ ︷︷ ︸

p1

+
∑

b∈B
λj

bf(xib)− λi
bf(xjb)

︸ ︷︷ ︸
p2

.
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We show that p1∈K. Indeed, ∀a ∈ C, Λ(ap1)=Λ(axif(xjm)−axjf(xim)) = 0
since axi, axj ∈ C+ and f(xim), f(xjm) ∈ K; by (2.1), this shows that p1 ∈ K.
As p2 ∈ K too, this implies p ∈ K and thus p = 0, because p ∈ Span(B). �

Our objective now is to show that B is a basis of K[x]/(F ) and that, if π̃
denotes the projection from K[x] onto Span(B) along (F ), then the operator
Λ̃ defined by Λ̃(p) = Λ(π̃(p)) for p ∈ K[x], defines the desired flat extension
of Λ. Note that when B is connected to 1, Theorem 1.6 implies directly that
B is a basis of K[x]/(F ). As we do not assume B connected to 1, we cannot
apply Theorem 1.6, but our arguments below are inspired from its proof. In
particular, we construct the projection π̃ via the mapping ϕ from (2.4) below.

As the χi’s commute, the operator f(χ) := f(χ1, . . . , χn) is well defined for
any polynomial f ∈ K[x]. Then K[x] acts on Span(B) by

(f, p) ∈ K[x]× Span(B) �→ f(χ)(p) ∈ Span(B).

Recall that 1 ∈ B. The mapping

ϕ : K[x] → Span(B)
f �→ f(χ)(1) (2.4)

is a homomorphism and, by the following property,

ϕ(fg) = f(χ)(g(χ)(1)) = f(χ)(ϕ(g)) ∀f, g ∈ K[x], (2.5)

ker ϕ is an ideal in K[x]. We now prove that ϕ coincide on Span(C+) with the
projection π on Span(B) along K = ker HC+

Λ .

Lemma 2.2. For any element m ∈ C+, ϕ(m) = π(m).

Proof. We use induction on the degree of m. If m = 1, we have ϕ(1) = π(1) = 1
since 1 ∈ B. Let m �= 1 ∈ C+. As C is connected to 1, m is of the form m = xim1

for some m1 ∈ C+. By the induction assumption, we have ϕ(m1) = π(m1).
Then,

ϕ(m) = ϕ(xim1) = χi(ϕ(m1)) = χi(π(m1)) = xiπ(m1)− κ,

with κ ∈ F ⊆ K. But we also have

m = xi m1 = xi(π(m1) + m1 − π(m1)) = xiπ(m1) + xi κ1

where κ1 := m1 − π(m1) ∈ K ∩ Span(C). We deduce that

m = ϕ(m) + κ + xi κ1 = ϕ(m) + κ2

with κ2 := κ + xi κ1. As κ1 ∈ K and xiκ1 ∈ Span(C+), we deduce using (2.2)
that xiκ1 ∈ K. As κ ∈ K, this implies κ2 ∈ K. Finally, as ϕ(m) ∈ Span(B), it
coincides with the projection π(m) of m on Span(B) along K. �

This implies directly:

ϕ(b) = b, ϕ(xib) = χi(b) ∀b ∈ B ∀i = 1, . . . , n, (2.6)
Λ(pq) = Λ(p ϕ(q)) = Λ(ϕ(p)ϕ(q)) ∀p, q ∈ Span(C+). (2.7)

Lemma 2.3. For all p, q ∈ Span(C+), Λ(pq) = Λ(ϕ(pq)).
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Proof. We first show by induction on the degree of m ∈ C+ that

Λ(mb) = Λ(ϕ(mb)) ∀b ∈ B. (2.8)

The result is obvious if m = 1. Else, as C+ is connected to 1, we can write
m = xim1 where m1 ∈ C+. Using first (2.7) and then (2.6), we find:

Λ(mb) = Λ(m1xib) = Λ(m1ϕ(xib)) = Λ(m1χi(b)).

Next, using first the induction assumption and then (2.5), (2.6), we find:

Λ(m1χi(b)) = Λ(ϕ(m1χi(b))) = Λ(m1(χ)(χi(b))) = Λ(m(χ)(b)) = Λ(ϕ(mb)),

thus showing (2.8). We can now conclude the proof of the lemma. Let p, q ∈
Span(C+). Then, using successively (2.7), (2.8), (2.5), (2.6), Λ(pq) is equal to

Λ(p ϕ(q)) = Λ(ϕ(pϕ(q))) = Λ(p(χ)(ϕ(ϕ(q)))) = Λ(p(χ)(ϕ(q))) = Λ(ϕ(pq)).

�

We can now conclude the proof of Theorem 1.5. Let Λ̃ be the linear operator
on K[x] defined by

Λ̃(p) := Λ(ϕ(p)) for p ∈ K[x].

We show that HΛ̃ is the unique flat extension of HC+

Λ .
First, HΛ̃ is an extension of HC+

Λ since, for all p, q ∈ Span(C+), Λ̃(pq) =
Λ(ϕ(pq)) = Λ(pq) (by Lemma 2.3).

Next, we have K = ker HC+

Λ ⊆ ker HΛ̃. Indeed, let κ ∈ K. By Lemma 2.2,
ϕ(κ) = π(κ) = 0. Thus for any p ∈ K[x], we have Λ̃(p κ) = Λ(ϕ(p κ)) =
Λ(p(χ)(ϕ(κ))) = 0, which shows that κ ∈ ker HΛ̃.

As F is a rewriting family for B and B contains 1, B is a generating set
of K[x]/(F ) and thus dim K[x]/(F ) ≤ |B|. Set AΛ̃ := K[x]/ ker HΛ̃. Then,
as F ⊆ K ⊆ ker HΛ̃, we have dimAΛ̃ ≤ dim K[x]/(F ) ≤ |B|. On the other
hand, dimAΛ̃ = rankHΛ̃ ≥ rankHB

Λ̃
= rankHB

Λ = |B|. Therefore, dimAΛ̃ =

rankHΛ̃ = |B|, ker HΛ̃ = (K), HΛ̃ is a flat extension of HC+

Λ , and we have the
direct sum: K[x] = Span(B)⊕ ker HΛ̃. Moreover, ϕ(p) is the projection of p ∈
K[x] on Span(B) along kerHΛ̃. Indeed, ϕ(p) ∈ Span(B) and p−ϕ(p) ∈ ker HΛ̃

for any p ∈ K[x] since, for any q ∈ K[x],

Λ̃(pq) = Λ(ϕ(pq)) = Λ(p(χ)(ϕ(q))),

Λ̃(pϕ(q)) = Λ(ϕ(pϕ(q))) = Λ(p(χ)(ϕ(q))) = Λ̃(pq).

Finally, if Λ′ ∈ K[x]∗ is another linear form whose Hankel operator HΛ′ is
a flat extension of HC+

Λ , then kerHΛ̃ = (K) ⊆ ker HΛ′ . This implies that for
all p ∈ K[x], Λ′(p) = Λ′(ϕ(p)) = Λ(ϕ(p)) = Λ̃(p). This shows the uniqueness
of the flat extension of HC+

Λ , which concludes the proof of Theorem 1.5.
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3. Applications.

3.1. Application to the flat extension theorem of Curto and Fialkow. Theo-
rem 1.2 is in some sense an ‘easy’ instance of Theorem 1.4. Indeed, under its
assumptions, one can show existence of a maximum rank principal submatrix
of Mt−1(y) indexed by a monomial set B connected to 1 which, as noted in
the proof of Theorem 1.4, permits to apply Theorem 1.6.

Proposition 3.1. Let Λ ∈ (Span(C+ ·C+))∗, where C :=Mn,t−1. If rank HC+

Λ =
rank HC

Λ, then there exists B ⊆ C closed under taking divisors (and thus con-
nected to 1) for which rank HC+

Λ = rank HB
Λ = |B|.

Proof. Let M = (Λ(ab))a,b∈C+ denote the matrix of HC+

Λ in the canonical
bases. Consider a total degree monomial ordering � of C and let B ⊆ C index
a maximum linearly independent set of columns of M which is constructed
by the greedy algorithm using the ordering �. One can easily verify that B is
closed under taking divisors (cf. [14]). �

The following example shows that, even if C is connected to 1, there may not
always exist a base B connected to 1 for HC

Λ (which justifies our generalisation
of Theorem 1.6 to kernels of Hankel operators).

Example. For n = 2, let C = {1, x1, x1x2} with ∂C = {x2, x1x
2
2, x

2
1, x

2
1x2},

and let Λ ∈ (Span(C+ · C+))∗ be defined by Λ(xi
1x

j
2) = 1 if j = 0, 1, and

Λ(xi
1x

j
2) = a if j = 2, 3, 4, except Λ(x2

1x
4
2) = a2, where a is a scalar with a �= 1.

The associated moment matrix has the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x1 x1x2 x2
1 x2

1x2 x2 x1x
2
2

1 1 1 1 1 1 1 a
x1 1 1 1 1 1 1 a
x1x2 1 1 a 1 a a a
x2

1 1 1 1 1 1 1 a
x2

1x2 1 1 a 1 a a a
x2 1 1 a 1 a a a
x1x

2
2 a a a a a a a2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and rank HC
Λ = rank HC+

Λ = 2. As 1− x1 ∈ ker HC+

Λ , the only sets indexing a
column base for HC

Λ are B = {1, x1x2} and {x1, x1x2}, thus not connected to 1.

Combining Theorem 1.5 with Theorem 1.1 we obtain the following exten-
sion of Corollary 1.3.

Theorem 3.2. Let Λ ∈ (Span(C+ · C+))∗, where C ⊆ Mn is finite and con-
nected to 1. Assume that Λ is positive and that rank HC+

Λ = rank HC
Λ. Then

the sequence y = (Λ(a))a∈C+·C+ has a representing measure.

3.2. Application to polynomial optimization. We point out here the relevance
of the flat extension theorems to polynomial optimization and to the problem
of computing the real roots to polynomial equations. In this section, we take
again K = R.
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The truncated moment problem has recently attracted a lot of attention
also within the optimization community, since it can be used to formulate
semidefinite programming relaxations to polynomial optimization problems
(see [12]). Moreover the flat extension theorem of Curto and Fialkow permits
to detect optimality of the relaxations and to extract global optimizers to the
original optimization problem (see [9]). Here is a brief sketch; see, e.g. [16] and
references therein for details.

Suppose we want to compute the infimum p∗ of a polynomial p over a
semi-algebraic set K defined by the polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0.
For any integer t ≥ deg(p)/2 and such that t ≥ dj := �deg(gj)/2�, consider
the program:

p∗
t := inf Λ(p) s.t. Λ ∈ (R[x]2t)∗, Λ(1) = 1, Λ � 0, gj · Λ � 0 (∀j ≤ m).

(3.1)

Here, Λ � 0 means that Λ is positive (i.e., Λ(p2) ≥ 0 for all p ∈ R[x]t) and
the localizing conditions gj · Λ � 0 (i.e. Λ(gjp

2) ≥ 0 for all p ∈ R[x]t−dj
) aim

to restrict the search for a representing measure supported by the set K (cf.
[6,12]). Using moment matrices, the program (3.1) can be formulated as an
instance of semidefinite programming for which efficient algorithms exist (see
e.g. [21,22]). We have: p∗

t ≤ p∗, with equality if H
Mn,t

Λ is a flat extension of
H

Mn,t−d

Λ for an optimum solution Λ to (3.1) (d := maxj dj). In that case, the
atoms of the representing measure (which exists by Corollary 1.3) are global
minimizers of p over the semi-algebraic set K and they can be computed from
Λ [9]. Moreover, they are all the global minimizers when H

Mn,t

Λ has the max-
imum possible rank among all optimum solutions to the semidefinite program
(3.1).

As shown in [13], the truncated moment problem also yields an algorithmic
approach to the problem of computing the real roots to polynomial equations
g1 = 0, . . . , gm = 0 (assuming their number is finite). Indeed, this amounts to
finding all global minimizers to a constant polynomial, say p = 0, over the real
variety K := {x ∈ R

n | gj(x) = 0 ∀j = 1, . . . ,m}. Consider the semidefinite
program (3.1) where the localizing conditions now read gj · Λ = 0 ∀j. For t
large enough, the program (3.1) has a maximum rank solution which is a flat
extension and thus, as noted above, all points of K can be computed from this
solution. See [13] for details.

A concern in this type of approach is the size of the matrices appearing in
the semidefinite program (3.1). In order to improve the practical applicability
of this approach, it is crucial to derive semidefinite programs involving matri-
ces of moderate sizes. For this one may want to consider moment matrices
indexed by sparse sets of monomials instead of the full degree levels Mn,t.
This is where our new sparse flat extension theorem may become very useful.
It will be used, in particular, in [11].

The approach in [13] also permits to find the real radical of the ideal
generated by the polynomials g1, . . . , gm. Indeed, if Λ ∈ (R[x])∗ is positive,
then the kernel of its Hankel operator HΛ is a real radical ideal [15] and,
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under the conditions of Theorem 3.2, ker HC+

Λ generates a real radical ideal.
These facts explain the relevance of moment matrices and Hankel operators to
the problem of finding the real radical of a polynomial ideal. For instance, this
permits to weaken the assumptions in Proposition 4.1 of [13] and to strengthen
its conclusions; more precisely, we do not need to assume the commutativity
of the operators χi’s (as this holds automatically, by Lemma 2.1) and we can
claim that the returned ideal is real radical (by the above argument).
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